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Abstract: Unsupervised classification or clustering of multi-decadal land surface phenology provides a 

spatio-temporal synopsis of natural and agricultural vegetation response to environmental variability 

and anthropogenic activities. Notwithstanding the detailed temporal information available in calibrated  

bi-monthly normalized difference vegetation index (NDVI) and comparable time series, typical  

pre-classification workflows average a pixel’s bi-monthly index within the larger multi-decadal time 

series. While this process is one practical way to reduce the dimensionality of time series with many 

hundreds of image epochs, it effectively dampens temporal variation from both intra and inter-annual 

observations related to land surface phenology. Through a novel application of object-based 

segmentation aimed at spatial (not temporal) dimensionality reduction, all 294 image epochs from a 

Moderate Resolution Imaging Spectroradiometer (MODIS) bi-monthly NDVI time series covering the 

northern Fertile Crescent were retained (in homogenous landscape units) as unsupervised classification 

inputs. Given the inherent challenges of in situ or manual image interpretation of land surface 

phenology classes, a cluster validation approach based on transformed divergence enabled comparison 

between traditional and novel techniques. Improved intra-annual contrast was clearly manifest in  

rain-fed agriculture and inter-annual trajectories showed increased cluster cohesion, reducing the 

overall number of classes identified in the Fertile Crescent study area from 24 to 10. Given careful 
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segmentation parameters, this spatial dimensionality reduction technique augments the value of 

unsupervised learning to generate homogeneous land surface phenology units. By combining recent 

scalable computational approaches to image segmentation, future work can pursue new global land 

surface phenology products based on the high temporal resolution signatures of vegetation index time 

series. 

Keywords: object-based segmentation; time series; unsupervised clustering; land surface phenology; 

MODIS 

 

1. Introduction 

Land surface phenology describes seasonal changes in vegetation, from a remote sensing 

perspective, at regional and global scales [1,2]. From ecosystem and biodiversity to climate change 

applications, large scale vegetation phenological trends have been linked to predicted onset of drought in 

arid climates [3,4], and to observed changes in growing season length over multiple decades [1]. The 

northern Fertile Crescent, a region of historical and modern significance covering portions of Syria, 

Lebanon, Turkey, and Iraq, clearly benefits from an increased understanding of vegetation phenology due 

to persistent reliance on scarce water resources [5,6]. 

Regional agricultural boundaries (e.g., zones suitable for dry farming of staple cereals such as wheat 

and barley in the northern Fertile Crescent), are often based on generalized precipitation regimes and 

limited vegetation phenology observed in situ [7]. However, remote sensing-derived land surface 

phenology zones offer broad coverage and detail, and by systematic observation, account for both 

environment and anthropogenic activities [8,9]. This study complements past work to improve 

classification of land cover through satellite image time series [10,11] by offering a new perspective on 

incorporating underused multi-decadal seasonal temporal data while creating phenological zones or 

homogeneous landscape units [9]. Toward this goal, we describe an object-based spatial dimensionality 

reduction approach when clustering MODIS NDVI time series. Our novel method is compared to the 

commonly used ―mean year‖ dimensionality reduction technique [9,12,13] to highlight improved 

preservation of seasonality and multi-year trajectories within phenological zones. The new method, while 

demonstrated in the northern Fertile Crescent, may be extended to other regions or globally to augment 

the value of unsupervised classification in current and future land surface phenology applications. 

1.1. Time Series Imagery 

Satellite remote sensing has produced records of Earth’s land conditions for multiple decades, 

made possible by regular revisit schedules inherent in repeating processional orbits. Notable examples 

of continuing programs that have lasted longer than a decade include Landsat, jointly sponsored by U.S. 

Geological Survey (USGS) and National Aeronautics and Space Administration (NASA), Advanced 

Very High Resolution Radiometer (AVHRR) sponsored by National Oceanic and Atmospheric 

Administration (NOAA), and NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). 
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Unlike Landsat with its 16-day revisit period and 30 m spatial resolution, the latter two sensors exhibit 

higher temporal resolutions and support land surface phenology applications with inherently coarser 

spatial resolution requirements. The AVHRR sensor program, initiated in 1978, has acquired  

twice-daily global imagery at a spatial resolution of 1.1 km. MODIS was first placed in orbit in 1999 

with the capability of daily image collection at a maximum spatial resolution of 250 m for its red and 

near-infrared bands. The complete archive of successive temporal images acquired by each mission is 

comprised of up to multi-decadal records that have garnered significant interest in both academia and 

industry [14]. The NOAA Suomi National Polar-orbiting Operational Environmental Satellite System 

(NPOESS) Preparatory Project (NPP), launched in 2011 with additional launches planned, includes the 

Visible Infrared Imaging Radiometer Suite (VIIRS) with many similarities to MODIS. 

Agency pre-processing procedures applied to the archive of remotely sensed images have created 

internally consistent time series which are ready-to-use in subsequent research and monitoring 

applications. Advances in image correction (e.g., for atmospheric attenuation, satellite drift, bi-directional 

reflectance, etc.) have greatly benefited time series imagery analysis. Holben [15] presented Maximum 

Value Compositing (MVC), which is applied to time series imagery by retaining a maximum reflectance 

value for each pixel over a multi-day compositing period. Common compositing periods range from one 

week to one month in order to ensure acquisition of maximum reflectance for each pixel in a scene, and 

may only represent certain seasons of the year [13]. The compositing periods, while long enough to gain 

valuable cloud-free per-pixel data, preserve seasonal vegetation reflectance curves necessary for 

phenological studies. Early work on AVHRR image data to calibrate sensor equipment and correct 

atmospheric interference produced time series with greatly reduced sensor and environmental pixel 

degradation [16–18]. Pinzón et al. [19] developed a method using empirical mode decomposition to 

isolate and remove spectral artifacts in time series imagery caused by gradually changing solar zenith 

angles due to satellite platform orbital drift. These and other techniques have been developed to create 

consistent time series imagery such as AVHRR, MODIS, and Satellites Pour l’Observation de la Terre 

(SPOT) Vegetation (SPOT-VGT) that has been so valuable in supporting land surface phenology 

research in recent decades [1]. 

1.2. Vegetation indices in time series 

The commonly utilized NDVI [22,23] takes advantage of high chlorophyll absorption in the red 

and foliar reflectance in near infrared wavelengths of healthy green vegetation. During the more than 

three decades from 1978-present, daily NDVI (with values from -1 to 1) images are easily calculated 

using near-infrared and red bands from AVHRR and/or MODIS time series (Figure 1): 

 
redNIR

redNIRNDVI







  (1) 

where red  is Band 1 reflectance (0.580–0.680 m for AVHRR and 0.620–0.670 m for MODIS), 

and NIR  is Band 2 reflectance (0.725–1.10 m for AVHRR and 0.841–0.876 m for MODIS). 

Despite the refined spectral resolution of the red and near-infrared MODIS bands, a calibrated NDVI 
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time series for AVHRR that is compatible with MODIS-derived NDVI time series is available [21]. 

Furthermore, when compared with the very similar Simple Ratio which is dependent upon the same 

spectral bands, NDVI itself is well suited to the lower biomass conditions [14] of the dry farming 

transition zone between the Middle East steppe and the Mesopotamian shrub as identified in the 2005 

World Wildlife Fund Terrestrial Ecoregions map. 

 

Figure 1. Possible values for a cultivated pixel in both spectral (top) and temporal (bottom) domains. 

Spectral curve data (top) was obtained from the USGS Digital Spectral Library [20]. Each  

half-month observation (bottom) is taken from a 25-year AVHRR NDVI time series produced by 

Tucker et al. [21]. Each pixel may contain unique reflectance characteristics in both spectral and 

temporal domains, allowing for classification by spectral or phenological similarity. 

The natural phenological cycle, observable to humans through the repeating seasonal changes of 

vegetation, produces a seasonal oscillation (often referred to as a signal, curve, or profile) in NDVI 

calculated for the same pixel over consecutive years (Figure 1). Time series NDVI data spanning the 

length of a growing season or longer can serve as a valuable proxy for plant phenology [24]. 

1.3. Time Series Vegetation Index Classification 

Time series vegetation indices such as NDVI data are used as input for unsupervised classification 

algorithms to create relatively homogeneous phenological data partitions or landscape units [9,12]. Since 

each input pixel corresponds to one spatial location and many temporal observations, input to the 

classification algorithm is a vector (array) of data in n dimensions where n is the number of images in the 

time series. Each NDVI vector plotted by time reveals the phenological curve at each pixel location 

(Figure 1). Using a measure of statistical separability, a preferred classification algorithm groups and 
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assigns class membership labels to pixel vectors of similar phenological curve shape. However, given the 

need for dimensionality reduction, applications of time series imagery or indices rarely incorporate full 

temporal curve shape into the classification product. 

Researchers have approached classification of satellite imagery-derived time series using several 

methods. Common approaches are divided into three categories based on the form of the time series to be 

incorporated as input for classification: flattened, reduced, and full-data time series (Figure 2). First, 

flattened-data time series are characterized by the replacement of original data time series with a single 

raster of representative values or metrics corresponding to important phenological events. One such metric 

is ―length of growing season‖ calculated as the number of days with an NDVI value greater than a 

predetermined threshold [8]. Second, reduced-data time series are designed to reduce the dimensionality of 

a dataset while maintaining a multi-raster temporal sequence. A common reduction method is to calculate 

mean NDVI for each month represented by a multi-year time series [9,12,13]. Finally, full-data time series 

utilize the maximum number of available imagery dates to obtain temporal NDVI vectors (arrays of values) 

for every pixel location. Only full-data time series precisely track the trajectory of observed data values over 

time [25], adding valuable insight to anthropogenic and environmental spatial variability. 

 

Figure 2. In general, time series of remotely sensed images and derived indices have been utilized 

as full-, reduced-, and flattened-data time series in various application workflows. Each approach 

to time series data reduction may target specific attributes of land surface vegetation phenology. 

Multiple researchers have encountered the need to reduce a vegetation index time series as part of a 

classification or clustering workflow. For example, Kouchoukos [12] produced an ―agro-ecological‖ map 

from fifteen years of time series data in Mesopotamia. He calculated monthly averages of AVHRR 

NDVI data over all fifteen years, resulting in a reduced set of twelve NDVI images that represent an 

average year. Kouchoukos then temporally ordered and subjected the monthly averages to unsupervised 
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classification, resulting in a map with seven relatively homogeneous land surface phenology classes. In a 

second example, Al-Bakri & Taylor [26] repeated this method of data reduction by averaging 

corresponding months over time. Other techniques employed by scholars include principal component 

analysis (PCA) [9,27] and Fourier transform [24,28] to reduce dimensionality and to remove noise while 

maintaining a partial temporal sequence relative to the original time series data. 

Object-based image analysis (OBIA) and image segmentation (e.g., for primary object detection 

through Trimble’s eCognition) continue to be most often associated with relatively high spatial 

resolution applications, such as automated landslide detection [29]. However, a few recent studies 

have utilized object-based image segmentation in conjunction with remote sensing-derived 

vegetation index time series. For example, Bontemps et al. [30] demonstrated the use of  

multi-temporal image segments derived from a SPOT-VGT time series to create change/no change 

objects in order to better take into account temporal dependencies often ignored in traditional change 

detection algorithms. As part of a land cover study in Namibia, Hüttich et al. [31] segmented Landsat 

ETM+ imagery as a scaling mechanism to link in situ reference data with relatively coarse spatial 

resolution MODIS imagery. In an investigation of wildfire susceptibility in Sardinia, Italy, De 

Angelis et al. [32] first applied the mean year method to reduce the dimensionality of a MODIS 250 

m NDVI time series (specifically the MOD13Q1 product) with 253 epochs down to 23 mean NDVI 

images. This intermediate product was then subjected to multiresolution image segmentation in 

eCognition to produce homogenous landscape units suitable for extraction of land surface 

phenological metrics and subsequent fire ignition-related cluster analysis. Zhong et al. [33] extracted 

and analyzed land surface phenology metrics within segments pre-computed from finer spatial 

resolution data. In a final example, Bisquert et al. [9] extracted image segments from a PCA-reduced 

selection of indices and dates from multiple vegetation and Haralick texture time series. They 

concluded that resulting homogenous landscape units produced are of significant value in a variety of 

vegetation and ecosystem contexts. 

1.4. Statement of the Problem 

Given the advent of object-based methods in high temporal resolution remote sensing 

workflows, a key question is how best to reduce the time series prior to information extraction. This 

work presents a novel time series data reduction method and compares it to the commonly used mean 

year reduction method as input to land surface phenology classification. Our approach maintains 

temporal fidelity after an object-based image segmentation process is applied. This study focuses on 

the information content added to subsequent unsupervised clusters when long time series are utilized. 

With the northern Fertile Crescent and its traditional dry farming and scarce water resources as 

context, three specific objectives were successfully pursued to 1) characterize differences between 

unsupervised clusters or classes based on mean year reduced versus segment mean reduced long time 

series NDVI; 2) identify differences in the spatial distribution of classes; and 3) determine how 

varying class boundaries produced using the two data reduction methods contribute to our 

understanding of regional and temporal phenological patterns within the northern Fertile Crescent. 

2. Materials and Methods 
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2.1. Unsupervised Classification 

Unsupervised classification (or clustering) groups data points into classes according to the inherent 

structure of the data in measurement space and is usually based on an algorithm with a user-defined k 

parameter that specifies how many classes are anticipated. The expert who operates the relevant 

classification software has little to no additional input. The classification software typically utilizes a 

series of heuristic evaluations of intermediate data class membership to adjust class parameters and 

reassign data to new classes while the algorithm converges on the best distribution of data given k target 

classes. Traditionally, k has been derived from a previous classification of the area of interest or 

interactively adjusted until the analyst determines that useful classes have been identified. In contrast, 

relatively few studies using unsupervised classification of NDVI incorporate a posteriori class similarity 

statistical analysis described by Tou and Gonzales [34] and Swain and Davis [35], and exemplified by 

Nguyen et al. [25]. 

Cluster validation is applied a posteriori as a method for evaluating the effectiveness of unsupervised 

classification, but separate and distinct from final accuracy assessment using Cohen’s kappa coefficient [36] 

or other analysis of the classification error matrix [37]. The goal of cluster validation is to answer the 

question: did the classification algorithm identify the structure and number of inherent clusters, or classes, in 

the input data? Methods to answer this question utilize indices of a) class cohesion and b) class separation. 

Class cohesion describes the compactness of the class members around their class centers, while class 

separation measures the uniqueness of each class or distance between classes. Researchers have developed 

many cluster validation indices (CVIs) to manage various scenarios [38]. 

Nguyen et al. [25] apply the divergence index defined by Swain and Davis [35]. The index uses 

class signature files to calculate separability between classes. Signature files contain a mean vector and 

covariance matrix for every class in a classification scheme. These values are calculated using class 

assignments and the original data. 

A transformed divergence index [35,39] is calculated as: 
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Elements of equations 2, 3, and 4 are: 

1. 
ijTD —transformed divergence between classes i  and j  

2. )( ip  —a priori probability of class membership; equal to 
1m  
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3. m —total number of classes 

4. 
ijD —the divergence between classes i  and j  

5.  xtr  – the trace of matrix x ; the sum of the elements on the diagonal of x  

6. 
i —the covariance matrix of class  

7. 
iU —the mean vector of class  

8. T —the transpose function 

Minimum transformed divergence is defined as the minimum transformed divergence 

measurement between a pair of classes in the set of all class pairs as calculated in Equation 3. It is 

important to note that the minimum transformed divergence serves as a complimentary measure to the 

average transformed divergence when evaluating classification schemes. The minimum transformed 

divergence measures how well each classification scheme (or a priori number of classes specified) 

separates the most closely related classes. A relatively low value indicates that the closest (most similar) 

classes are not well separated, while a relatively high value gives the analyst more confidence in the 

classification scheme. In general, however, the more classes the data are divided into, the lower the 

minimum transformed divergence. The analyst must therefore balance the increasing average 

transformed divergence against the decreasing minimum transformed divergence to select an optimal 

classification scheme. 

2.2. Image Segmentation 

The value derived from hierarchically grouping data into mutually exclusive subsets has long 

been recognized [40]. Increasingly popular image segmentation is the process of decomposing 

imagery into homogenous regions called segments that can be arranged as spatially hierarchical 

objects. This mimics the cognitive ability of the human visual processing system to identify objects 

by recognizing homogeneity based on proximal data values of similar magnitude [41].  

Multi-resolution image segmentation introduced by Baatz & Schäpe [41] maximizes homogeneity 

within segments and maximizes heterogeneity between segments. Homogeneity h  for image 

segments is defined as: 
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where 
df1

 is the feature value for segment   in dimension d , and   is the standard deviation of 

feature f  for all segments in dimension d . The feature value f is a metric that can be derived from 

the image object. Subscript d  refers to the image dimension (e.g., band, or in the present context, 

date in a time series). For example, in a time series NDVI context, f could be the mean (or variance, 
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etc.) of all the March 15
th

, 2016 NDVI pixel values in a segment. Homogeneity would be calculated 

across all dimensions of the image stack; in a calibrated time-series context, the image stack is 

comprised of a series of sequential time frames (e.g., 15 February, 1 March, 15 March, etc. in a 

specific year). 

To minimize the heterogeneity within segments, multiresolution segmentation merges pairs of 

image objects with minimal change of heterogeneity, 
diffh , among possible merges (Figure 3). This 

is measured by the equation: 

 ))()(( 2211 dmddmddddiff hhnhhnwh   (6) 

where 
dh1

 is the homogeneity of segment 1 in dimension d , 
mdh  is the homogeneity of segments 1 and 2 

after a virtual merge, 1n  is the size of object 1, and 
dw  is the weight of dimension d . The virtual merge 

is a ―what if‖ condition: what will the homogeneity be if segment 1 and 2 are merged? The ―what if‖ 

scenario is repeated to calculate 
diffh  for all pairs of adjacent segments, and the minimum value is chosen 

to define the actual segment merge. 

Because image segmentation groups homogenous values, it effectively reduces the 

dimensionality of data needed to represent an image. While not easily compared with spectral 

dimensionality reduction approaches such as band or feature selection [42], segmentation is 

conceptually similar to resampling of raster data to a larger cell size. However, instead of performing 

an arbitrarily uniform gridded merging of cells, image segmentation merges cells according to value 

homogeneity. The mean value of the merged pixels can be used to represent the new, larger area 

segment. Reduced raster data appear as s segments instead of p pixels, where s is always less than p. 

 

Figure 3. Imagery including satellite-derived time series can be segmented to create image objects 

bounding neighboring homogeneous pixels. This example illustrates the segment merge decision 

criteria: minimize potential increase in heterogeneity within a segment. 
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2.3. Study Area 

This study focused on a region of the Middle East referred to as the northern Fertile Crescent, 

covering the area extending longitudinally from 28˚ to 50˚ east with a latitudinal span from 28˚ to 42˚ 

north. The Fertile Crescent, a term coined by archaeologist James Henry Breasted in 1906, describes 

an arc-shaped, agriculturally productive zone trending east-west with a central northern apex and 

southward-bowed ends. The region is characterized by a Mediterranean climate, with hot, dry 

summers and cool, wet winters with as much as 90% of annual precipitation falling between 

November and March. Alongside this seasonality, a principle feature of the region is strong 

precipitation gradients, with annual totals along the humid Mediterranean littoral and in the northern 

Taurus-Zagros Mountain range topping 1,800 mm, rapidly decreasing to less than 100 mm in the 

central Syrian Desert less than 300 km away [43]. This pattern of rainfall, driven largely by 

orographic effects on Mediterranean and North Atlantic climate systems, creates a similarly strong 

natural vegetation gradient [5] and has profound effects on the spatial distribution and sustainability 

of agriculture [7,44]. While the anastomosing Tigris-Euphrates river system in southern 

Mesopotamia supports widespread irrigation agriculture, the broad plains of the northern Fertile 

Crescent feature deeply incised rivers that result in very limited opportunities for irrigation (Figure 4). 

In this area, most agriculture has traditionally been dependent on rainfall, and thus the spatial 

patterning of precipitation and other water resources, particularly in more arid areas, is a key factor 

in determining agricultural potential, both ancient and modern. 

 

Figure 4. The northern Fertile Crescent study area outlined in green, with the extents  

of the two adjoining sinusoidal MODIS tiles in red. Basemap courtesy of DeLorme and Esri. 

As with studies of modern agriculture, archaeologists have similarly utilized rather static models 

of agricultural sustainability, based largely on the location of the 250 mm annual rainfall isohyet, 

below which it is believed dry-farming of wheat and barley is not possible. Ancient settlements 
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located below the modern boundary of rain fed farming have been taken as evidence of past climate 

change, while the survival or collapse of settlements located above the 250 mm isohyet have 

similarly been linked to variability in annual rainfall [45,46]. As a region that is home to the world’s 

first sedentary agricultural communities more than 10,000 years ago [47] as well as to some of the 

first cities [48], a better understanding of landscape phenology in the northern Fertile Crescent offers 

a key contribution to longstanding debates regarding the origin and development of early complex 

societies. A refined picture of spatial and temporal patterns in water availability and vegetation 

health similarly provides a basis for more nuanced analysis of modern agricultural production in this 

extremely politically volatile region. 

2.4. Remotely Sensed Data 

2.4.1. MODIS 

MODIS data within two adjoining sinusoidal grid tiles were obtained for twelve years  

(2000–2012) from the USGS Land Processes Distributed Active Archive Center (LP DAAC) using 

NASA’s [49] Reverb web interface. Individual scenes of the 250 m MODIS vegetation index time 

series, MOD13Q1, were examined for cloud and/or atmospheric contamination and poor  

sun-target-sensor geometry. Pixels without contamination or poor geometry were retained for the 

vegetation index time series based on 16 day MVCs. Solano et al. [50] explain the full processing 

procedure of the MOD13Q1 data. 

The downloadable scenes were multi-layer and conveyed the actual data values for NDVI and 

Enhanced Vegetation Index (EVI) along with pixel quality. NDVI was stored as 16-bit integers with a 

range of -2,000 to 10,000. Actual NDVI were calculated from the stored values using the following 

equation: 

 0001.0 rawNDVI  (7) 

―NoData‖ values were presented as -3,000, while data quality values were stored as 8-bit integers 

ranging from -1 to 3 (Table 1). Data values with corresponding error values of 0 through 2 were used in this 

study. 

Table 1. Quality flag values for MOD13Q1; adapted from Solano et al. [50]. 

Value Summary Description 

-1 Fill/no data Not processed 

0 Good data Use with confidence 

1 Marginal data Useful, but look at other quality information 

2 Snow/ice Target covered with snow/ice 

3 Cloudy Target not visible, covered with clouds 

For each acquisition date, the two MODIS tiles were mosaicked using the Esri’s ArcPy Python 

package. The complete MODIS time series was comprised of 294 mosaicked NDVI rasters 

corresponding to 294 compositing periods over the given 12 years. MODIS data were extracted from 
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each associated downloaded HDF file and left in their scaled NDVI integer form to accommodate use of 

16-bit rasters. This provided a 50% savings in memory storage (from 32 to 16 bits). 

2.4.2. Landsat and Other Higher Spatial Resolution Imagery 

Selected Landsat Thematic Mapper (TM) scenes, acquired 6 July 1984, 30 August 1984, and 1 

August 1985, were also accessed through NASA’s [49] Reverb web system. More recent Landsat 8 

Operational Land Imager (OLI) imagery acquired 24 Apr 2013 was also accessed using USGS’s [51] 

Global Visualization Viewer (GLOVIS) tool. Additionally, recent high spatial resolution aerial and 

satellite imagery, available through Esri’s ArcMap, were accessed to aid manual interpretation of 

classification results. 

2.5. Data Reduction 

2.5.1. Mean Year Method 

Reduced-data mean year time series (Figure 5) were created from the MODIS data using ArcPy. 

Pixels in scenes that had undesirable quality flag values were given a value of ―NoData‖ so as to not 

influence the calculated means. Corresponding time frames for each year in the time series were 

averaged to produce a ―mean year‖ time series. The mean year consisted of 23 rasters because the 

compositing time of the MODIS data is 16 days. 

The process used to calculate the mean year time series was as follows: 

1. Identify compositing periods for each year (i.e. Jan 1–16, Jan 17–Feb 1… etc.). 

2. Group all images in the time series by their compositing period. 

3. Calculate local sum of available NDVI values within each compositing period. 

4. Calculate local sum of the number of valid NDVI values within each compositing 

period. 

5. Calculate local division of step 3 result by step 4 result. 

6. Repeat steps 3–5 for each compositing period in the year. 

The resulting set of mean compositing period rasters were temporally ordered as mean year 

NDVI time series (23 layers). 
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Figure 5. Generalized workflow comparison between the traditional mean year data reduction 

method (left branch) and the novel object-based data reduction method (right branch). The 

fundamental difference is the initial multiresolution image segmentation in the novel method, 

allowing for spatial as opposed to temporal aggregation. Each method was tested with NDVI time 

series from MODIS. 

2.5.2. Object-based Method 

Trimble’s [52] eCognition was used to create image segments (objects) from the MODIS time series 

as a novel reduction of NDVI time series data (Figure 5). After the MODIS time series images were 

temporally ordered and loaded into eCognition, each image was split into 127 tiles, each 600 × 600 pixels, 

due to the large amount of calculations and memory required for segmentation of the full time series. 

Multi-resolution segmentation was executed for each MODIS time series tile using image pixels as input. 

Shape and compactness parameters were set to zero which allowed for both compact and linear features 

(e.g., the Tigris River Valley) to be segmented. Scale parameter options were heuristically tested as 

explained below. The MODIS tiles were subsequently stitched together using rules that identified tile 

border objects, and re-segmented new objects in these areas using the original pixel data and specified 

object parameters (scale, shape, and compactness). This was done to remove superimposed linear 

segments introduced in the tiling phase (Figure 6). 

Multiresolution segmentation was repeated for incremental scale parameters of 15, 18, 21, 24, 27, 

30, 33, 36, 39, and 42 for MODIS data. The segments produced with each scale parameter were 

compared to the total number of pixels in a single date of imagery to determine the percent of data that 

was reduced and the average number of pixels per segment that were created under each proposed 
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segmentation scheme. Manual selection of the best scale parameters versus amount of data reduction was 

performed using graph comparisons (Figure 8). Maximizing percent data reduction was paramount in the 

selection criteria for memory-intensive processing of a MODIS time series. (This numerical analysis 

could be automated to reduce time cost barriers while employing this method.) The selected segments 

were then exported from eCognition to Esri’s
 
Shapefile format. 

 

Figure 6. Segmented tiles of MODIS-derived NDVI time series were further processed to 

remove linear segment boundary artifacts introduced in the tiling process (required for 

computational scaling in large area applications). 

To prepare the data for subsequent unsupervised classification in ERDAS Imagine, the exported 

segment polygons were used to create a series of spatially un-registered rasters (one for each date in the 

time series). Each raster cell contained the mean value of the pixels bounded by the segment and 

calculated from the corresponding NDVI image in the time series. The resulting time series product 

contained a raster for every compositing period of the full time series, but whose data were aggregated 

by segment. 

2.6. Unsupervised Classification (Clustering) 

Each pixel location in the mean year time series represented an NDVI vector spanning a single 

―mean‖ year. Layers were arranged so that the beginning of the calendar year was layer 1 and 

subsequent time frames were assigned ascending layer numbers for a total of 23. In contrast, each 

pixel location in the segment mean time series represented the temporal trajectory vector of NDVI 

spanning 294 compositing periods. Layers in the data set were temporally arranged so the earliest 
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compositing time and year were assigned to the first layer and subsequent time frames were assigned 

to ascending layers. Both mean year reduced-data and segment mean reduced-data time series were 

subjected to unsupervised classification using the ISODATA algorithm as implemented by ERDAS 

Imagine [39]. 

2.6.1. K parameter Adjustment and Cluster Validity 

Thematic accuracy assessment of remote sensing derivatives typically involves sampled 

reference data collection, the creation of an error matrix, and the calculation of such metrics as 

overall, producer’s and user’s accuracies [53]. Unfortunately, comparison and validation of land 

surface phenology classification methods is challenged by the fact that derived classes are based on 

remote sensing time series (in the case of this study, 294 compositing periods over 12 years). With 

no universal reference for population of an error matrix associated with derived land surface 

phenology classes, this study focused on enabling methodological comparison. 

 

Figure 7. Transformed divergence (red) and minimum transformed divergence (black) as a 

function of number of clusters of mean year MODIS data reduction; these are used for for 

determining local maxima of the minimum transformed divergence. A 73-class scheme was 

ultimately selected as optimal. 

Optimal ISODATA classification schemes for both the traditional and novel reduced-data time 

series were identified by iterating through k = 3, 4…100, where k is the desired number of output 

clusters as requested by ISODATA. The maximum number of classes was limited to 100 to ease 

interpretation while allowing for extraction of spatially small classes. Each proposed classification 

scheme resulting from a different ISODATA k was scrutinized using cluster validation techniques. 

For each execution, the transformed divergence index [35] was calculated using ERDAS Imagine. 

For both the traditional and novel branches of the overall workflow (Figure 5), an optimal 

classification scheme was determined manually using a combination of average transformed 
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divergence and minimum transformed divergence (Figure 7). This important k parameter adjustment 

and cluster validity procedure ensured that the dimensionally distinct traditional and novel clustering 

approaches were comparable, as each was based on an optimal number of output clusters requested. 

3. Results and Discussion 

3.1. Mean year Reduced Data 

The structure of mean year reduced data is inflexible; it will always consist of a time series with the 

same number of rasters as annual compositing periods in the full time series, regardless of the number of 

years spanned. This characteristic trades flexibility of amount of data reduction for reduced 

computational complexity of the reduced data time series. Thus, the MODIS time series, which spanned 

12 years, was reduced to 23 rasters (one for every 16 days in a year). 

3.1.1. Transformed Divergence 

Transformed divergence remained relatively high in all classification schemes for MODIS reduced 

mean time series (Figure 7). The minimum transformed divergence became useful in this scenario as 

selection criteria for optimal classification schemes. Local maxima of the calculated minimum 

transformed divergence indicated classification schemes that divide the data relatively well. The  

seven-class and 20-class schemes for the MODIS mean year reduced data time series did not divide the 

northern Fertile Crescent into small enough sub-areas. In the ultimately selected 73-class scheme, 11 of 

the classes were major contributors to the area of interest, and another 13 contributed meaningful spatial 

segregation. A total of 47 other classes intersected the study area but were very minor contributors or 

extremely scattered throughout the area. Only two classes did not intersect the study area at all. The  

73-class scheme was also chosen for further development of a MODIS cluster map of the northern Fertile 

Crescent due to the reasonable expectation of interpreting the 24 major and minor contributing classes 

and the high level of spatial clustering apparent. 

3.2. Segment Reduced Data 

Selection strategy for the best segmentation scheme balanced the need to reduce the amount of data 

while maintaining appropriate spatial resolution (aggregation) or mean segment size (Figure 8). Percent 

data reduction is given more weight in the selection process because of the necessity to limit subsequent 

data processing costs. As the data reduction curve approaches 100%, the value returned by each 

successive segmentation scheme is reduced as shown by the flattening of the curve. Similarly, as the 

segmentation scale increases, the value returned by the average segment size is reduced due to the 

exponential growth of average segment size. An estimated starting point to eliminate segmentation 

schemes is at the transition of vertical trend to horizontal trend on the percent data reduction curve, 

specifically at scale 24. Consequently, schemes of scale 24 and below were eliminated from the candidate 

optimal segmentation scheme pool. 
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To further identify an optimal MODIS segmentation scheme, we limited the candidate segmentation 

scales to those which reduced the full time series to attain percent reduction comparable to that of the 

mean year time series (which reduced the full data time series by 92%). Consequently, the optimal 

number of segments in a segmentation scheme was at most 3,604,898, which eliminated scale 27 from 

consideration. Segment size increased dramatically with each successive segmentation scheme while the 

change in percent data reduction diminished rapidly. Scale 30 was selected as optimal due to it being the 

next smallest given the above constraints. 

 

Figure 8. Data reduction and mean segment size for various segmentation scale parameters for 

segment mean MODIS time series. This graph was used to guide the selection of an optimal 

segmentation scheme. 

3.2.1. Transformed Divergence 

The ERDAS Imagine transformed divergence separability function did not produce reliable results 

for the segment mean time series. (The average and minimum transformed divergence for each 

classification scheme produced a value of 2000, which is the maximum value possible for this metric.) 

As an alternative, the same number of classes from the mean year classification schemes was used for the 

segment mean classification for the MODIS time series. 

3.3. Comparison of Mean Year Classes to Segmented Classes 

ISODATA classes (clusters) were categorized as major, minor, and scattered to aide interpretation 

of spatial distribution of each classification scheme (Table 2). Major classes contribute significant 

portions of the total study area, minor classes contributed smaller clusters of pixels, and scattered classes 

contributed only a few pixels per class. These three categories were used to guide the creation of 

classification maps for each data type and reduction method. As a result, only major and minor classes 

were included in the results (Figures 9–11). 
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Table 2. ISODATA classes (clusters) intersecting the study area. Major classes contributed 

significant portions of the total study area, and minor classes, comprised of spatially interesting zones, 

contributed smaller clusters of pixels. Scattered classes contributed only a few pixels per cluster in 

the study area. 

Methodology Major Minor Scattered 

Traditional mean year 
25, 26, 27, 29, 30, 41, 

43, 46, 49, 56, 58 

24, 28, 44, 47, 

48, 55, 57, 59, 

60, 61, 63, 64, 

72 

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17, 18, 19, 20, 21, 

22, 23, 31, 32, 33, 34, 35, 37, 38, 

39, 40, 42, 45, 50, 51, 52, 53, 54, 

62, 65, 66, 67, 68, 69, 70, 71, 73 

Novel segment mean 32, 34, 35, 36, 39, 41, 

42 

37, 38, 40 25, 26, 28, 29, 30, 33 

Comparison of the MODIS classification schemes shows drastic differences (Figures 9–10). 

The deserts are more fractured into multiple classes in the mean year scheme. The upper study area 

was also simplified from many classes to only a few in the segment mean method. Most revealing of 

the change in classification schemes came from the class inclusion chart (Table 2). The number of 

major classes dropped from 11 to seven in the segment mean method, and minor classes dropped 

from 13 to only three. A driver of this drastic change was the reduced number of valid classes (with 

membership of at least one pixel) produced during the ISODATA clustering of the segment mean 

time series. 

 

Figure 9. Major and minor classes from the MODIS mean year data reduction method. 



320 

AIMS Geosciences  Volume 2, Issue 4, 302-328. 

 

Figure 10. Major and minor classes from the MODIS segment mean data reduction method. 

3.3.1. Spatial Clustering and Temporal Patterning of Classes 

A hallmark difference between mean year and segment mean classes is the appearance of spatial 

smoothing similar to the effect of a low-pass filter. The segment mean method generated a reduced 

number of speckled classes (lone pixels or small groups of pixels of differing class membership 

within other classes), producing more homogeneous spatial clusters that better represent regional 

differences in land surface phenology. To aid interpretation of differences between results of mean 

year and segment mean data reduction methods for creation of individual classes, specific areas were 

selected for more detailed analysis. These areas were compared with other higher-resolution imagery 

datasets, including historical Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) 

data and high spatial resolution aerial and satellite imagery freely available through Esri’s ArcMap. 

This discussion focuses on areas that are characterized by intensive irrigation agriculture, something 

that is captured far better by the segment mean classification method than the traditional mean year 

approach. 

Many parts of the study area have seen rather dramatic increases in irrigated agriculture since the 

1970s, driven both by the creation of large reservoirs along river valleys as well as the introduction of 

mechanized pumps that tap deep groundwater [54]. Irrigation from both of these sources has enabled 

the introduction of new crops with high water demands, such as cotton, the extension of cultivation to 

areas not previously farmed, and the maturation of crops during the dry months of the late summer and 

early fall. These differences should be easily captured by time-series classification as they result in 

higher NDVI values generally, and appear at different times of year than under dry-farming conditions. 

Such areas of intensive irrigation are represented by mean year class 56 and segment mean class  

38 (Figures 11–14). 
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Figure 11. Point of interest (Point 1) near Al-Raqqah, Syria. The surrounding area is dominated by 

irrigated agriculture. Landsat 8 Operational Land Imager (OLI) imagery acquired 24 Apr 2013 

(RGB = NIR, red, green) is in the background. 

A good example of the differences represented by the two methods can be seen along the 

Middle Euphrates River in Syria, at the confluence of a tributary known as the Balikh River, near the 

modern war-torn city of Al-Raqqah. Traditionally, the region saw only limited irrigation immediately 

adjacent to the river valleys, and was otherwise dependent on dry-farmed cereals. However, the 

construction of the Tabqa Dam and the creation of Lake Assad enabled widespread intensification of 

irrigated agriculture since the 1970s [54]. Recent Landsat 8 OLI imagery clearly shows the extent of 

irrigated agriculture in the region (Figure 11). We selected a point of interest within the zone of 

irrigated agriculture (Point 1). 

 

Figure 12. The point of interest intersects class 56 of the mean year classification scheme; this 

class appears to generally correspond to cropped areas (Figure 11). 
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Figure 13. The point of interest intersects with the main agricultural class of the segment mean 

classification scheme, class 38; this class is less fragmented than the mean year class 56 (Figure 12). 

Point 1 intersects class 56 of the mean year classification scheme, and while much of the 

surrounding irrigated areas are similarly classified, the region is dissected by many other minor classes 

appearing as small patches or isolated pixels, something that would complicate most analyses of 

resultant phenological classes. In contrast, the segment mean classification scheme, in which Point 1 is 

represented by class 38, shows a far more homogenous area that corresponds well to zones that appear 

on high-resolution imagery to be irrigated agriculture. Furthermore, the areas falling into class 38 are 

fringed by patches of zone 34, reflecting either dry-farmed or less-intensively irrigated agricultural 

areas. Thus, the segment mean classification method appears to function very well at quantitatively 

demarcating pixels with patterns of land use over time that are qualitatively similar. This suggests that 

the land surface phenology technique described may be valuable in land use classification workflows, 

especially where multi-temporal information content is critical in the extraction of land use (e.g., 

agricultural) classes 

3.3.2. Temporal Trajectory of Selected Classes 

The superiority of the segment mean classification method for discriminating meaningfully different 

patterns of agricultural land use is evident in the temporal trajectories of individual classes. Graphs of the 

temporal trajectories of individual classes, illustrating the mean, maximum, and minimum NDVI 

throughout the study period, were produced to provide insight into class structure. 

Analysis of the temporal trajectory of mean NDVI values shows that both methods produced a 

cluster with double peaks, reflecting the presence of two annual cropping cycles. The double peak in 

these classes is driven by a practice of growing a first crop in the spring, with a harvest in the early 

summer, followed by a period of ploughing and a second planting in mid-summer, with a harvest in the 

fall. In the highly seasonal climate of the Middle East, with cool, wet winters and hot, dry summers, a 

cropping cycle with two annual harvests is generally only possible with the aid of irrigation. The mean 

year method reveals this double peak in NDVI. However, the period between crop cycles is significantly 

smoothed in the mean year cluster by comparison to the more well-defined cropping periods of the 
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segment mean cluster (Figure 14). Additionally, the peak NDVI cropping period is switched between the 

two classes. For the mean year class, the peak NDVI period comes after the first cropping period of each 

year, while the segment mean class shows a peak NDVI during the first cropping period of each year. 

Thus in addition to its better spatial representation of differing land use practices, the segment mean 

classification method also captures far more detail in the temporal characteristics of an individual cluster. 

The segment mean method has an important advantage compared with methods used in other works 

that incorporated spatial object-based segmentation in conjunction with vegetation index time series  

[9,30–33]. Carefully parameterized image segmentation applied to the full time series ensures that 

regional or global products that contain homogenous landscape units provide a complete temporal 

signature for a growing number of land surface phenology-driven applications. Post-segmentation 

reduction of the time series can still address application-specific goals (e.g., fire ignition susceptibility 

versus ecosystem monitoring). Such reduction can still incorporate PCA or other approaches such as 

stepwise discriminant analysis, both tested in related pre-segmentation workflow designs [9,55]. A 

disadvantage to the segment mean approach is the added computational costs of segmenting a full time 

series, which can be significant for a global study area spanning multiple decades. (Segmentation in the 

Fertile Crescent study area required up to three hours on a GIS-class server.) However, the tiling and 

stitching approach demonstrated (Figure 6) using Trimble’s eCognition Server does allow this approach 

to be scaled using existing geospatial infrastructure (including geoprocessing clusters). Furthermore, the 

proliferation of object-based techniques in high spatial resolution applications (e.g., that leverage data 

from unmanned aircraft systems or UAS), ensures that availability of such resources will likely increase.  

 

Figure 14. Cluster minimum, maximum, and mean (green) NDVI for clusters intersecting the 

point of interest throughout the original MODIS-derived NDVI time series. 
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With these results, additional work is still required to refine the segment mean data reduction 

method in at least three ways. First, work is needed to refine guidelines for quantitative determination of 

an optimal scale parameter for the spatial data reduction technique. Existing quantitative techniques [55] 

assume reference segments can be identified, which is problematic if each segment captures hundreds of 

image epochs. Second, additional research is required to determine an improved cluster validity index to 

use to select the optimal classification scheme. Although our study used a quantitative measure (the 

minimum transformed divergence) to guide classification scheme selection, work is needed to compare 

the effect of using different CVIs. Third, we applied segmentation on the full time series using a manual 

selection process based on investigative heuristics deemed useful for demonstration of the proposed 

technique. However, there may be a variety of pre-segmentation processing steps and/or adaptively tuned 

segmentation configuration parameters that could augment homogeneity in the resulting segments, and 

these should be carefully examined in a workflow analysis. In the context of comparable dimensionalities, 

advances in object-based hyperspectral image analysis [56,57] may prove helpful in this regard. Finally, 

future research is also needed to determine the best distance (similarity) measure for use in unsupervised 

classification in order to take advantage of the properties of the segment mean method. More effective 

similarity measures, which use the temporal information retained by the segment mean data reduction 

method, should take into account the shape of the vegetation index curve over time. 

4. Conclusion 

This regional to globally applicable study developed a method to successfully preserve temporal 

information while reducing data size in the classification of long, complex remote sensing-derived 

vegetation index time-series. In a northern Fertile Crescent case study, two land surface phenology 

classification maps were produced using a 250 m MODIS 12-year time series. Through spatial and 

time series analysis, important differences were identified between unsupervised classifications 

based on mean year reduced versus segment mean reduced long time series NDVI. 

Each technique has advantages depending on the desired spatial or temporal granularity. The 

traditional mean year reduction method may be more suitable for analysis of intra-annual variation in 

land surface phenology, and is computationally more efficient. However, the segment mean method 

offers several key advantages. First, the segment mean approach, showing both spatial smoothing similar 

to a low-pass filter and a reduction of the number of total classes covering the study area, produces more 

homogeneous clusters that represent valuable agricultural land use information. Second, the method also 

preserves information regarding the temporal trajectories of classes that are not well represented in a 

traditional mean year data reduction approach. These results offer a valuable contribution to future work 

attempting to extract land surface phenology patterns from remote sensing-derived regional to global 

vegetation index time series. 
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