
 

AIMS Environmental Science, 12(1): 72–105. 
DOI: 10.3934/environsci.2025004 
Received: 10 August 2024 
Revised: 16 September 2024 
Accepted: 13 December 2024 
Published: 08 January 2025 

https://www.aimspress.com/journal/environmental 
 

Review 

Machine learning applications in flood forecasting and predictions, 

challenges, and way-out in the perspective of changing environment 

Vijendra Kumar1, Kul Vaibhav Sharma1, Nikunj K. Mangukiya2, Deepak Kumar Tiwari3, Preeti 
Vijay Ramkar4 and Upaka Rathnayake5* 

1 Department of Civil Engineering, Dr. Vishwanath Karad MIT World Peace University, Kothrud, 
Pune, Maharashtra, 411038, India 

2 Department of Hydrology, Indian Institute of Technology Roorkee, 247667, Uttarakhand, India 
3 Department of Civil Engineering, GLA University, Mathura, UP, 281406 India 
4 Department of Civil Engineering, Dr. D. Y. Patil Institute of Technology, Pimpri, Pune, Maharashtra, 

411018, India 
5 Department of Civil Engineering and Construction, Faculty of Engineering and Design, Atlantic 

Technological University, Sligo F91 YW50, Ireland 

* Correspondence: Email: upaka.rathnayake@atu.ie; Tel: +353-899460732. 

Abstract: Floods have been identified as one of the world’s most common and widely distributed 
natural disasters over the last few decades. Floods' negative impacts could be significantly reduced if 
accurately predicted or forecasted in advance. Apart from large-scale spatiotemporal data and greater 
attention to data from the Internet of Things, the worldwide volume of digital data is increasing. 
Artificial intelligence plays a vital role in analyzing and developing the corresponding flood mitigation 
plan, flood prediction, or forecast. Machine learning (ML)-based models have recently received much 
attention due to their self-learning capabilities from data without incorporating any complex physical 
processes. This study provides a comprehensive review of ML approaches used in flood prediction, 
forecasting, and classification tasks, serving as a guide for future challenges. The importance and 
challenges of applying these techniques to flood prediction are discussed. Finally, recommendations 
and future directions of ML models in flood analysis are presented. 
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1. Introduction  

Floods are a frequently occurring and pervasive form of natural disaster, on par with earthquakes 
and cyclones. They are the most prevalent type of disaster and present significant hazards to 
individuals' and communities' economic and social progress [1]. According to the World Disaster 
Report by the International Federation of Red Cross and Red Crescent Societies, flooding accounted 
for the highest proportion of recorded disasters between 2008 and 2017, making up 41% of all disasters. 
Floods can be caused by heavy rainfall, melting snow, hurricanes, and other factors [2]. By enabling 
communities to plan and respond more skillfully, good flood forecasting and early warning systems 
can help lessen the effects of floods [3].  

Floods present major challenges. Floods can seriously damage buildings, infrastructure, and 
houses, resulting in monetary losses for both people and communities [4]. Floods have the potential to 
be life-threatening, leading to injury or fatalities through drowning, illness, or other causes. Effective 
flood forecasting and early warning systems must be used in concert to address the problem [5]. A 
long-term flood risk management plan focusing on prevention, protection, and preparedness should be 
created, along with reliable and accurate flood risk maps [6]. Giving early and reliable information 
about a flood's likelihood and possible effects, it can assist in increased flood preparation. Emergency 
responders and the public can use this information to reduce a flood's impact by evacuating at-risk 
areas, sandbagging, and preparing emergency supplies [7]. Continuous improvement and refinement 
of flood forecasting and prediction methods are critical to ensure their accuracy and effectiveness. This 
can involve incorporating new data sources, developing more sophisticated models, and improving 
communication strategies to ensure that forecasts and predictions are communicated effectively to 
those who need them [8]. 

Floods are inherently unpredictable regarding their scale, timing, location, and how they interact 
with geography. Thus, complete control over them is often impossible [9]. Therefore, traditional flood 
management approaches that rely on structural measures like dams and levees to alter the flood 
characteristics and decrease their impact are not always viable options [10]. Although these measures 
can reduce flood risk to some extent, they cannot eliminate it and may have negative environmental 
consequences in some regions [9]. On the other hand, non-structural measures, which are more 
affordable and reversible, can effectively reduce flood risk without the need for expensive 
infrastructure [11]. 

Available flood modeling techniques are broadly classified into deterministic models (empirical, 
conceptual, and physics-based models), semi-distributed models (stochastic models), and data-driven 
models [such as machine learning (ML), artificial neural network (ANN), etc.] [12]. The first two 
categories necessitate some understanding of the problem's underlying physics, which can be 
expressed using simplified relations or partial differential equations in one or two dimensions [13]. 
Empirical flood models are based on statistical relationships between observed data and flood events. 
Empirical models use historical data and other sources to quantify the relationship between key 
variables such as rainfall, river discharge, and flood height. Empirical models are relatively simple to 
develop and use. Still, their accuracy depends on the quality and availability of data. They may not be 
applicable in regions with limited data or significant variability in flood events [9]. Conceptual flood 
models are based on a qualitative understanding of the physical processes that control the behavior of 
a river system. Conceptual models simplify the interactions between the catchment, channels, and 
floodplains, which are some of the distinct parts of the river system. When there is a lack of data, 
conceptual models are frequently utilized because they can explain the general behavior of a river 
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system. However, according to Kratzert F et al report [14], it might not be enough to predict individual 
flood episodes. Physical processes that control the behavior of a river system are represented 
mathematically in flood models that are based on physics. Physics-based models consider variables 
like friction, turbulence, and water levels when describing how water flows in a river using intricate 
mathematical calculations. Although physics-based flood models are the most precise, they are also 
the most difficult and time-consuming to create and utilize. They require a lot of data and computing 
resources, which might not be feasible in places with scarce data [15]. In addition, using these models 
to analyze floods requires a predetermined set of hydrological and meteorological data that could not 
be accessible [16]. 

To represent floods, stochastic models also known as semi-distributed models incorporate features 
from both distributed and lumped models. They divide a river basin into many sub-catchments, 
simulating the water flow in each one separately [17]. To calculate the total discharge at the catchment 
outlet, the output discharge from each sub-catchment is combined. When compared to fully distributed 
models, this modeling strategy gives a more accurate representation of the geographical variability in 
the watershed while maintaining computational efficiency [18]. A probabilistic study of flood risk is 
possible by combining semi-distributed models with stochastic components to represent uncertainty in 
the model parameters. A completely distributed model may not be feasible in catchments with 
complicated hydrology, and a simple lumped model may not adequately capture hydrological 
processes [15]. In these situations, semi-distributed models are frequently used for flood risk 
assessments, floodplain mapping, and floodplain management because they offer a reasonable 
compromise between accuracy and computing complexity. 

Contrarily, data-driven models are those that are created using statistical techniques, also referred 
to as "black box models", such as machine learning algorithms or artificial neural networks, to model 
the relationship between various factors that affect floods, such as rainfall, river discharge, and flood 
height [19]. These models develop a mathematical representation of the connections between the 
variables using historical data. Data-driven models are easier to create and use than physics-based 
models and do not need a thorough comprehension of the physical mechanisms that govern the 
behavior of a river system [20]. However, the quality and availability of the data determine its accuracy. 
They might not be useful in areas with scant data or a great deal of variation in flood events. Data-
driven models are widely used for short-term flood forecasting, flood risk assessments, and floodplain 
mapping. 

Machine learning (ML) has attracted significant attention recently as a means of researching and 
predicting floods [20]. Artificial intelligence's ML branch makes computers more adept at activities 
like data analysis, prediction, and classification without requiring explicit programming [21]. Machine 
learning algorithms may be trained on past flood data to forecast future floods, including the likelihood 
and intensity of a flood in a certain area. Additionally, ML can map the extent of floods using remote 
sensing data, including satellite photos, aerial photography, and other data. The creation of early 
warning flood systems, which seek to provide decision-makers with timely information on the 
likelihood that a flood will occur in a certain location, can also benefit from ML [22]. It may be applied 
to assess the likelihood of flooding in specific areas while taking infrastructure, land use, and 
population density into consideration. Furthermore, ML may be used to assess the magnitude of flood 
damage, including damage to houses, roads, and other infrastructure. 

Over the past 20 years, ML techniques have continued to advance, demonstrating their suitability 
for flood-related problems and their reasonable pace of improvement over conventional 
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approaches [23]. The use of ML techniques for flood forecasting has been the subject of a substantial 
amount of study in recent years. For instance, Ighile EH et al. [24] used historical flood data to 
anticipate flood-prone locations in Nigeria using logistic regression (LR) and artificial neural network 
(ANN) models. According to  the results, the ANN model outperformed the LR model, and both 
models classified low-lying areas as being extremely susceptible to floods. Nayak et al. [25] provided 
flood forecasting using teaching learning-based optimization (TLBO) and deep belief network (DBN) 
for the Daya and Bhargavi rivers in India. The study compared the impact of barrage construction and 
evaluated the performance of DBN against TLBO in terms of root mean square error (RMSE) and 
mean absolute percentage error (MAPE) for forecasting periods of 1 day, 1 week, and 2 weeks. The 
study emphasized the importance of using ML for flood mitigation planning. Based on temperature 
and rainfall intensity, Sankaranarayanan S et al. [26] utilized deep neural networks to forecast floods 
in Kerala, India. The model outperformed other ML models in terms of accuracy and error, showing 
potential for efficient flood forecasting. Jabbari and Bae [27] evaluated the effectiveness of using ANN 
for bias correction in real-time precipitation forecasting to improve the accuracy of 
hydrometeorological models for flood forecasting in the Imjin River, resulting in a significant 
reduction in statistical error and improved flood forecasting performance. Elsafi [28] developed an 
ANN model to forecast the flood hazard in River Nile at Dongola Station, Sudan, using upstream flow 
data and showed that the model is reliable for detecting flood risks. 

Several studies have combined multiple ML models to improve the accuracy of flood forecasting. 
For example, Chen et al. [29] proposed a two-stage probability analysis for estimating flood probability 
using satellite data involving decision trees and ANN, which can mitigate flooding damage in the urban 
drainage of Kaohsiung City. ML models can incorporate multiple data sources, such as meteorological 
observations, remote sensing data, and historical records, to produce more accurate forecasts [30,31]. 
ML models can make real-time forecasts, providing critical information to decision-makers during a 
flood event [32]. Identification of key elements that influence flood prediction is necessary for flood 
forecasting models. In several research works [33–35], the efficacy of various ML models for flood 
forecasting, such as ANNs, support vector machines (SVMs), random forests (RFs), and k-nearest 
neighbors (k-NNs), has been compared. The relative performances of the models under various 
conditions as well as the factors that affect that performance were analyzed in this study. Overall, past 
research on ML for flood forecasting and prediction has demonstrated that ML models may be useful 
for these tasks and could potentially increase the precision and effectiveness of flood forecasting and 
prediction systems. To overcome some of the drawbacks of the present strategies, further studies are 
required, particularly in the areas of model validation and the creation of interpretable models. 

This review article aims to provide an overview of the state of the field and to compile the most 
recent research and advancements in this subject regarding the use of ML algorithms in flood 
forecasting and prediction. The following are the goals of the paper: 

a) Review the literature on the use of ML for flood forecasting and prediction, looking at 
different methods and scenarios. 

b) Evaluate the problems that need to be resolved while highlighting the benefits and drawbacks 
of the available ML-based solutions. 

c) Highlight recent developments in the field and explore the use of ML for flood forecasting 
and prediction. 

d) Offer suggestions for further research in this field, highlighting potential directions for 
development and prospective study topics . 
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This review paper follows the following fundamental structure: The definition of machine 
learning (ML), its terminology, learning obstacles, and an overview of the most popular learning 
models and techniques are covered in Section 2. In Section 3, the topic of machine learning models' 
use, effectiveness, and limits in forecasting and predicting floods is covered. The challenges and future 
steps for utilizing machine learning to estimate and predict floods are covered in Section 4. Section 5 
discusses future directions and opportunities for machine learning in floods. Finally, in Section 6, the 
key takeaways from the analysis of the current state of ML in flood prediction and forecasting are 
concluded and summarized.  

2. Machine learning overview and techniques 

Machine learning (ML) is a subset of artificial intelligence (AI) that uses statistical models and 
algorithms to train computer systems to learn from data and make predictions or decisions without 
requiring explicit programming (Liakos et al., 2018). Several basic terms and concepts are commonly 
used in ML (Section 2.1) and its classification (Section 2.2), which are important for understanding 
how these systems work.  

2.1. Basic machine learning terminology 

In the domain of data analysis and computing, AI particularly ML has witnessed significant 
growth in recent years, enabling the intelligent functioning of various applications [20]. ML, as a 
technology, allows systems to learn and enhance themselves through experience without relying on 
explicit programming [36]. The methodologies of ML encompass a learning process that aims to 
achieve a given task by learning from past experiences [21]. A performance metric that enhances 
experience is employed to evaluate the ML model's performance for a specific task [37]. Table 1 
presents a summary of the evolution and advancement of ML. Xu and Liang [38] noted that various 
statistical and mathematical models are employed to assess the efficacy of machine learning models 
and algorithms. Once the training phase is complete, the trained model can leverage its acquired 
knowledge to categorize, forecast, or group new instances [21]. Pattern recognition, regression, and 
functional approximation are the three problems that can be solved using machine learning 
technology [8]. In addition, supervised learning, unsupervised learning, semi-supervised learning, and 
reinforcement learning are the four categories into which ML technology based on learning methods 
can be divided [39]. A general flowchart for a typical machine-learning process is shown below.  

1: Start. 
2: Define the problem and determine the goal. 
3: Collect and pre-process data. 
4: Split the data into training and testing sets. 
5: Select a suitable model and train it using the training data. 
6: Assess the model's effectiveness by testing it on independent testing data. 
7: Refine the model by modifying its hyperparameters and architecture or adding more data. 
8: Employ the model to make predictions on new and unseen data. 
9: Continuously monitor the model's performance and update it as needed. 
10: End. 
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Table 1. Summary of the development and progress of machine learning. 

Period Key developments 
Early development 
(1960s–1980s) 

Introduction of decision trees, linear regression, and the perceptron 
algorithm. 

Statistical learning era 
(1980s–2000s) 

Widespread adoption of statistical methods such as support vector 
machines, decision trees, and random forests. 

Deep learning 
revolution (2010s–
present) 

The emergence of convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs) can be attributed to the progress in computing 
capabilities and greater accessibility to vast amounts of data. These deep-
learning models have gained popularity in recent years. 

Current status ML has become an interdisciplinary field with applications in computer 
vision, natural language processing, robotics, and numerous other 
domains . 

2.2. Classification of machine learning techniques  

ML allows machines to construct problem-solving models by discovering data patterns rather than 
through user intervention. Learning refers to specifying relations among variables using various 
algorithms and then utilizing those similarities to change the model to deliver more accurate output in 
the shortest possible time. There are four forms of machine learning: supervised, unsupervised, semi-
supervised, and reinforcement learning. 

2.2.1. Supervised learning 

Supervised learning (SL) is a method of training algorithms that provides data and corresponding 
labels to a problem. The aim is to use the sample input–output pairs to train a model that can translate 
inputs into outputs [8]. SL uses a labeled dataset consisting of both a test set and instructional data to 
infer a mapping function. SL can then take place when a set of information and objectives has been 
defined. The two most common applications of SL are classification and regression [20]. Classification 
separates data into different categories, while regression predicts the output based on a set of input–
output data combinations [40]. A model trained through SL can separate data from different sources 
and label them accordingly through classification, and regression can estimate results for the response 
variable through statistical models such as linear regression, logistic regression, multivariate regression, 
and decision trees [41]. One of the challenges of SL is finding labeled data, which can be difficult in 
cases with many options. For example, speech recognition has an endless number of possible 
combinations of words, making it impossible to account for all of them. The same problem arises with 
extensive unstructured data, where labeled data may not always be readily available. However, one 
advantage of AI systems is that they frequently gather a large amount of data, which provides abundant 
opportunities for labeled data to be created spontaneously [42]. 

2.2.2. Unsupervised learning 

ML techniques such as unsupervised learning (UL) may find patterns in data without supervision 
or labeling. When working with unlabeled data, where the machine must independently determine the 
structure, this approach proves helpful.. To forecast the outcome, UL can uncover hidden patterns and 
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trends [43]. A well-liked UL technique that determines the number of groups in data by contrasting 
data observations is the K-means classifier. The algorithm consists of two steps: first, it predicts how 
the model thinks the world will look, and second, it evaluates the environment and corrects or learns 
from its evaluations. UL is helpful in a variety of applications, including spotting outliers in the data 
or detecting anomalies. Based on qualities, it can sort data into comparable categories [44]. Since it is 
simpler to get unlabeled than labeled data, UL is frequently preferred to SL. The absence of labeled 
data, which makes it more difficult to connect the output with the desired output, is one of UL's 
disadvantages. Since the information gathered may not always correlate with the desired results, data 
cleansing is also essential in UL [45].  

2.2.3. Semi-supervised learning 

Semi-supervised learning (SSL) is an ML technique that trains models using both labeled and 
unlabeled data. It is employed when labeled data is hard to get or expensive. SSL strikes a balance 
between supervised and unsupervised learning to solve the drawbacks of both SL and UL methods. 
According to Gnecco et al. reported [41], SSL uses a combination of labeled and untagged data 
throughout the training process. Little labeled data is used, but a sizable amount of unlabeled data is 
accessible. The UL technique is first used to categorize the unlabeled data into relevant groups, and 
then labeling is done on this untagged data of a similar nature. This approach reduces the need for 
extensive data labeling, which can be time-consuming and costly. It also increases the applicability of 
unlabeled data, which is often challenging to use in most cases. SSL is used in various applications, 
including voice and face recognition, biometric reading, webpage ranking, web content classification, 
and protein sequence classification in DNA and text document classifiers that require active human 
interaction [20]. 

SSL makes various hypotheses to comprehend the link between the items in an unenforced 
dataset. It assumes continuity, examining items in the same group or label that are close to each other. 
The cluster hypothesis asserts that information is arranged into different clusters, where all location 
points in the same cluster share the same output tag. The final supposition is that ranges and 
concentrations may be applied to a lower dimensional surface than the input vector. SSL uses faux 
tagging to construct the model with less tagged training data, and several types of neural networks and 
instructional strategies can be merged throughout the procedure. The procedure of learning is 
continued until the system gives the expected outputs. The methods then use the unmarked dataset 
with virtual labels, and the outcome may no longer be valid. Labels from marked training data and data 
with faux labels are now linked. Finally, the first step is repeated by training the model with the new 
combined input, minimizing inaccuracies and raising the precision [36]. 

2.2.4. Reinforcement learning 

Reinforcement learning (RL) is a type of ML that involves selecting the best set of actions in each 
environment to optimize the performance of various models. RL is often used to find the optimal path 
or trajectory to follow in data from a system. The learning algorithm in RL includes a response variable, 
allowing the machine to be trained with the correct response, and the reinforcing agent chooses where 
to go to perform the official task [46]. In the absence of training examples, an ML task is forced to 
learn from its own experience. The key to RL is making decisions sequentially and implementing 
change incrementally. The results depend on the configuration of the current input, and the outcome 
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of the previous input determines the next input. In some cases, such as playing chess with a computer, 
RL's decision-making process is interdependent and needs to consider fully dependent response chains. 
To maximize the performance of multiple models, RL entails picking the best feasible set of actions in 
each environment. RL entails learning from experience and making judgments in a sequential manner 
[48]. In RL, the two types of reinforcement are positive and negative feedback systems. Positive 
feedback improves model responses, whereas negative feedback improves model behavior. RL has a 
wide range of practical applications, including robotics, education, healthcare, marketing, and home 
automation.  

Table 2 outlines the advantages and disadvantages of the different types of machine learning. 

Table 2. Advantages and disadvantages of the different types of machine learning. 

Type of ML Advantages Disadvantages 

Supervised 
learning 

Good at problems with well-defined 
target variables; can learn complex 
relationships between inputs and 
outputs. 

Requires labeled data, may overfit if the 
model is too complex, may struggle with 
unstructured or noisy data. 

Unsupervised 
learning 

Good at finding patterns in data 
without labeled targets; can be used 
for dimensionality reduction and 
clustering. 

It can be challenging to interpret the results; 
it may struggle with finding meaningful 
patterns in the data; it may require a priori 
knowledge about the number of clusters in 
the data. 

Semi-
supervised 
learning 

Good at leveraging both labeled and 
unlabeled data to improve model 
performance; can be useful in cases 
where labeled data is scarce. 

It may still require a significant amount of 
labeled data and may not always lead to 
improved performance compared to 
supervised or unsupervised learning. 

Reinforcement 
learning 

Good at solving problems where the 
goal is to maximize a reward signal; 
can learn from interaction with the 
environment. 

It can be challenging to specify the reward 
function; it can be computationally 
expensive; it may struggle with sparse 
reward signals. 

3. Latest developments in machine learning models for flood forecasting and prediction 

In the last few decades, ML has become a strong tool for making flood predictions and forecasts 
more accurate. ML models that use both supervised and unsupervised learning methods have been 
developed and used to solve these problems. Researchers are also becoming more interested in using 
deep learning models to identify and project floods, in addition to standard machine learning models.  
ML models are advancing rapidly, with new methods and approaches being developed and tested for 
flood prediction and forecasting. 

3.1. Elements of a flood forecasting and prediction system 

A flood analysis and warning system's main goal is to promptly and accurately alert the public 
and pertinent authorities of the impending arrival of a flood. A typical flood forecasting and prediction 
system is depicted in Figure 1 along with the data collecting, forecasting, and dissemination processes. 
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The system's main components were the information sources that were utilized to forecast floods. 
These might contain things like stream flow measurements, soil moisture levels, and weather forecasts, 
among other data types. The next step is the data collecting and management component, which can 
accurately and quickly gather data from a variety of sources. This can entail the use of sensors, 
automated data-collecting methods, or hand-written data input. Data interpretation and analysis make 
up the third element [49]. To evaluate and understand the data to produce flood forecasts, ML 
algorithms and other methods are frequently utilized. For example, to achieve this, models that 
anticipate flood levels based on historical data may be created, or real-time data may be analyzed to 
produce short-term flood forecasts. The fourth component makes use of data analysis and interpretation 
to produce flood predictions and forecasts that are shown in the form of maps, graphs, or other 
visualizations. Dissemination of information to relevant parties, including first responders and the 
public, constitutes the fifth component. Utilizing multiple communication channels, including social 
media, SMS alerts, and open websites, may be necessary [50]. The last element is reaction and 
mitigation, which relates to taking appropriate steps based on flood predictions and forecasts to lessen 
the effects of flooding occurrences, such as evacuating at-risk regions or putting in place flood control 
measures [51]. 

 

Figure 1. Components of flood forecasting and prediction systems. 



81 

AIMS Environmental Science  Volume 12, Issue 1, 72–105. 

3.2. Application of ML methods in flood prediction and forecasting models 

ML techniques have been used in a variety of ways to solve forecasting and flood prediction 
problems. Typical strategies include: 

1. Time-series forecasting: This technique forecasts future water levels in a river or other bodies 
of water by analyzing previous data on water levels, rainfall, and other pertinent variables.  

2. Hydrological models: To calculate water flow and foresee probable floods, the method uses 
physical water cycle models. Integrating ML approaches improves the accuracy of these models. 

3. Remote sensing: This entails mapping and monitoring land use, vegetation, and other 
elements that may influence flood risk using satellite data and aerial images. To evaluate the data and 
forecast upcoming floods, ML techniques like random forests, decision trees, or neural networks can 
be utilized. 

4. Social media and web scraping: This involves collecting and analyzing data from social media 
and other online sources to gain insights into local weather patterns and flooding conditions. Natural 
language processing techniques are utilized to extract essential data and forecast future floods. 

The ML techniques typically employed for flood prediction and forecasting frameworks are 
depicted in Figure 2. The process involves three major steps: 1) data collection, 2) machine learning 
model selection, and 3) flood forecasting, prediction, and risk mapping.. The first stage entails 
gathering several sorts of data, such as water level time series, tabular data, and remote sensing data. 
The second stage involves selecting acceptable machine learning models depending on the features of 
the data and the prediction task. Regression methods, such as linear regression and support vector 
regression, can be used to estimate flood levels based on historical data. These algorithms develop a 
mathematical link between input factors (such as weather and soil moisture levels) and output variables 
(such as flood levels) [52]. Based on input characteristics such as topography, soil type, and previous 
flood history, classification algorithms such as decision trees and random forests may be used to 
categorize locations as high, medium, or low risk of flooding [53]. Clustering approaches such as 
hierarchical clustering and k-means can be used to group together areas with common flood risk 
indicators. This can help identify places that are more vulnerable to floods to prioritize them for flood 
control and mitigation measures [54]. Short-term flood predictions may be created using time series 
analysis methods like long short-term memory (LSTM) and autoregressive integrated moving average 
(ARIMA). These methods can aid in identifying patterns and trends in the data that can be utilized to 
provide forecasts with a higher degree of accuracy [55,56]. Finally, in the third step, risk maps are 
created, and flood predictions and forecasts are made using the chosen machine learning models. Risk 
maps are produced to assist disaster response teams and policymakers in making decisions regarding 
flood mitigation and preparedness strategies. The main ML algorithms used in flood prediction and 
forecasting are k-nearest neighbor [57], deep convolutional neural network models [58], decision 
trees [59], support vector regression models [13,60], random forest (RF) [61], and cluster [62] and 
artificial neural networks [27,63]. The detailed applications of these ML techniques in different 
components are described in the following subsections. 
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Figure 2. Application of ML methods in flood prediction and forecasting models. 

4. Time series analysis techniques 

4.1. Artificial neural networks (ANNs) 

Flood models have commonly utilized ANN algorithms more than any other method [64]. ANNs 
are a type of ML model that is modeled after the structure and function of the human brain. They are 
composed of interconnected nodes, which are artificial neurons that process data and make decisions 
based on that data [28]. By being trained on large datasets, ANNs can recognize patterns and make 
predictions, being widely used for a variety of tasks including image recognition, natural language 
processing, and game playing. ANN can handle enormously complex relationships, learn, and make 
intelligent decisions on its own through multiple layers [34,65]. A typical ANN has three primary layers: 
input, hidden, and output. The three major ANN parameters are weight, bias, and activation functions. 
ANNs derive meaning from historical data rather than from the physical characteristics of a 
catchment [20]. Thus, ANNs are regarded as reliable data-driven tools for developing black-box 
models of complex and nonlinear rainfall and flood relationships [66]. Furthermore, compared to most 
conventional models, many studies have shown that ANN is one of the finest modeling techniques, 
offering an acceptable level of generalization ability and speed [67]. ANNs have been successfully 
used for a variety of flood applications [63, 68–70]. ANNs have demonstrated superior capabilities 
when interacting with nonlinear systems [71]. Elsafi [28] used ANN to forecast the River Nile flow 
and discovered that the results were accurate at detecting flood hazards. Feng and Lu [72] used ANN 
for flood forecasting and found that the model provided improved results in terms of performance and 
efficiency. Dtissibe [73] employed ANN to forecast floods, and the results of extensive experiments 
suggested that the proposed model is effective.  

Although ANNs offer several advantages, they also have some limitations that should be 
considered. These include challenges in selecting appropriate network architecture, managing and 
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preparing large amounts of data, difficulties in interpreting the physical meaning of the modeled system, 
the potential for lower accuracy compared to other methods, and the need for iterative fine-tuning of 
parameters [74]. ANNs are good at handling complex, nonlinear relationships; they may still struggle 
with highly nonlinear or chaotic systems, such as those found in some flood prediction scenarios. 
Varieties of ANN models for predicting floods are frequently used by researchers, such as multilayer 
perceptron (MLR) [75] or wavelet neural network [76], to overcome these limitations. Deep artificial 
neural networks (DNNs), also referred to as deep learning (DL) or deep neural networks, represent a 
relatively recent field of machine learning research that leverages multi-layer processing models to 
learn intricate data representations through multiple levels of abstraction. A basic definition of a DNN 
is an artificial neural network that contains multiple hidden layers situated between the input and output 
layers. These hidden layers may be supervised, partially supervised, or unsupervised in their 
operation [21]. 

4.2. Deep learning models 

Deep learning models are a type of artificial neural network with multiple layers that perform 
hierarchical feature extraction. These models can learn complex representations of data by stacking 
multiple nonlinear transformations, allowing them to perform highly accurate predictions on tasks such 
as image and speech recognition [77]. Deep learning models are trained using large amounts of data 
and algorithms such as backpropagation, which allow them to adjust their parameters to minimize 
prediction error. In the hydrology and water resources areas, convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs) are two types of deep learning models that are often used in 
flood forecasting and prediction [78,79]. CNNs are a special class of neural networks that excel at 
tasks requiring image or spatial data. They have been used in projects like flood inundation prediction 
utilizing radar data and high-resolution digital elevation models (DEMs) [80]. For instance, using a 
dataset of previous flood occurrences to train the model, researchers have utilized CNNs to forecast 
flood inundation in real time. The model was then used to predict future flood events. According to 
Kabir S et al reported [58], who used CNN for fluvial flood inundation prediction, CNN offers a lot of 
potential for real-time flood modeling and forecasting because of its simplicity, excellent performance, 
and computational efficiency. When it comes to jobs containing sequential data, such as time series 
data, RNNs are a particular sort of neural network that excels. By combining information on 
meteorological and hydrological conditions with information on land use and land cover, they have 
been employed for tasks including forecasting flood risk [55]. 

A specific kind of RNN models called long short-term memory (LSTM) was created to handle 
jobs requiring long-term dependencies in sequential data, such as time series data [14]. The 
employment of gating mechanisms by LSTM models makes them unique in that they can selectively 
remember or forget information from the past. In the study by Song T et al. [79], LSTM was employed 
for forecasting flash floods, and the study provided incredibly precise forecasts that help with disaster 
mitigation and preparedness. A special kind of RNN called a gated recurrent unit (GRU) was created 
to handle jobs requiring long-term dependencies in sequential input. GRU models employ gating 
methods to control the information flow, like LSTM models. However, compared to LSTM models, 
they are often thought to be easier and more effective to train [81]. An RNN model called echo state 
network (ESN) was created expressly to tackle tasks involving chaotic systems, including weather 
forecasting. The use of a fixed recurrent layer, a distinguishing characteristic of ESN models, enables 
them to learn intricate patterns in the data without the need for backpropagation, improving their 
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computing efficiency [82]. The optimum model for the job at hand may need to be found via some trial 
and error depending on the unique qualities of the data and the prediction task. Both CNNs and RNNs 
have the potential to considerably increase the precision and dependability of flood prediction and 
forecasting systems and are expected to play a large role in the future. The benefits and drawbacks of 
various deep learning models are displayed in Table 3. 

This section covers key machine learning methods for flood prediction. ANNs are widely used 
due to their ability to model complex, nonlinear relationships, though they face challenges such as 
architecture selection and data handling. Deep learning models include CNNs for spatial data and RNN, 
such as LSTM and GRU, for sequential and time series data. ESNs handle chaotic systems efficiently. 
These techniques enhance the accuracy and reliability of flood forecasting by leveraging sophisticated 
data analysis methods. 

Table 3. Advantages and disadvantages of deep learning models. 

Deep learning 
model 

Advantages Disadvantages 

Convolutional 
neural networks 
(CNNs) 

Good at image classification and 
object recognition, can handle 
translation invariance, efficient at 
spatial processing data. 

It can be computationally expensive, 
may be overfit on smaller datasets, 
can struggle with images that have 
different orientations or scales. 

Recurrent neural 
networks (RNNs) 

Good at processing sequential data 
such as time series or natural 
language, can handle variable-length 
inputs 

It can be computationally expensive, 
may struggle to capture long-term 
dependencies in the data, and can be 
difficult to train 

Long short-term 
memory (LSTM) 

Ability to process and learn from long-
term dependencies; effective for 
sequential data; prevents vanishing 
and exploding gradient. 

Computationally expensive; requires 
large amounts of data; can be prone to 
overfitting. 

5. Classification algorithms 

5.1. Support vector machine (SVM) 

Support vector machines (SVMs), which are based on the structural risk reduction concept, were 
created using statistical learning theory. To improve generalization performance, SVMs work to reduce 
both empirical risk and the learning machine's confidence interval [83]. Consequently, SVMs have 
been shown to be very trustworthy and effective algorithms for performing classification and 
regression tasks [83]. The SVM has been enhanced during the past 20 years to include more resources 
for classification and regression applications. Support vector regression (SVR) is a regression tool [84], 
whereas support vector classification (SVC) is a classification tool [85]. SVMs have several 
applications and may be used to solve both linear and nonlinear classification issues. They have earned 
a reputation as reliable and efficient machine learning algorithms for flood prediction. Hydrologists 
are increasingly using SVMs and SVR to predict floods [86]. Several models have been developed by 
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various academics to predict floods using SVM [35,87–91]. Using SVM models for flash flood 
forecasting, according to Yan et al. [92], can be a helpful tool for boosting emergency response efforts 
and decreasing the loss of lives and property caused by urban floods. Similarly, Bermúdez et al. [93] 
utilized support vector regression (SVR) for spatial flood hazard mapping, and their results indicate 
that this regression technique has the potential to quickly and accurately compute flood extent and 
hazard maps. These findings suggest that SVM-based approaches can be effective tools in addressing 
flood-related challenges. 

Despite their ability to generalize well and other numerous advantages, some shortcomings should 
be considered when using SVMs for machine learning tasks. These include challenges with selecting 
appropriate parameters, issues with algorithmic complexity that can result in longer training times for 
large datasets, difficulties in developing optimal classifiers for multi-class problems, and suboptimal 
performance in unbalanced datasets [94]. Some limitations should be considered when using SVMs 
for flood prediction, namely, the limited ability to handle missing data. SVMs are not well-suited for 
handling missing data, which can be a common problem in flood prediction scenarios where data may 
be difficult to obtain. Also, training time for SVMs can be computationally intensive, especially for 
large datasets. This can restrict its usefulness in instances involving real-time prediction. SVMs, which 
are adept at managing complex nonlinear relationships, may effectively handle extremely nonlinear or 
chaotic systems, such as those encountered in some flood prediction scenarios. To overcome a few of 
the limitations, researchers modified the original SVM and applied it to flood predictions. Li et al. [95] 
modified the SVM using a genetic algorithm (GA) to obtain better stream flow predictions than a 
simple SVM. Sahoo et al. [96] combined SVM with radial basis function neural network (RBFNN) 
and firefly algorithm (FA) to predict floods in Barak River and discovered that hybrid models 
outperform RBFNN, SVM, and ANN.  

5.2. Decision tree (DT) 

A decision tree is a machine-learning model that utilizes a tree-like structure to perform both 
regression and classification tasks. This supervised learning algorithm recursively splits the input data 
into smaller subsets based on the values of the input features. At each node of the tree, a decision is 
made by evaluating a specific input feature, and the data is partitioned into two or more branches based 
on the possible outcomes of the decision. This process is repeated until a leaf node is reached, which 
represents the final prediction of the model for the given input data [97]. During the construction of a 
decision tree, the recursive splitting process continues until the subsets become pure enough, which 
means that they only contain data points that belong to the same class or have similar output values. 
When the splitting process is finished, the resultant structure is a tree-like model that can be used to 
forecast new input data by traversing the tree from the root node to the leaf nodes while paying 
attention to the choices made at each internal node [29]. By using this strategy, the decision tree model 
can produce precise predictions for brand-new, unobserved data points and effectively capture the 
underlying connections between the input characteristics and the target variable [98]. Decision trees 
have been shown to be an effective tool in a range of machine-learning applications. In flood modeling, 
DT is often used. The two DT types that have been effectively used in flood modeling are regression 
and classification. In classification trees (CT), the leaves stand in for class labels and the branches for 
feature label conjunctions in a discrete collection of values that represent the final variables in a DT. 
When an ensemble of trees is utilized, however, and the target variable in a DT has continuous values, 
regression trees (RT) are used [99]. The DT method has been used by a few researchers to forecast and 
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predict floods [30,97,100,101]. 
To forecast floods, Lawal ZK et al. [98] utilized SVR, DT, and logistic regression (LR); it was 

discovered that DT performed better. Another popular DT methodology for flood prediction is the 
random forests (RF) method. This method entails building an ensemble of decision trees, where each 
tree is constructed using a bootstrapped sample of the training data and a randomly selected subset of 
the input characteristics. To decrease the possibility of overfitting and increase the model's overall 
accuracy, the predictions of each individual tree in the ensemble are combined to get the final forecast. 
Due to its capacity to handle high-dimensional data and noisy input characteristics, the RF technique 
has been proven to be successful in a number of ML applications, including flood prediction. In the 
study by Costache R et al. [59], authors used six distinct ML techniques to forecast floods: decision 
tree, SVM, RF, adaptive neuro-fuzzy inference system (ANFIS), alternating decision tree (ADT), and 
ANN. It was found that the RF performed better when compared to other models. An additional crucial 
DT model is the M5 algorithm. The M5 algorithm is a decision tree–based model that is commonly 
used for regression tasks. It builds a decision tree by recursively partitioning the input space into 
smaller, more homogeneous regions. Once the tree is constructed, linear regression models are fitted 
to the data within each leaf node, thus improving the prediction accuracy by modeling continuous 
variables. The M5 algorithm is particularly useful because it combines the strengths of both decision 
trees and linear regression, offering a robust and interpretable approach for handling regression tasks 
with high accuracy. 

According to the study by Zahiri A et al. [102], the M5 method is especially helpful for regression 
tasks because it can efficiently capture nonlinear correlations between the input characteristics and the 
target variable using a combination of linear models and decision trees. Singh KK et al. [103] employed 
a back propagation neural network (BNN) and M5 model tree-based regression technique to compute 
the mean annual flood. The results show that the M5 model tree performs better than the BNN. 
Significant improvements in flood forecasting and prediction have been accomplished using DTs. The 
ability of DTs to manage nonlinear relationships between the predictor variables and the result (flood 
prediction) is one of its key benefits. DTs can effectively manage missing data and work with big 
datasets. Furthermore, the interpretability of DTs makes it simple to visualize the decision-making 
process, which can help with comprehending the elements that affect the risk of flooding. DTs can also 
handle numerous outputs, which makes them an excellent choice for multi-class classification 
problems like estimating the severity of a flood occurrence. 

5.3. Clustering algorithms 

A common supervised machine learning technique used for both classification and regression 
problems is K-nearest neighbor (KNN). The KNN algorithm operates on the premise that data points 
with comparable characteristics are probably members of the same class or have comparable output 
values [20]. To make predictions for a new data point, the algorithm finds the K-nearest neighbors in 
the training data and aggregates their class labels or outputs. The value of K determines the number of 
neighbors to consider and can be chosen through cross-validation or other methods. KNN can handle 
binary and multi-class classification problems as well as regression tasks [57]. The algorithm is 
relatively easy to implement and computationally efficient, although it can be sensitive to the choice 
of K and the scaling of the data. The KNN technique has one possible limitation in that it needs to store 
the complete training set in memory, which may become difficult for very big datasets. Several 
researchers have employed the KNN algorithm for flood forecasting and prediction [104–106]. 
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Alizadeh et al. [105] utilized several ML models, including radial basis neural networks (RBFNNs), 
feedforward neural networks (FFNNs), RNN, time delay neural networks (TDNNs), a grasshopper 
optimization algorithm (GOA)-based support vector machine (SVM), and the KNN model, to predict 
monthly flow. The results showed that the KNN model is well-suited for short-term predictions with 
more input features, while the RBFNN model is more appropriate for cases with fewer input features 
but more training observations. Sankaranarayanan et al. [107] used SVM, KNN, Naive Bayes, and 
deep learning to assess the accuracy and inaccuracy of flood prediction. According to the findings, the 
deep neural network can properly anticipate floods based on monsoon characteristics just before the 
flood happens. For the prediction of flash floods, El-Magd SAA et al. [108] combined KNN and 
extreme gradient boosting (XGBoost), with the results demonstrating that the XGBoost algorithm 
outperformed KNN in terms of accuracy.  

The KNN algorithm has made several key advancements in flood forecasting and prediction. One 
of its key advantages is its ability to capture complex, nonlinear relationships between predictor 
variables and the outcome (flood prediction). KNN also does not make any assumptions about the 
underlying data distribution, making it a robust method for handling diverse datasets [109]. KNN also 
works well with big datasets and can manage missing data. The algorithm is a great tool for 
comprehending the variables that affect flood risk because its interpretability makes it simple to 
visualize the decision-making process. KNN is adaptable for a range of flood prediction issues since 
it can be utilized for both regression and classification tasks [32]. However, KNN has limits that should 
be considered when utilizing it for flood prediction. Particularly for big datasets or for prediction tasks 
with numerous characteristics, KNN has a high computational cost. This may reduce its applicability 
in situations involving real-time prediction. The KNN model's performance may be significantly 
impacted by the choice of the k parameter, which establishes the number of nearest neighbors utilized 
for prediction. Selecting an acceptable k value may be challenging and demands significant thought. 
The existence of noisy or duplicated features in the data might have a substantial influence on KNN 
since it is sensitive to irrelevant characteristics. In some flood prediction scenarios where the data may 
be complicated or noisy, this may restrict its effectiveness. The benefits and drawbacks of various ML 
models and applications in flood are shown in Table 4. 

This section explores key classification algorithms for flood prediction. SVMs are effective for 
both linear and nonlinear tasks but face challenges such as parameter selection and handling large 
datasets. DTs use a tree-like structure for regression and classification, with variations like RF and M5 
models improving performance. KNNs classify data based on proximity to other data points and handle 
complex, nonlinear relationships but can be computationally intensive and sensitive to the choice of 
parameters. These techniques are widely applied in flood forecasting to enhance accuracy and handle 
diverse datasets. 
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Table 4. Advantages and drawbacks of various ML techniques and applications. 

Model Description Advantages Limitations Applications References  
Artificial 
neural 
networks 
(ANN) 

A type of 
machine 
learning model 
inspired by the 
structure and 
function of the 
human brain 

 Can model nonlinear 
relationships between 
input and output 
variables and handle 
large amounts of data. 

 Highly flexible, can learn 
nonlinear relationships, 
and work well on a large 
variety of problems. 

 It can be difficult to 
interpret and prone to 
overfitting. 

 It can be difficult to 
train, require a lot of 
data to achieve good 
results, and may be 
overfitting. 

River flow 
forecasting, 
rainfall-runoff 
modeling, 
flood 
prediction. 

[110] 

Support 
vector 
machines 
(SVM) 

A type of 
machine 
learning model 
that uses linear 
or nonlinear 
functions to 
separate data 
into classes. 

 Good at handling high-
dimensional data and can 
perform well even with 
limited data. 

 Perform well in high 
dimensional spaces, 
effective in cases where 
the number of features is 
greater than the number 
of samples, works well 
for nonlinear problems 
using the kernel trick. 

 It can be 
computationally 
expensive and not well-
suited for large datasets. 

 Time-consuming to train 
on large datasets, require 
careful tuning of hyper 
parameters, may not 
perform well in cases 
with a large number of 
features. 

River flow 
forecasting, 
flood 
prediction. 

[111] 

Decision 
trees and 
random 
forests 

A type of 
machine 
learning model 
that uses a tree-
like structure to 
make 
predictions 
based on input 
variables. 

 Easy to interpret, can 
handle a mix of 
categorical and numerical 
data, and can handle 
missing data. 

 Prone to overfitting and 
not well suited for 
continuous data. 

Flood 
prediction, 
flash flood 
warning 
systems. 

[112,113] 

K-nearest 
neighbors 
(KNN) 

A type of 
machine 
learning model 
that predicts the 
target variable 
for a new data 
point based on 
the values of its 
k nearest 
neighbors in the 
training data. 

 Easy to implement, can 
handle large datasets, can 
handle both numerical 
and categorical data. 

 Simple to implement and 
interpret, no training 
required, can handle 
multi-class problems. 

 It can be sensitive to 
irrelevant features, 
computationally 
expensive for large 
datasets, and can have 
poor performance in 
high-dimensional spaces. 

 Computationally 
expensive, sensitive to 
irrelevant features, may 
not perform well on high 
dimensional data. 

Rainfall-runoff 
modeling, 
flood 
prediction, 
flood warning 
systems. 

[114] 



89 

AIMS Environmental Science  Volume 12, Issue 1, 72–105. 

6. Unsupervised learning 

Unsupervised learning is a machine learning category in which a model is trained on an unlabeled 
dataset. The advent of hierarchical learning, clustering algorithms, dimensionality reduction 
approaches, latent models, and outlier detection techniques have all contributed to considerable 
improvements in recent years [45]. Unsupervised learning algorithms can be used to find hidden 
patterns and correlations in the data that might not be immediately obvious in the field of flood 
forecasting and prediction [43]. These algorithms can aid in finding obscure factors, including weather 
patterns or soil moisture levels, which are crucial for flood prediction. Unsupervised learning 
algorithms, such as clustering algorithms like k-means [54] and hierarchical clustering [115], and 
dimensionality reduction techniques like principal component analysis [116] have been successfully 
used to predict floods. These algorithms are helpful for organizing comparable data points into groups, 
finding abnormalities in the data, and simplifying the data to make it easier to model and analyze. It is 
important to note that unsupervised learning algorithms do not assume any specific relationship 
between predictor variables and the outcome of flood prediction. Therefore, they should be combined 
with other supervised or semi-supervised methods to achieve more accurate and reliable results [117]. 

Inyang et al. [118] used an unlabeled dataset of flood events to predict flood risks using a two-
stage unsupervised learning approach based on k-means clustering and self-organizing maps (SOM). 
The results indicated a significant enhancement in the classification and prediction of flood risks using 
a single machine-learning tool. Oppel and Fischer [43] used a new clustering technique based on 
unsupervised learning to identify recurrent temporal patterns in rainfall and investigate flood types. 
The results revealed that the temporal distribution of rainfall intensities has shifted from early peaks 
to a more uniform distribution. Devi et al. [119] proposed unsupervised deep learning approaches, 
stacked auto encoder (SAE) connected with tapped delay line (TDL), for the frequency and prediction 
of a flood. When compared to historical records, the proposed approach demonstrates improved 
performance and yields better results than traditional approaches. Unsupervised learning has some 
interesting advantages, but there are also many drawbacks, such as inappropriate technique selection, 
lack of interpretability, lack of operational success, ignoring simple non-machine-learning-based tools, 
overfitting, data quality issues, and inaccurate model building [45]. It is important to consider these 
limitations carefully and to choose the appropriate model for the task at hand. Supervised learning 
algorithms, which use labeled data, are generally more suitable for prediction tasks, including flood 
prediction. 

7. Semi-supervised learning 

Semi-supervised learning is a ML technique that combines aspects of both supervised and 
unsupervised learning. By utilizing a small set of labeled data along with a large amount of unlabeled 
data, the model can be trained to improve its accuracy. In the context of flood prediction, where labeled 
data may be scarce, semi-supervised learning can be particularly useful since it leverages the 
abundance of unlabeled data to enhance the model's performance [120]. Semi-supervised learning is a 
relatively new technique for flood prediction. For the detection of flood-prone areas, Gnecco G et 
al. [41] used supervised and semi-supervised machine-learning techniques. The results show that semi-
supervised techniques outperform supervised techniques. Zhao et al. [121] used semi-supervised ML, 
i.e., weakly labeled support vector machine (WELLSVM), for urban flood susceptibility. The results 
show that WELLSVM outperformed and can better utilize spatial information (unlabeled data). 
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However, semi-supervised learning also has limitations that should be considered when applied to 
flood prediction: difficulty in labeling data, limited ability to handle nonlinear relationships, limited 
interpretability, and reliance on the quality of the unlabeled data. 

8. Reinforcement learning 

Reinforcement learning (RFL) is a category of machine learning in which an agent learns to make 
decisions by taking actions in an environment to maximize a reward signal. The agent's primary 
objective is to acquire a policy that can map states to actions, with the aim of maximizing the 
cumulative reward over time [20]. Reinforcement learning algorithms use trial-and-error experiences 
to learn, updating their policy based on the results of their actions. This method is employed in a variety 
of applications, including control systems, robotics, and gaming [122]. The benefits include 
adaptability, versatility, end-to-end learning, and optimum solutions; nevertheless, there are several 
drawbacks, including sample inefficiency, difficulty in designing reward signals, difficulties in the 
exploration vs. exploitation trade-off, and lack of interpretability [123]. 

It is feasible to employ reinforcement learning in flood forecasting and prediction. In this situation, 
the agent's goal would be to decide how to manage water resources, such as opening floodgates or 
releasing water from dams, to lessen the chance of flooding. A multitude of factors, such as rainfall 
data, river flow rates, and historical floods, may influence the agent's conclusions. The incentive signal 
would be developed with the purpose of lowering damage and flooding danger. Reinforcement learning 
systems might learn to make judgments based on past knowledge and environmental data. The agent 
might learn to optimize its decision-making over time to reduce the danger of floods. This method has 
the potential to be more flexible and dynamic than standard flood prediction approaches, which are 
frequently based on predefined rules or algorithms. However, to ensure their usefulness and 
dependability in a real-world flood prediction situation, reinforcement learning algorithms would need 
to be properly constructed and verified. Bowes et al. [124] used RFL for real-time stormwater system 
control and flood mitigation and monitoring [125]. 

9. Challenges and way forward 

There are several challenges associated with ML-based methods for flood prediction and 
forecasting. Some of these challenges and potential solutions are discussed in the following subsections. 

9.1. Data availability and quality 

Accurate flood prediction and forecasting require reliable high-resolution spatial-temporal data 
inputs, including meteorological data, hydrological data, topographic data, and land use/land cover 
data [126]. However, such datasets may not always be readily available or may have missing data and 
noise [127]. To address the challenge of data availability and quality, it may be necessary to gather and 
process additional data sources or to improve the quality of existing data. In the absence of ground-
based observations, satellite imagery and remote sensing-based datasets have recently shown 
promising results for providing a more comprehensive view of the flood event [128,129]. However, 
there are several key challenges to utilizing remote sensing datasets, such as lower spatial and temporal 
resolutions, missing data due to cloud covers, and data integration and fusion [130]. Also, remote 
sensing-based datasets often have errors and biases that need to be corrected [131]. Although the 
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advances in remote sensing technology, such as the development of higher resolution sensors and more 
frequent data collection, can help to improve the spatial and temporal resolution of remote sensing 
data [132], significant efforts are required to develop new algorithms and data processing tools to 
utilize these products for accurate flood predictions and forecasting [133]. 

9.2. Model complexity 

Flood prediction and forecasting models can be complex [134], involving interdependent static 
and dynamic physio-meteorological variables as inputs and outputs, and may require sophisticated ML 
algorithms that can handle complex and nonlinear dynamic systems [135]. This can make it difficult 
to develop and tune the models for optimal performance [136]. To address the challenge of model 
complexity, advanced ML algorithms, such as deep learning or reinforcement learning, have recently 
emerged to handle the complexity of the interdependent variables for different prediction tasks in 
hydrology, including flood prediction and forecasting [40,135,137,138,]. Additionally, by merging the 
predictions from several models, model ensemble approaches have been developed to enhance the 
overall performance of the hydrological prediction [139]. To completely comprehend the benefits and 
drawbacks of different ensemble methodologies, more research is necessary, particularly around 
hydrological forecasting and flood prediction. 

9.3. Temporal and spatial variability 

Being a complicated natural phenomenon with a wide variety of geographical and temporal 
features, floods make it challenging to construct generic models that can reliably anticipate their 
impacts [140]. The breadth of the flooded region, the duration of the event, the kind of terrain and land 
cover, and the intensity of the rainfall are the features that distinguish one flood event from another, 
and that can have a significant impact on the temporal and geographical variability of the flood 
event [141]. Flood models must be tailored to the characteristics of each site and flood occurrence to 
address the issue of temporal and geographical variability in floods. 

To completely comprehend the spatial and temporal variability of the flood, this strategy 
necessitates gathering data from a variety of sources, such as hydrological models, topographical maps, 
meteorological records, and satellite pictures. This aids in making informed decisions about flood 
preparedness, response, and recovery [142,143]. By including this data into the flood model, more 
accurate predictions and simulations of the behavior and impacts of the flood may be produced. This 
supports informed decisions on flood preparedness, response, and recovery [144–146]. 

9.4. Limited generalization  

ML models are often developed through the training process, which involves modifying the 
model's parameters to perform a job using a particular dataset. Because these models are only trained 
on data that they have already seen, they may not be able to manage differences in the distribution of 
data outside of the training set, which might prevent them from effectively generalizing to new 
situations or places [147]. As a result, the models may only have limited practical application since 
they may not function effectively with fresh, untested data. Transfer learning approaches can be used 
to get over this problem of low generalizability [148]. Transfer learning is a subset of ML that deals 
with taking a model that has already been trained and changing it to apply it to a different issue or 
situation [149]. This is accomplished by either fine-tuning the pre-trained model on a new dataset, 
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which may have a different distribution than the original training data, or by changing the model 
architecture to better suit the new task or location. Transfer learning seeks to overcome the issue of 
limited generalizability by utilizing the information acquired from the pre-trained model and applying 
it to enhance performance on a new assignment. 

9.5. Uncertainty and sensitivity 

Models for forecasting and predicting floods are essential tools for reducing the consequences of 
flooding on people and infrastructure. However, these models are inherently imprecise and could 
produce false forecasts because of the complexity of the underlying physical processes involved in 
flood generation and spread as well as the lack of data [150]. Accurate flood prediction might be 
difficult due to the limited data availability and sensitivity to small changes in the input data or 
parameters [151]. Probabilistic ML models may be utilized to solve the issue of uncertainty and 
sensitivity in flood prediction models [152,153]. The inherent uncertainty in the prediction task may 
be captured by probabilistic ML models, such as Bayesian neural networks, by modeling the 
probability distribution of the output rather than offering a single-point estimate [154]. This makes it 
possible to communicate the prediction's uncertainty in a more complex way, enabling more thoughtful 
decision-making. Additionally, sensitivity analysis methods may be applied to find any variables that 
significantly affect model performance [155,156]. Sensitivity analysis entails changing the model's 
input parameters over time and evaluating how that affects the model's output, which enables the most 
important factors to be identified. By concentrating on the most crucial inputs, the model's accuracy 
may be increased. Alternatively, this knowledge can be utilized to better understand the model's 
constraints and enhance the data gathering procedure to more accurately capture the underlying 
processes. 

9.6. Lack of interpretability  

The interpretability of ML models is a crucial factor to consider since it can affect the accuracy 
of the predictions the model makes as well as the capacity to see any biases or flaws in the model [157]. 
Due to the numerous nonlinear transformations and hundreds of thousands of parameters included in 
certain ML models, especially those built using deep learning approaches, they can be particularly 
challenging to comprehend [158]. Interpretable ML models [159] can be used to solve the problem of 
the lack of interpretability in ML models, such as decision trees or linear regression. These models are 
more transparent in their decision-making because they clearly reveal the relationship between the 
input features and the output. To further pinpoint the most crucial elements influencing model 
performance, feature selection and dimensionality reduction approaches may be applied [160]. These 
methods can help the model employ fewer input characteristics, which enables a more in-depth 
examination of the connections between inputs and outputs. This can aid in increasing the model's 
interpretability by drawing attention to the most crucial elements and enabling a more in-depth analysis 
of the model's predictions. 

Emerging solutions for model interpretability: To overcome the interpretability challenge, recent 
advancements in interpretable machine learning have provided practical solutions. Two widely used 
approaches are SHAP (Shapley Additive Explanations) values and LIME (local interpretable model-
agnostic explanations). 

SHAP values: Based on game theory, SHAP assigns an importance value to each feature by 
considering the contribution of a feature to a prediction in various possible scenarios. This allows users 
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to see how much each feature contributes to an individual prediction and helps build trust in complex 
models like neural networks or ensemble methods. 

LIME: LIME is a model-agnostic tool that explains individual predictions by approximating the 
complex model with an interpretable surrogate model. By perturbing the input data and observing 
changes in the output, LIME can provide insights into how the original model is making its decisions. 

Both methods allow users to better understand machine learning models without compromising 
their accuracy. For flood prediction tasks, SHAP and LIME can help decision-makers grasp how inputs 
like rainfall, soil moisture, and terrain contribute to the forecasted flood risk, improving the model's 
transparency and usefulness in practical applications. 

10. Future directions 

ML is increasingly being integrated into flood forecasting, offering promising advancements in 
prediction accuracy, real-time data processing, and decision-making support [161]. However, the 
development and implementation of ML models in flood forecasting require further research and 
innovation to address existing gaps and fully harness their potential. One of the key areas for 
improvement is the computational efficiency of ML models. While current models can handle vast 
datasets, there is a need for more computationally efficient algorithms that can process data in real time 
without compromising accuracy. Future research could focus on developing lightweight models or 
optimizing existing models to minimize processing time and resource consumption. Moreover, basin-
specific models that consider the unique hydrological, geographical, and meteorological characteristics 
of each basin are necessary. Although general ML models exist, they often fail to capture the specific 
complexities of different regions. Future efforts should focus on creating models that account for basin 
diversity, soil moisture variability, and other local factors. This would enhance prediction accuracy for 
different terrains and climates [162]. 

Model update frequency is another area that warrants attention. Rapidly evolving flood conditions, 
influenced by real-time data such as rainfall, river flow, and ground saturation, necessitate continuous 
updates to forecasting models. The future of ML in flood forecasting should include adaptive models 
that can integrate real-time data and update predictions dynamically, ensuring that forecasts remain 
accurate as conditions change. The explainability and transparency of ML models are also critical. 
Many advanced ML algorithms, particularly deep learning models, are often perceived as black boxes 
due to their complexity. To build trust among stakeholders such as flood management authorities and 
local communities, ML models need to be more interpretable [163]. Future research could explore the 
development of interpretable models or tools that provide clear explanations for how predictions are 
generated. This would help decision-makers understand the reasoning behind the forecasts and 
improve the adoption of these models.  

Furthermore, the integration of remote sensing and IoT technologies with ML holds immense 
potential. Internet of Things based ML in flood forecasting refers to a system that uses IOT devices to 
collect data about the physical environment and meteorological conditions to anticipate the likelihood 
of floods. Sensors, cameras, weather stations, and other Internet of Thing’s devices may collect real-
time data on precipitation, river flow, soil moisture, and other pertinent factors. The machine learning 
model may then be trained and improved in accuracy using this data. IOT and ML may be used to 
develop an end-to-end flood forecasting system that provides real-time data and forecasts. This will 
make it possible for authorities and communities to prepare for and respond to anticipated flood events. 
IOT-based ML for flood forecasting can provide more accurate and up-to-date information than 
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traditional techniques, reducing the damage caused by floods to people and communities. Satellite data, 
radar, and LiDAR provide crucial information about precipitation, water levels, and land use changes. 
However, the effective fusion of these datasets with ML models remains an open research question. 
Future research should focus on creating more robust data fusion techniques, enabling ML models to 
incorporate remote sensing data with ground observations for more comprehensive flood predictions. 

Another exciting area of development is hybrid modeling, where ML models are combined with 
physical or hydrological models. Such approaches could help leverage the strengths of both data-driven 
and physics-based techniques, offering a more holistic view of flood dynamics. Future research should 
explore how hybrid models can be used to simulate complex hydrological processes while maintaining 
the predictive power of ML. Ethical considerations also need to be at the forefront of future 
developments in ML-based flood forecasting. The collection and use of large datasets, especially from 
IoT devices and social media, raise concerns about privacy, data ownership, and potential biases in the 
data. Researchers and developers should ensure that ML models are built and deployed in an ethical 
manner, considering the social, legal, and ethical implications of their use.  

11. Conclusions 

ML can considerably increase the accuracy and reliability of flood predictions. ML systems can 
analyze massive volumes of data and uncover specific linkages and patterns to provide a more 
comprehensive picture of flood risk. However, when employing ML for flood forecasting, it is critical 
to approach with caution and consider the flaws and constraints of these models. High-quality data, 
regular updates, minimizing model bias, and not overfitting the training data are all required to 
maintain ML models reliable. Despite these challenges, it is expected that future developments in 
machine learning will lead to applications that are more complex and successful. It is crucial to stay 
updated on developments and continue exploring the potential of ML across various domains and 
applications. This literature analysis provides a thorough summary of the state of the art in ML for 
flood prediction, emphasizing the advantages and disadvantages of the various ML algorithms. This 
review serves as a starting point for researchers and professionals aiming to utilize ML for forecasting 
floods and developing more precise prediction models. 
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