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Abstract: We explored the aging effects on insulating materials used in power transformers through 

dielectric spectroscopy. Frequency domain spectroscopy (FDS) was conducted for both aged and new 

Kraft paper and pressboard samples to determine their dielectric properties across a temperature range 

of 40–100 °C for pressboard and 40–70 °C for Kraft paper. Principal component analysis (PCA) was 

employed to classify the data, identify key factors contributing to variance, and elucidate the 

relationships between different parameters. The analysis revealed positive correlations between 

conductivity and frequency, as well as between permittivity and tan delta, with distinct differences in 

behavior observed between aged and new samples at lower frequencies. Additionally, the impact of 

temperature was evident, with increased temperature leading to an upward shift in dielectric behavior. 

At lower temperatures, aging had a reduced effect on the materials’ properties. These findings provide 

significant insights into the dielectric behavior and aging mechanisms of insulation materials in power 

transformers. 

Keywords: dielectric spectroscopy; frequency domain spectroscopy; aging; principal component 



832 

AIMS Environmental Science  Volume 11, Issue 5, 831–846. 

analysis (PCA); paper insulation; power transformers 

 

1. Introduction  

Power transformers are critical components within the electrical power grid and are responsible for 

controlling voltage levels across the entire system. The insulation system of these transformers, primarily 

comprised of a paper-oil combination, plays a crucial role in maintaining the electrical integrity of the 

transformer. The condition of this solid insulation directly influences the transformer’s lifespan [1–3]. 

Degradation of the insulation system, commonly occurring due to thermal and mechanical 

stresses associated with suboptimal operating conditions, accelerates the aging of the paper insulation 

and increases its susceptibility to both mechanical and electrical failures. This degradation also impacts 

the oil insulation, where byproducts such as moisture and acids can increase the likelihood of 

undesirable phenomena, such as partial discharge in both types of insulation, leading to potential 

electrical failure. Furthermore, paper insulation not only serves as an electrical insulator for the 

winding conductors but also provides thermal shielding and mitigates mechanical stresses applied to 

the windings. Consequently, failure in this insulation system can result in significant mechanical 

failures [1,4]. 

Pressboard and kraft paper are two widely used materials in the insulation system of power 

transformers and are the subjects of our study. Pressboard is a composite material made from cellulose 

fibers that are pressed together to form a dense, strong material with excellent electrical insulation 

properties. Kraft paper, on the other hand, is a type of paper made from wood pulp and processed with 

chemicals to enhance its strength and durability [1–4]. 

To understand the phenomenon of insulation aging and the effect of temperature on insulation 

parameters, we subjected two samples of both pressboard and kraft paper to accelerated aging in the 

laboratory. Using frequency domain spectroscopy—a non-destructive measurement method commonly 

employed in this field—we compiled a database of the electrical properties of both samples. This data 

spans various temperatures, ranging from 40–100 °C for pressboard and 40–70 °C for Kraft paper. 

Presenting and discussing this extensive data posed challenges. Principal component analysis (PCA) 

was employed to address these challenges. Thanks to its capabilities in dimensionality reduction, noise 

filtering, data visualization, and feature extraction, PCA enabled us to use different associated plots to 

cluster our data, visually distinguish the aged samples from the new ones, and explore relationships 

between parameters. This approach also facilitated the identification of important frequency 

breakpoints, leading to a more profound understanding of the behavior of the insulation system [5–7]. 

2. Background on frequency domain spectroscopy 

Frequency domain spectroscopy (FDS) is a measurement technique employed to examine the 

polarization behavior of insulation systems. When dealing with complex mixtures of insulation 

materials, FDS operates under the assumption that it can detect only overall changes in the insulation 

than pinpointing localized defects [6]. This technique involves applying a sinusoidal voltage to the test 

object and measuring both the magnitude and phase of the resulting current. This enables the 

assessment of parameters such as the dielectric dissipation factor (tanδ) and the complex 

capacitance/permittivity across a range of frequencies [7,8]. In the context of power transformers, 

measurements are conducted within a frequency band spanning from 0.01 Hz to 1 kHz to investigate 
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polarization mechanisms. In our specific case, we conducted these measurements using the IDA200 

instrument. 

We can describe the dielectric polarization P induced within the insulation in relation to the 

applied electric field E, considering that the insulation is humongous and isotropic, with the following 

expression [9]: 

𝑃(𝑡) = 𝜀0𝜒𝐸(𝑡) (1) 

where χ is the susceptibility and is related to the relative permittivity 𝜀𝑟 by: 

𝜒 = 𝜀𝑟 − 1 (2) 

The electric displacement field D, in relation to the induced dielectric polarization P, is defined as: 

𝐷(𝑡) = 𝜀0𝐸(𝑡) + 𝑃(𝑡)  

= 𝜀0𝐸(𝑡) + 𝜀0𝜒𝐸(𝑡)  

= 𝜀0(1 + 𝜒)𝐸(𝑡)     

= 𝜀0𝜀𝑟𝐸(𝑡)        (3) 

The total current density J(t) inside a dielectric material due to an external electric field according 

to Maxwell’s equations can be given as: 

𝐽(𝑡) = 𝜎𝐸(𝑡) +
𝜕𝐷(𝑡)

𝜕𝑡
𝐽(𝑡)  

= 𝜎𝐸(𝑡) + 𝜀0

𝜕𝐸(𝑡)

𝜕𝑡
+

𝜕𝑃

𝜕𝑡
 (4) 

where σ is the DC conductivity of the dielectric material. 

By employing either the Fourier or Laplace transformation, and under the assumptions of dielectric 

linearity and isotropy, with the application of a purely sinusoidal electric field, we can efficiently 

achieve an analytical transition from the time domain to the frequency domain: 

𝐽(𝑡) = 𝜎𝐸(𝜔) + 𝑗𝜔𝐷(𝜔)  

= 𝜎𝐸(𝜔) + 𝑗𝜔𝜀0𝜀𝑟𝐸(𝜔)   

= 𝑗𝜔𝜀0 (𝜀𝑟 +
𝜎

𝑗𝜔𝜀0
) 𝐸(𝜔)   

= 𝑗𝜔𝜀0𝜀(̅𝜔)𝐸(𝜔)        (5) 

where 𝜀(̅𝜔) is the complex permittivity: 𝜀(̅𝜔) = 𝜀′(𝜔) − 𝑗𝜀′′(𝜔).  

An expression for the current density can also be written using the complex susceptibility as: 

𝐽(𝜔) = 𝑗𝜔𝜀0 (𝜀𝑟 +
𝜎

𝑗𝜔𝜀0
) 𝐸(𝜔)  

= 𝑗𝜔𝜀0 (1 + 𝜒̅ − 𝑗
𝜎

𝜔𝜀0
) 𝐸(𝜔) (6) 



834 

AIMS Environmental Science  Volume 11, Issue 5, 831–846. 

where: χ̅  =  χ′ (ω) − χ′′ (ω). 

Thus: 

𝐽(𝜔) = 𝑗𝜔𝜀0 (1 + χ′ − 𝑗 (
𝜎

𝜔𝜀0
+ χ′′)) 𝐸(𝜔)  

= 𝑗𝜔𝜀0(𝜀′ − 𝑗𝜀′′)𝐸(𝜔)          (7) 

where we can define the components of the complex permittivity as: 

𝜀′(𝜔) = 𝑅𝑒(𝜀(̅𝜔)) = 1 + χ′(𝜔) (8) 

𝜀′′(𝜔) = 𝐼𝑚(𝜀(̅𝜔)) =
𝜎

𝜔𝜀0
+ χ′′(𝜔) (9) 

Note: The expression 
𝜎

𝜔𝜀0
+ χ′′(𝜔) is in phase with the driving field and, therefore, is the term 

that generates power loss. This term also defines two types of loss: One due to resistive losses caused by 

conduction and the other due to the inertia of bound and space charges under a changing electric field. 

The current I flowing through the dielectric material induced by the external field E can be written as: 

𝐼(𝜔) = 𝑗𝜔𝐶0 (1 + χ′ − 𝑗 (
𝜎

𝜔𝜀0
+ χ′′)) 𝑈(𝜔) (10) 

𝐼(𝜔) = 𝑗𝜔𝐶̅(𝜔)𝑈(𝜔) (11) 

We can define a complex capacitance 𝐶̅(𝜔)  = 𝐶′(𝜔) − 𝑗𝐶′′(𝜔), where 𝐶′(𝜔) = 𝐶0(1 + 𝜒′) 

represents the real capacitance and 𝐶′′(𝜔) = 𝐶0(
𝜎

𝜔𝜀0
+ 𝜒′′) is the imaginary capacitance. 

The dielectric dissipation factor, commonly referred to as the loss factor, is a metric defined as the 

ratio between the imaginary part and the real part of impedance. Regarding complex capacitance and 

permittivity, this relationship can be mathematically represented as follows: 

𝑡𝑎𝑛𝛿(𝜔) =
𝜀′′(𝜔)

𝜀′(𝜔)
=

𝐶′′(𝜔)

𝐶′(𝜔)
=

𝜎
𝜔𝜀0

+ 𝜒′′

1 + 𝜒′
 (12)  

3. Experimental setup and sample preparation 

3.1. Experimental setup 

IDA 200, the Insulation Diagnostics System used as our measurement equipment as shown in 

Figure 1, is an apparatus employed for diagnosing high-voltage equipment insulation systems, such 

as power transformers and cables. It operates by sweeping across frequencies from 0.001 Hz to 1 KHz 

while applying up to 140 V to the test subject, measuring various dielectric parameters, including the 

loss factor tanδ, real and imaginary capacitance (C' and C''), and real and imaginary permittivity (ε' and 

ε'') versus frequency [10]. This allows for monitoring the condition of the insulation and understanding 

its behavior. 
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Figure 1. Experimental setup: A diagnostic system and measure cell, respectively. 

A custom designed test cell is shown in Figure 2a. The test cell is made of two circular dishes 

and stainless steel electrodes [11,12]. One of the electrodes has a spring system to provide certain 

pressure to the sample. 

3.2. Sample preparation 

Aging manifests within the insulation system of transformers during their extended operational 

lifespan spanning several decades. Given the impracticality of allowing natural aging in operational 

environments, the prevailing practice involves replicating this ageing process within controlled 

laboratory settings through accelerated thermal aging methodologies. This approach affords notable 

advantages, namely cost-effectiveness, expedited results, and enhanced reliability. It facilitates the 

generation of specimens endowed with meticulously controlled thermal histories, thereby mitigating 

the influence of unforeseen variables that may otherwise impact their condition. The paper specimens 

utilized in our study were prepared following the procedure outlined in [13–15].  

To commence the thermal aging process, specimens measuring 81×81 mm were positioned inside 

a beaker and immersed in 2 liters of oil. Subsequently, metallic catalysts (1 g/l each of zinc, copper, 

and aluminum) were introduced into a filter paper to replicate the presence of metallic components 

typically found in transformers. This experimental arrangement was enclosed within a metallic 

container, sealed using silica gel (Figure 2b) to prevent moisture infiltration, while permitting the 

simulation of the breathing mechanism observed in free-breathing power transformers. The sealed 

container was then placed in an oven at 115 °C for 500 hours. 

Where: Paper mass= 10 % of the oil mass = 10 % Oil density ×Voil  

MPAPER = 0.1 × 0 .85 (Kg /L) × 1.5 L = 141 g 

 

Figure 2. (a) Schematic diagram of the dielectric response measurement system [11]. (b) 

Schematic representation of aging vessel. 
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Measurements for various parameters (lose factor, permittivity, and conductivity) conducted 

using FDS for pressboard at temperatures ranging from 40–100 °C and for kraft paper at temperatures 

ranging from 40–70 °C. 

4. Measurement results 

Below, we present graphs for some of the measured parameters using ID200 for both 

pressboard (from 40–100 °C) and kraft paper (from 40–70 °C). These parameters include the real part 

of permittivity, dissipation factor, and conductivity. 

From Figure 3a,b, the real component of permittivity, denoted as ε', experiences a decline that 

occurs as frequency increases, eventually stabilizing at higher frequencies for both kraft paper and 

pressboard, with higher starting values as the temperature continues to increase in an upward shifting 

trend. It is also noticeable that at high temperatures, non-aged samples have higher starting values 

compared to aged samples at lower temperatures. 

 

Figure 3. (a) The real part of permittivity for aged and new kraft paper at different 

temperatures. (b) The real part of permittivity for aged and new Pressboard at different 

temperatures. 

The trend observed in permittivity continues in Figure 4a,b for the dissipation factor. In the case 

of new samples, the high starting values are due to the increased movement of charge carriers, leading 

to higher conductivity and losses. This trend extends to aged samples, where it becomes more 

pronounced due to the depolymerization of the paper’s cellulose chains caused by aging. The 

production of aging byproducts increases the number of charge carriers, further contributing to 

increased losses. 
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Figure 4. (a) Dissipation Factor for aged and new kraft paper at different temperatures. (b) 

Dissipation Factor for aged and new Pressboard at different temperatures. 

While Figure 5 represents conductivity which increases with the rise in frequency due to the 

enhanced movement of charge carriers, which is also influenced by the increase in temperature. As 

stated, aging contributes to an increase in the number of charge carriers, resulting in aged samples of 

both kraft paper and pressboard having higher values in comparison. 

 

Figure 5. (a) Conductivity of kraft paper at different temperatures. (b) Conductivity of 

Pressboard at different temperatures. 

As it is obvious in the presented Figures, the more data there is, the more difficult it becomes to 

distinguish representations. While the parameters presented are those commonly used in the literature, 

they do not provide the full picture because there are relationships between different parameters, and 

the strength of these relationships changes across different frequency bands. This is without 

mentioning other unrepresented parameters that could also contribute to a full understanding of the 

behavior of our insulation system. This is where PCA comes in to solve this problem, as it can represent 

the entire dataset in one plot while retaining as much as 80% to 90% of the data integrity. 
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5. Principal component analysis 

PCA is a statistical method that reduces the dimensionality of a dataset by identifying patterns 

and correlations among the variables. The method achieves this by transforming the original dataset 

into a set of new variables, known as principal components (PC), that capture the maximum amount 

of variance in the data. The first principal component captures the most significant amount of variance 

in the data, followed by the second, third, and so on. PCA is particularly useful in analyzing large 

datasets where the number of variables is high, and the data is noisy or contains redundant information. 

In the context of dielectric spectroscopy, PCA can be used to identify the dominant factors affecting 

the dielectric properties of materials, such as pressboard and kraft paper used in power transformers. 

After pre-processing the data, PCA can be applied to extract the principal components and analyze 

their contributions to the variance in the data. The resulting principal components can be visualized 

using biplots, which display the contributions of each variable to the principal components and the 

relationships among the variables. 

PCA was employed in this study as a dimensionality reduction technique to extract the most 

informative features from the high-dimensional dataset. PCA is a widely used statistical method that 

aims to transform a set of correlated variables into a smaller set of uncorrelated variables called 

principal components, while retaining as much of the original variance in the data as possible [16–18]. 

The first step in performing PCA was to compute the covariance matrix Σ of the centered data matrix X, 

where each column of X represents a variable, and each row represents an observation. The covariance 

matrix was calculated as follows: 

Σ = (
1

n − 1
) × XT × X (13) 

where n is the number of data points [19,20]. 

Next, the covariance matrix Σ was decomposed into its eigenvalues and eigenvectors using 

eigenvalue decomposition: 

Σ =  P ×  Λ ×  PT (14) 

where P is the matrix of eigenvectors, and Λ is the diagonal matrix of eigenvalues [20]. 

The principal components were then determined by selecting the eigenvectors of Σ, sorted in 

descending order of their corresponding eigenvalues. The first principal component is the eigenvector 

with the largest eigenvalue, the second principal component is the eigenvector with the second-largest 

eigenvalue, and so on. The data was then projected onto the subspace spanned by the k principal 

components, where k is the desired number of dimensions to retain. The projection was performed by 

multiplying the centered data matrix X by the matrix of the k principal components Pk: 

Y = X × Pk (15) 

where Y is the projected data matrix in the lower-dimensional space [20]. 

The number of principal components k to retain was selected based on the proportion of 

variance explained by each principal component. The goal was to choose the smallest number of 

principal components that capture a sufficiently large fraction of the total variance in the data, 

typically 80–90% [20,21]. The use of PCA in this study allowed for the effective reduction of the 

dimensionality of the dataset while preserving the most relevant information. This preprocessing step 

was essential for improving the performance and interpretability of the subsequent analyses. 
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6. Results and discussion 

6.1. Preparation of the data 

Unlike other studies conducted, this work involves taking two samples (one new and one aged) 

using an accelerated aging procedure for 500 hours at 115 °C. Measurements were then taken on 

various temperature points ranging from 40–100 °C for Pressboard and 40–70 °C for Kraft paper on 

frequencies ranging from 0.01 Hz to 1 kHz. To mitigate potential overlap of data points, we will 

initially explore the impact of aging on the samples considering the data at only one temperature. 

Subsequently, we will examine the influence of temperature on both aged and non-aged samples across 

different temperature [7–11]. 

6.2. PCA analysis 

6.2.1. The effect of aging 

Following the execution of PCA on kraft paper and pressboard data each separately, the principal 

components (PCs) are obtained, each with its individual percentage of the variance in the dataset. 

Tables 1 and 2 display the cumulative percentage of variance explained by each PC, as well as the 

individual percentages of variance associated with each PC. 

Table 1. Eigenvalues of the correlation matrix of kraft. 

PC’s Eigenvalue Percentage of Variance Cumulative 

1st 6.26354 69.59% 69.59% 

2nd 1.55818 17.31% 86.91% 

3rd 0.57904 6.43% 93.34% 

4th 0.45888 5.10% 98.44% 

5th 0.13283 1.48% 99.92% 

6th 0.00691 0.08% 99.99% 

Table 2. Eigenvalues of the correlation matrix of pressboard. 

PC’s Eigenvalue Percentage of Variance Cumulative 

1st 6.98638 77.63% 77.63% 

2nd 1.53442 17.05% 94.68% 

3rd 0.31585 3.51% 98.18% 

4th 0.07536 0.84% 99.02% 

5th 0.06763 0.75% 99.77% 

6th 0.01956 0.22% 99.99% 

Eigenvalues represent the amount of variance captured by each principal component. The larger 

the eigenvalue, the more important the corresponding eigenvector is in capturing the variability of the 

original data. Therefore, the eigenvalues can be used to select the most important principal components 
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to retain for dimensionality reduction. While percentage of variance and cumulative values are self-

explanatory, they can help us determine how many principal components (PCs) we should consider in 

our study. In the case of the pressboard data, we should consider 3 PCs, which contribute to 97.92% 

of the variance. For the kraft data, we will also use 3 PCs, since 92.79% is a satisfactory level of 

variance. This is further confirmed by the scree plot. 

PCA typically employs a scree plot to identify the optimal number of PCs, as illustrated in Figure 6a,b. 

The plot shows the PC number on the x-axis and the corresponding eigenvalues on the y-axis. The 

point where the eigenvalue sharply rises indicates the number of PCs that are most suitable for the 

analysis. 

 

Figure 6. Scree Plot of (a) Pressboard (b) Kraft. 

The Scores Plot can provide insights into the underlying structure of the data and can reveal 

clusters or patterns among the samples. Samples that are close together in the plot are more similar to 

each other in terms of their multivariate composition [17,18], while samples that are far apart are more 

dissimilar. The plot can also highlight outliers, which are samples that are distant from the main cluster. 

In our case, the layout of the data points for both pressboard and kraft paper in Figure 7a,b shows an 

increase for higher frequencies due to the dominant variance in conductivity, which also increases. 

However, for lower frequencies, in the case of the aged pressboard sample, the dominant parameter is 

the capacitance and its real part and for kraft paper is imagery part of capacitance, imagery part of 

permittivity and dissipation factor. 

 

Figure 7. Scores Plot for (a) Pressboard and (b) Kraft paper. 
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This is further reinforced by biplots in Figure 8a,b. By plotting the observations in the dataset, as 

well as the variables themselves, on the same graph, biplots allow for the exploration of relationships 

between the variables, which can help identify any underlying patterns or trends in the data. 

We observe in Figure 8a,b a small angle between parameters, such as conductivity and frequency, 

between imagery parts of both permittivity and capacitance along with the dissipation factor, and 

between real parts of both permittivity and the capacitance with the capacitance, indicating positive 

correlations among these parameters. Conversely, there is an angle of about 180 degrees between 

frequency and dissipation factor, indicating a negative correlation between these parameters. 

 

Figure 8. Biplot of the (a) Pressboard (b) the kraft paper. 

We can also see in Figure 8a,b divergences between the data points of the aged and new samples 

at low frequencies, followed by a convergence around 10Hz for pressboard and around 0.1 Hz for kraft 

paper that is followed by samples behaving the same following along the conductivity vector. This is 

indicative of the parameter dominating that band from 21.5 Hz to 1 KHz with the aged samples having 

higher values. We can explain this phenomenon, which arises due to aging induced by product 

formation (moisture and an increase in acid content), resulting in elevated conductivity and losses. As 

per Eq 9, it is evident that conductivity contributes to the material’s losses, with a more pronounced 

effect at lower frequencies. This leads to increased losses at lower frequencies. However, as the frequency 

increases, conductivity loses its significance in determining these losses (around the 21.5 Hz mark) and 

therefore it becomes the predominant factor influencing this behavior. 

6.2.2. Study of the effect of temperature 

Usually, when it comes to temperature, its effect on the parameters is described as a vertical shift 

for most parameters. When it comes to the dissipation factor, that’s accompanied by a slight shift to 

the right as well. we will represent PCA with only 2 components to demonstrate the effect, and we will 

discuss further when we add the 3rd component. 

In the case of kraft paper, three temperatures were chosen: 40 °C, 50 °C, and 70 °C. For pressboard, 

three temperatures were also selected: 40 °C, 70 °C, and 100 °C. Tables 3 and 4 represent the 

eigenvalues of the correlation matrix of both papers respectively. 
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Table 3. Eigenvalues of the correlation matrix of Pressboard at different temperatures. 

PC’s Eigenvalue Percentage of Variance Cumulative 

1st 5.86229 58.62% 58.62% 

2nd 1.85396 18.54% 77.16% 

3rd 1.05797 10.58% 87.74% 

4th 0.7222 7.22% 94.96% 

5th 0.27359 2.74% 97.70% 

6th 0.22393 2.24% 99.94% 

Table 4. Eigenvalues of the correlation matrix of Kraft at different temperatures. 

PC’s Eigenvalue Percentage of Variance Cumulative 

1st 5.70661 57.07% 57.07% 

2nd 1.90797 19.08% 76.15% 

3rd 1.08693 10.87% 87.02% 

4th 0.65306 6.53% 93.55% 

5th 0.32127 3.21% 96.76% 

6th 0.26223 2.62% 99.38% 

Figures 9a and 10a provide valuable insights into the temperature-dependent dielectric behavior 

of pressboard and kraft paper insulation materials, respectively. In both cases, we observe an overall 

shift upward and to the right, which becomes more pronounced as the temperature increases along the 

vector. This observation aligns with the existing literature on the subject. 

Moving on to Figure 9b for pressboard samples, we can discern that both aged and new samples 

exhibit similar behavior at lower temperatures, with resistivity being the dominant factor influencing 

the dielectric properties. However, as the temperature rises, a noticeable shift occurs. For the aged 

sample, the real part of capacitance and permittivity emerges as the dominant factor, and this trend 

further evolves at 100 °C, where the dissipation factor, as well as the imaginary part of capacitance 

and permittivity, become significant contributors. In contrast, the new pressboard sample exhibits 

behavior similar to the aged samples at 100 °C, akin to their behavior around 80 °C, but with 

significantly lower loss values. This distinction highlights the impact of aging on the dielectric 

response of pressboard insulation at elevated temperatures. The observations made for Figure 9a 

regarding pressboard samples can be extended to Figure 10a, which depicts the behavior of kraft paper 

insulation samples. The overall trends and shifts in the dominant factors influencing the dielectric 

properties are consistent between the two insulation materials, suggesting that the underlying 

mechanisms governing their temperature-dependent dielectric behavior are similar. These temperature-

dependent shifts in dielectric properties, particularly the increase in dielectric losses and the emergence 

of different dominant factors, can have profound implications for the performance and service life of 

the insulation systems. As the temperature rises, the aging processes and associated degradation 

mechanisms accelerate, leading to significant changes in the dielectric response. Understanding these 

temperature-dependent behaviors is crucial for effective condition monitoring, maintenance strategies, 

and operational planning in power systems. The insights gained from these observations can inform 

the development of predictive models, optimized operational parameters, and targeted mitigation 
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strategies to ensure the reliable and efficient operation of electrical equipment employing pressboard 

and kraft paper insulation materials. 

 

Figure 9. (a) Biplot for Pressboard with 2PC’s for different temperature. (b) Biplot for 

Pressboard with 3PC’s for different temperatures. 

 

Figure 10. (a) Biplot for kraft paper with 2PC’s for different temperature, and (b) Biplot 

for kraft paper with 3PC’s for different temperature. 

In Figure 10b, we observe a similar pattern as in Figure 9b, but with a more pronounced shift in 

the case of kraft paper, even at lower temperatures, compared to pressboard. This phenomenon can be 

attributed to the following explanation: As the temperature increases from lower values, the heightened 

thermal energy of the molecules introduces disorder within the insulation material. This disorder leads 

to a decrease in permittivity and an increase in dielectric losses due to the rise in conductivity. In the 

case of aged samples, this effect is further exacerbated by the generation of moisture and increasing 

acid content, resulting in elevated conductivity values even at lower temperatures compared to newer 

samples, and particularly at higher temperatures. The increase in conductivity observed in aged 
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samples at elevated temperatures arises from the interplay of two factors: An increase in the density of 

hopping charge carriers and enhanced mobility among charge carriers within the insulation material [13]. 

The presence of moisture and acidic byproducts facilitates the formation of charge carriers, while the 

thermal energy imparted at higher temperatures promotes their mobility, leading to a significant rise in 

conductivity. This phenomenon is more pronounced in kraft paper compared to pressboard due to the 

inherent differences in their composition and structure. Kraft paper, being a cellulosic material, is more 

susceptible to the degradation effects caused by moisture and acidic byproducts, resulting in a more 

drastic shift in its dielectric properties at lower temperatures. The observed shift in dielectric properties, 

particularly the increase in conductivity and dielectric losses, can have profound implications for the 

insulation performance and service life of electrical equipment. These changes may lead to accelerated 

aging, potential insulation failures, and reduced operational efficiency. Therefore, understanding and 

monitoring these temperature-dependent dielectric behaviors is crucial for effective condition 

assessment and maintenance strategies in power systems. 

7. Conclusions 

We employed FDS to extract crucial parameters such as conductivity, resistivity, dissipation factor, 

and permittivity, providing valuable insights into the effects of aging processes and temperature on 

insulation materials. PCA was employed to identify the dominant sources of variance in the data, 

enabling a useful visualization of the relationships between different parameters. The biplots generated 

through PCA facilitated the identification of underlying patterns, trends, and correlations within the 

dataset, leading to the following key observations: 

1) Conductivity emerges as the dominant source of variance, exhibiting an increasing trend with 

frequency. However, for aged samples at lower frequencies, the dissipation factor (tan delta) and 

the permittivity (especially the imaginary part) become the dominant contributors to the variance 

an indication of higher losses in the aged sample. 

2) In the case of new samples, higher variances are observed in resistivity and resistance parameters, 

which are indicative of the low losses. 

3) Small angles between conductivity and frequency, as well as permittivity and tan delta, indicate 

positive correlations among these parameters. 

4) A large angle of approximately 180 degrees between frequency and dissipation factor suggests a 

negative correlation between these two variables. 

5) To effectively distinguish the condition of the insulation system, it is recommended to focus on 

parameters such as dissipation factor and permittivity around the frequency band of 21.5 Hz and 

lower, as conductivity dominates the behavior at higher frequencies, leading to similar responses 

in both aged and new samples. 

It is worth noting that PCA is inherently a linear technique, implying that nonlinear trends caused 

by nonlinear phenomena in dielectrics, such as the increase in loss and capacitance due to partial 

discharges, and the nonlinear decrease resulting from the Garton effect and water treeing, may not be 

fully captured in the results. In such cases, alternative approaches like t-Distributed Stochastic 

Neighbor Embedding (t-SNE) or non-linear PCA may prove to be more suitable options for capturing 

these nonlinear effects. This conclusion summarizes the key findings obtained from the FDS and PCA 

analysis, highlighting the dominant sources of variance, correlations between parameters, and the 

frequency ranges of interest for distinguishing the condition of insulation systems. Additionally, it 

acknowledges the potential limitations of PCA in capturing nonlinear phenomena and suggests 

alternative techniques for future consideration. 



845 

AIMS Environmental Science  Volume 11, Issue 5, 831–846. 

Use of AI tools declaration  

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 

article. 

Acknowledgments 

S. Goumri-Said thanks the office of research at Alfaisal University in Saudi Arabia for funding 

this research work through internal project number 24407.  

Conflict of interest 

The authors declare that the research was conducted in the absence of any commercial or financial 

relationships that could be construed as a potential conflict of interest. All Authors contributed equally 

to this research. All authors have read and approved the final version of the manuscript for publication. 

References 

1. Yuan Z, Wang Q, Ren Z, et al. (2023) Investigating aging characteristics of oil-immersed power 

transformers insulation in electrical-thermal-mechanical combined conditions. Polymers 15: 4239. 

https://doi.org/10.3390/polym15214239 

2. Liu R, Zhang Z, Nie H, et al. (2020) Effect of mineral oil and vegetable oil on thermal ageing 

characteristics of insulating paper. Insul Mater 53: 65–69  

3. Kunakorn A, Pramualsingha S, Yutthagowith P, et al. (2023) Accurate assessment of moisture 

content and degree of polymerization in power transformers via dielectric response sensing. 

Sensors 23: 8236. https://doi.org/10.3390/s23198236 

4. Qiang Fu, Zhang J, Wang M, et al. (2016) Correlation analysis between crystalline behavior and 

aging degradation of insulating paper, 2016 IEEE International Conference on Dielectrics (ICD), 

617–620. https://doi.org/10.1109/icd.2016.7547531  

5. Liu F, Cheng L, Gao J, et al. (2019) Characterization of insulation materials used in power 

transformers using dielectric spectroscopy and principal component analysis. J Electr Eng 

Technol 14: 1651–1659. https://doi.org/10.1007/s42835-019-00027-5 

6. Arora R, Rana P (2019) Dielectric spectroscopy: a comprehensive review. J Mater Sci 54: 1287–

11333. https://doi.org/10.1007/s10853-019-03755-1 

7. Baruah N, Sangineni R, Chakraborty M, et al. (2020) Data-driven analysis of aged insulating oils 

by UV-Vis spectroscopy and principal component analysis (PCA), 2020 IEEE Conference on 

Electrical Insulation and Dielectric Phenomena (CEIDP), 451–454. 

https://doi.org/10.1109/CEIDP49254.2020.9437375 

8. Saha TK (2003) Review of modern diagnostic techniques for assessing insulation condition in 

aged transformers, IEEE Transactions on Dielectrics and Electrical Insulation, 10: 903–917. 

https://doi.org/10.1109/TDEI.2003.1247730 

9. Zaengl WS (2003) Dielectric spectroscopy in time and frequency domain for HV power 

equipment. I. Theoretical considerations. IEEE Electr Insul M 19: 5–19. 

https://doi.org/10.1109/MEI.2003.1238713 

10. Insulation diagnostics spectrometer IDA, Programma Electric AB, Eldarv. 4, SE-187 75 Täby, 

Sweden. 

https://doi.org/10.3390/polym15214239
https://doi.org/10.3390/s23198236
https://doi.org/10.1109/icd.2016.7547531
https://doi.org/10.1007/s42835-019-00027-5
https://doi.org/10.1007/s10853-019-03755-1
https://doi.org/10.1109/CEIDP49254.2020.9437375
https://doi.org/10.1109/TDEI.2003.1247730
https://doi.org/10.1109/MEI.2003.1238713


846 

AIMS Environmental Science  Volume 11, Issue 5, 831–846. 

11. Fofana I, Benabed F (2013) Influence of ageing onto the dielectric response in frequency domain 

of oil impregnated paper insulation used in power transformers, In 9ème Conférence Nationale 

sur la Haute Tension, 09–11. 

12. JäVerberg N, Edin H, Nordell P, et al. (2010) Dielectric properties of alumina-filled poly 

(ethylene-co-butylacrylate) nanocomposites, 2010 Annual Report Conference on Electrical 

Insulation and Dielectic Phenomena, 1–4. https://doi.org/10.1109/CEIDP.2010.5724031 

13. Shayegani AA, Borsi H, Gockenbach E, et al. (2005) Application of low frequency dielectric 

spectroscopy to estimate condition of mineral oil, IEEE International Conference on Dielectric 

Liquids, 285–288. https://doi.org/10.1109/ICDL.2005.1490082 

14. Bouaicha A, Fofana I, Farzaneh M (2008) Application of modern diagnostic techniques to assess 

the condition of oil and pressboard, 2008 IEEE International Conference on Dielectric Liquids, 

1–4. https://doi.org/10.1109/ICDL.2008.4622475 

15. Setayeshmehr A, Fofana I, Eichler C, et al. (2008) Dielectric spectroscopic measurements on 

transformer oil-paper insulation under controlled laboratory conditions, IEEE Transactions on 

Dielectrics and Electrical Insulation, 15: 1100–1111. https://doi.org/10.1109/tdei.2008.4591233 

16. Jackson JE (2005) A user’s guide to principal components, John Wiley & Sons. 

17. Jolliffe IT, Cadima J (2016) Principal component analysis: A review and recent developments. 

Philos T Roy Soc A 374: 20150202. https://doi.org/10.1098/rsta.2015.0202 

18. Abdi H, Williams LJ (2010) Principal component analysis. Wires Comput Stat 2: 433–459. 

https://doi.org/10.1002/wics.101 

19. Shlens J (2014) A tutorial on principal component analysis. arXiv Preprint 1404: 1100. 

https://doi.org/10.48550/arxiv.1404.1100 

20. Jolliffe IT (2002) Principal component analysis, New York: Springer. 

https://doi.org/10.1007/b98835 

21. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: Data mining, 

inference, and prediction, New York: Springer. 

 

© 2024 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1109/CEIDP.2010.5724031
https://doi.org/10.1109/ICDL.2005.1490082
https://doi.org/10.1109/ICDL.2008.4622475
https://doi.org/10.1109/tdei.2008.4591233
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1002/wics.101
https://doi.org/10.48550/arxiv.1404.1100
https://doi.org/10.1007/b98835

