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Abstract: In recent decades, abnormal rainfall and temperature patterns have significantly impacted 

the environment and human life, particularly in East Nusa Tenggara. The region is known for its low 

rainfall and high temperatures, making it vulnerable to drought events, which have their own 

complexities due to being random and changing over time. This study aimed to analyze the trend of 

short-term meteorological drought intensity in Timor Island, East Nusa Tenggara. The analysis was 

carried out by utilizing the standardized precipitation evapotranspiration index (SPEI) for a 1-month 

period to characterize drought in intensity, duration, and severity. A power law process approach was 

used to model the intensity of the event, which is inversely proportional to the magnitude of the drought 

event. Intensity parameters of the power law process were estimated using the maximum likelihood 

estimation (MLE) method to predict an increase in the intensity of drought events in the future. The 

probability of drought was calculated using the non-homogeneous Poisson process. The analysis 

showed that “extremely dry” events in Timor Island are less frequent than “very dry” and “dry” events. 

The power law process model’s estimated intensity parameter showed a beta value greater than 1, 

indicating an increase in future drought events. In the next 12 months, two months of drought are 

expected in each region of Timor Island, East Nusa Tenggara, with the following probabilities for each 

region: 0.264 for Kupang City, 0.25 for Kupang, 0.265 for South Central Timor, 0.269 for North 

Central Timor, 0.265 for Malaka, and 0.266 for Belu. This research provides important insights into 

drought dynamics in vulnerable regions such as East Nusa Tenggara and its potential impact on future 

mitigation and adaptation planning. 
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1. Introduction  

The recent abnormal behavior of rainfall and air temperature has caused great impacts on the 

environment and human life. One of the most significant impacts is the unpredictable changes in 

seasonal patterns. In some areas, high rainfall will cause flooding; in others, low rainfall with high air 

temperatures will result in drought. Drought prediction is one of the biggest challenges for scientists 

and hydrologists, mainly due to its complex nature: these events are random and can fluctuate over 

time [1]. In predicting drought, the accuracy of rainfall data is crucial because rainfall is the main factor 

determining water availability in a region [2]. In addition, air temperature, which affects the rate of 

evaporation, also plays an important role in modeling and predicting drought phenomena [3–5].  

Drought is one of the most devastating natural disasters, impacting water supply, agriculture, 

energy production, ecosystems, and society [6]. Drought has affected many parts of the world over the 

past few decades, such as in the Southeast United States [7], China [8,9], Brazil [10], and Pakistan [11]. 

Drought can be classified into four categories: Meteorological drought, which is the lack of rainfall to 

below-normal levels in a certain period of time, hydrological drought, the lack of water availability in 

and on the surface of the soil, agricultural drought, the reduced yield or agricultural production due to 

reduced water supply, and socioeconomic drought, related to demand and supply in a market for goods 

of economic value [12]. 

The measurement tool for drought is called the drought index, a single value that can describe the 

severity of drought. Meteorological drought indices that can be used to monitor drought conditions 

include the Palmer drought severity index (PDSI), which uses the water balance equation in the soil [13], 

and the standardized precipitation index (SPI) using the rainfall probability approach [14]. In recent 

years, new drought indices have been developed to improve the effectiveness of existing ones. One of 

these developments is the standardized precipitation evapotranspiration index (SPEI). The SPEI is a 

development of the SPI that only considers rainfall. SPEI adds potential evapotranspiration parameters 

in its calculation to describe drought better than relying on rainfall alone. This is a response to climate 

change and its effect on drought [15]. The time scales of SPEI calculation are the same as the SPI: The 

1-month period is used for short-term drought recognition, the 3- and 6-month periods are used for 

seasonal drought recognition, the 12-month period is used for medium-term drought, and the 24- and 

48-month periods are used for long-term drought assessment [14].  

Drought monitoring using the 1-month SPEI drought index in Timor Island, East Nusa Tenggara, 

has shown that drought events in Kupang City spanned 94 months, with different intensity 

classifications: 63 months experienced “moderately dry” levels, 25 months had “severely dry” levels, 

and 6 months reached “extremely dry” levels. Meanwhile, in Kupang Regency, there were 93 months 

of drought, 62 months at the “moderately dry” level, 26 months at the “severely dry” level, and 5 

months reaching the “extremely dry” level. South Central Timor Regency recorded 90 months of 

drought intensity, with 59 months at the “moderately dry” level, 25 months at the “severely dry” level, 

and 6 months reaching the “extremely dry” level. In North Central Timor Regency, 88 months of 

drought occurred, with 62 months at the “moderately dry” level, 20 months at the “severely dry” level, 

and 6 months at the “extremely dry” level. Malaka Regency recorded 95 months of drought, with 66 

months at the “moderately dry” level, 25 months at the “severely dry” level, and 4 months at the “extremely 

dry” level. In Belu Regency, there were 87 months of drought, with 59 months at the “moderately dry” 
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level, 23 months at the “severely dry” level, and 5 months at the “extremely dry” level. 

The distribution of drought intensity on Timor Island, classified based on the 1-month SPEI 

drought level in each observation area, shows a very significant variation. In addition, there is a natural 

trend where more severe drought events, namely “extremely dry” and “very dry” events, tend to occur 

less frequently than less severe events, such as normal drought. In a stochastic process, this trend can 

be interpreted as a power law where the intensity of drought events decreases as their severity increases. 

The power law reflects that very severe drought events have a lower probability of occurrence than 

milder drought events. The large fluctuations in the tail of the power law distribution, which includes 

extreme but rare events, indicate that extreme events have a very low probability but can occur with 

very large intensity [16]. The power law process is one of the case models of the non-homogeneous 

Poisson process with the intensity function of the form (
𝛽

𝛾
) (

𝑡

𝛾
)

(𝛽−1)

 [17].  

The non-homogeneous Poisson process is a commonly used model to model the number of events as 

a function of time [18]. Special case models of the non-homogeneous Poisson process have been widely 

used in various disciplines, including hydrometeorology, as shown in the study of Achcar et al. [19], where 

non-homogeneous Poisson process models, namely Weibull and Goel Okumoto with multiple variable 

points, were used to estimate the number of ozone levels exceeding the standard limit in Mexico City. 

Another study by Achar et al. [20] used the non-homogeneous Poisson process at the change point 

with the power law process model to analyze the drought period based on the SPI in Brazil. Ellahi et 

al. [21] used the non-homogeneous Poisson process model with a linear intensity function to assess 

the number of hydrological drought events using the SPI in Pakistan.  

In addition, research on drought prediction using the SPEI index has also been carried out in many 

parts of the world. Ghasemi et al. [22] and Karbasi et al. [23] forecasted the SPEI 12 drought index in Iran; 

Dikshit et al. [24] predicted the size of drought using the SPEI on two different time scales (SPEI 1 and 

SPEI 3) in the New South Wales region, Australia; Affandy et al. [25] modeled and predicted 

meteorological drought measured by the SPEI with a time range of 1, 3, 6, and 12 months in Lamongan 

Regency, Indonesia. 

The power law process can occur in various natural and artificial phenomena, covering several 

fields of science such as biology, economics, physics, chemistry, and computer science [26–30]. 

Statistical inference for the power law process is generally based on the maximum likelihood 

estimator (MLE) and its asymptotic properties. The MLE is used to find the parameter values in the 

power law process model that are most likely to yield the observed data [31]. A special characteristic 

of the power law process is the estimated value of the shape parameter (𝛽), which can describe how 

an intensity can increase or decrease. If 𝛽 > 1, the intensity of an event will increase; if 𝛽 < 1, the 

intensity of an event will decrease; and if 𝛽 = 1, the power law process reduces to a homogeneous 

Poisson process [17]. Two categories of data cases can be applied for parameter estimation in the power 

law process model: the time interval between events and the number of events observed in the specified 

interval [32]. In this study, the estimation method is applied to the second category, where the number 

of drought events based on 1-month SPEI in Timor Island is considered a random variable with a 

predetermined observed time interval. The fit test results using the acute Cramér-von Mises test 

showed that the intensity of drought events based on the 1-month SPEI on Timor Island fits the power 

law process model. The parameter estimation of the power law process using MLE in each observation 

area shows (𝛽) > 1, with Kupang City having a value of 1.063; Kupang Regency 1.174; South Central 

Timor Regency 1.095; North Central Timor Regency 1.049; Malaka Regency 1.034, and Belu 

Regency 1.112. This indicates a possible increase in the intensity of drought events in these areas. 

Therefore, as a mitigation effort and early planning in the face of future drought events, this study aims to 
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analyze short-term meteorological drought periods using the power law process to obtain an estimate of 

the duration of future drought events. 

2. Materials and methods 

2.1. Materials 

Figure 1 shows the area of study was conducted in the Timor Island region of East Nusa 

Tenggara (NTT), Indonesia, covering six regency/cities, namely Kupang City, Kupang Regency, 

South Central Timor Regency, North Central Timor Regency, Malaka Regency, and Belu Regency. 

Geographically, the six locations are located in the western part of the Timor Archipelago with 

coordinates of 9°14' N and 124°56' E. The data used are secondary in the form of monthly rainfall 

amounts and monthly average air temperatures obtained from NASA Power through the website 

https://power.larc.nasa.gov/data-access. Data were used as input data for the SPEI 1-month drought 

index calculation parameters These results were classified based on drought severity to obtain the 

intensity of drought events in each observation area. The intensity of drought events was measured based 

on the frequency of drought periods within a time span. The observation period was from January 1981 

to December 2023, with a record length of 516 months.  

 

Figure 1. Map of the observation area. 

2.2. Methods 

2.2.1. Standardized precipitation evapotranspiration index (SPEI) 

The SPEI was designed to consider rainfall and potential evapotranspiration (PET) in determining 

drought. The SPEI drought index calculation is based on the deficit value between rainfall and PET [15]. 

PET can be calculated by the Thornthwaite method using average air temperature based on the 
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following equation [33]: 

𝑃𝐸𝑇 = 16𝐾 (
10𝑇

𝐼
)

m

 (1)  

𝐾 is a correction factor based on the latitude position of the observation area, T is the monthly average 

air temperature (℃) , and I is the annual internal heat index obtained from the sum of 𝑖 for 12 months 

in the following equation:  

𝑖 = (
𝑇

5
)

1,514

 and 𝐼 = ∑ 𝑖12
1  (2)  

The 𝑚 is a coefficient that is a variable tied to 𝐼 with the equation given by: 

𝑚 =  6,75 × 10−7  𝐼3 − 7,71 × 10−5 𝐼2 + 1,792 × 10−2 𝐼 + 0.492 (3)  

The deficit between rainfall and PET or climate water balance can be determined by the following 

equation:  

𝐷𝑖 = 𝐶𝐻𝑖 − PET𝑖 (4)  

𝐷𝑖 is the value of climate water balance in month i, 𝐶𝐻𝑖 is the amount of rainfall in month 𝑖, and 

𝑃𝐸𝑇𝑖  is PET in month 𝑖  in mm. Next, the value of 𝐷𝑖  is standardized based on the probability 

density function of the log-logistic distribution with three parameters to capture the deficit value, since 

it is likely that the moisture deficit in arid and semi-arid areas may be negative. For the two-parameter 

distribution as used in SPI, the variable D has a lower limit of zero (0 > 𝐷 < ∞), which means D can 

only take positive values, while for the three-parameter distribution used in SPEI, D can take values in 

the range (𝛾 > 𝐷 < ∞), which means D can also take negative values [15]. The probability density 

function of the log-logistic distribution is given as: 

𝑓(𝐷) =
𝛽

𝛼
(

𝐷 − 𝛾

𝛼
)

𝛽−1

[1 +  (
𝐷 − 𝛾

𝛼
)

𝛽

]

−2

 
(5)  

The parameters 𝛼, 𝛽, 𝛾 in the log-logistic distribution are calculated using the L-moment procedure. 

L-moment calculation of Pearson III distribution parameters can be obtained through the following 

equation [34]: 

𝛽 =
2𝑊1 − 𝑊0

6𝑊1 − 𝑊0 − 6𝑊2
  (6)  

𝛼 =
(𝑊0 − 2𝑊1)𝛽

Г (1 +
1
𝛽

)  Г (1 −
1
𝛽

)
 

(7)  

𝛾 = 𝑊0 − 𝛼Г (
1 + 1

𝛽
) Г (

1 − 1

𝛽
) (8)  

Г(𝛽)  is the gamma distribution function of 𝛽 . W is the probability weighted moments (PWMs) 

obtained from the following equation: 

𝑊𝑠 =
1

𝑁
∑ (1 − 𝐹𝑖)

𝑠 𝐷𝑖

𝑁

𝑖=1
 (9)  
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𝑠 is the number of PWMs, and 𝐹𝑖 is a frequency estimator that can be calculated using the equation 

given by: 

𝐹𝑖 =
𝑖 − 0,35

𝑁
 (10)  

𝑖 is the range of observations arranged in ascending order and N is the number of data used. The 

probability function of the distribution D over various time scales can be calculated using the following 

equation: 

𝐹(𝐷) = [1 +  (
𝛼

𝐷 − 𝛾
)

𝛽

]

−1

 (11)  

Based on the probability function, the SPEI can be calculated using the following equation [35]: 

𝑆𝑃𝐸𝐼 =  (𝑡 −
𝑐0 + 𝑐1𝑊 + 𝑐2𝑊2

1 + 𝑑1𝑊 + 𝑑2𝑊2 + 𝑑3𝑊3
) (12)  

𝑊 = √−2 ln(𝑃)  for P ≤ 0.5 (13)  

𝑊 = √−2 ln(1 − 𝑃)  for P ≥ 0.5 (14)  

P is the probability of exceeding the value of D, which is determined by the following equation: 

𝑃 = 1 − 𝐹(𝑥) (15)  

The coefficient value of McKee is as follows: 

𝑐0 = 2.515517    𝑑1 = 1.432788 

𝑐1 = 0.802853    𝑑2 = 0.189269 

𝑐2 = 0.010328    𝑑3 = 0.001308 

Drought occurs when SPEI reaches drought intensity with SPEI value ≤ –1. The classification of 

SPEI drought index values is based on Table 1 [36]. 

Table 1. Classification of SPEI values. 

SPEI value Classification 

≥ 2.00 Extremely wet 

1.50–1.99 Very wet 

1.00–1.49 Moderately wet 

(–0.99)–0.99 Normal 

(–1.00)–(–1.49) Moderately dry 

(–1.50)–(–1.99) Severely dry 

≤ –2.00 Extremely dry 

2.2.2. Non-homogeneous Poisson process 

The non-homogeneous Poisson process is a stochastic process used to count the number of 
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events in a given time interval, where the rate of events is not constant but depends on time. A process 

counting {𝑁(𝑡), 𝑡 ≥ 0} is said [37] to be a non-homogeneous Poisson process with intensity function 

𝜆(𝑡), 𝑡 ≥ 0, if: 

a. 𝑁(0) = 0, 

b. {𝑁(𝑡), 𝑡 ≥  0} has independent increment, 

c. P{𝑁(𝑡 + ℎ) − 𝑁(𝑡) = 1} = 𝜆(𝑡) + 𝑜(ℎ), and 

d. P{𝑁(𝑡 + ℎ) − 𝑁(𝑡) ≥ 2} = 𝑜(ℎ) , where h > 0 and 𝑜(ℎ)  is a small number satisfying the 

condition lim
ℎ→0

𝑜(ℎ)

ℎ
= 0. 

The expected value, also known as the cumulative function of the non-homogeneous Poisson 

process {𝑁(𝑡), 𝑡 ≥ 0} with intensity function 𝜆(𝑡) is defined as:  

𝑚(𝑡) = ∫  𝜆(𝑡) 𝑑𝑡
𝑡

0

 (16)  

Based on Eq 16, the average estimate of 𝑁(𝑡) is given by the equation: 

𝑚̂(𝑡) = 𝐸(𝑁(𝑡)) = ∫  𝜆̂(𝑡) 𝑑𝑡
𝑡

0

 (17)  

where 𝐸(. ) is the expectation value. {𝑁(𝑡), 𝑡 ≥ 0}, modeled as a non-homogeneous Poisson process, 

is expressed as:  

𝑃(𝑁(𝑡) = 𝑛) =
[∫ 𝜆(𝑡)𝑑𝑡

𝑡

0
]

𝑛!
 𝑒𝑥𝑝− ∫ 𝜆(𝑡)𝑑𝑡

𝑡
0   𝑛 = 0,1,2 … 𝑛 (18)  

Based on Eq 16, for 𝑡, 𝑠 > 0, 𝑁(𝑡 + 𝑠) − 𝑁(𝑡) has the following expected value function: 

𝑚(𝑡 + 𝑠) − 𝑚 (𝑡) = ∫  𝜆(𝑡) 𝑑𝑡
𝑡+𝑠

0

 (19)  

Thus, if {𝑁(𝑡 + 𝑠), 𝑡, 𝑠 ≥ 0}, based on Eq 18, it can be modeled as a non-homogeneous Poisson 

process as follows: 

𝑃(𝑁(𝑡+𝑠) − 𝑁(𝑡) = 𝑛) =
(𝑚 (𝑡 + 𝑠) − 𝑚(𝑡))𝑛

𝑛!
 𝑒𝑥𝑝(−(𝑚 (𝑡+𝑠)−𝑚(𝑡)) (20)  

2.2.3. Power law process 

A power law process is a special case of non-homogeneous Poisson process with intensity 

function given by [17]:  

𝜆(𝑡) = (
𝛽

𝛾
) (

𝑡

𝛾
)

𝛽 − 1

 
, 𝛾 > 0, 𝛽 > 1, 𝑡 > 0 (21)  

Meanwhile, the expectation value based on Eq 16 is given by: 

 𝑚(𝑡) = (
𝑡

𝛾
)

𝛽

  
 , 𝛾 > 0, 𝛽 > 1, 𝑡 > 0 (22)  

The intensity function of the power law process can be used to estimate the event rate at a given 

time. This is because the shape parameter (𝛽) can describe how an intensity can increase or decrease. 
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If β > 1, the intensity of an event will increase: if 𝛽 < 1, the intensity of the event will decrease; and 

if 𝛽 = 1, the power law process reduces to a homogeneous Poisson process [17]. 

2.2.4. Goodness-of-fit test 

There are several goodness-of-fit test procedures that can be used to test the suitability of the 

power law process model, including Kuiper’s V Test, Watson’s 𝑈2 Test, Anderson-Darling 𝐴2 Test, 

Shapiro-Wilk Test, and Cramér-von Mises Test. The Cramér-von Mises test uses the following 

hypothesis:  

𝐻0: Event intensity fits the power law process model.  

𝐻1: Event intensity does not fit the power law process model.  

The Cramér-von Mises test statistic is expressed based on the following equation: 

𝐶𝑅
2 =

1

12(𝑛)
+  ∑ (𝑅̅ −

2𝑖 − 1

2𝑛
)

2𝑛

𝑖=1

 (23)  

𝑅̅ is the ratio power transformation given by Eq 29. 

𝑅̅ = (
𝑡𝑖

𝑡
)

𝛽̅

 (24)  

𝛽̅ is the unbiased estimator given by Eq 27. 

𝛽̅ =
(𝑛 − 2)

∑ ln (
𝑡
𝑡𝑖

)𝑛
𝑖=1

 (25)  

The 𝐻0 decision is accepted if the calculated value of the 𝐶𝑅
2 test statistic is smaller than the 

critical value for the Cramér-von Mises test, which means that the power law process model is 

appropriate. If the value of the 𝐶𝑅
2 test statistic is greater than the critical value for the Cramér-von 

Mises test, then 𝐻0 is rejected, which means that the model is not suitable, and a more suitable model 

needs to be used [17]. 

2.2.5. Estimation of power law process intensity function parameters using MLE 

Suppose 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛 are mutually independent random samples from a distribution with a 

joint probability density function 𝑓(𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛; 𝛽, 𝛾) with n representing the number of events 

occurring until time 𝑡𝑖 for 0 < 𝑡1 < 𝑡2 < 𝑡3 < ⋯ < 𝑡𝑛. If the joint likelihood function is expressed 

as a function of 𝛽  and 𝛾, then the likelihood function is denoted as 𝐿(𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛; 𝛽, 𝛾). The 

likelihood function for the parameters 𝛽 and 𝛾 is given as follows [17]:  

𝐿(𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛; 𝛽, 𝛾) = (∏ 𝜆(𝑡𝑖; 𝛽, 𝛾)

𝑛

𝑖=1

) 𝑒𝑥𝑝 (− ∫ 𝜆(𝑡𝑖; 𝛽, 𝛾)𝑑𝑡
𝑡𝑛

0

) (26)  

Based on Eq 21, the likelihood function with intensity function 𝜆(𝑡𝑖; 𝛽, 𝛾) in Eq 23 is: 

𝐿(𝑡𝑖; 𝛽, 𝛾) = (∏ (
𝛽

𝛾
) (

𝑡𝑖

𝛾
)

𝛽−1
 

𝑛

𝑖=1

) 𝑒𝑥𝑝 (− ∫ (
𝛽

𝛾
) (

𝑡

𝛾
)

𝛽−1
 

𝑑𝑡
𝑡𝑛

0

) (27)  
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Based on Eq 24, the logarithmic likelihood function ℒ(𝑡; 𝛽, 𝛾) = ln (𝐿(𝑡; 𝛽, 𝛾)) is: 

ℒ(𝑡; 𝛽, 𝛾) = 𝑛 ln(𝛽) − 𝑛𝛽 ln(𝛾) + (𝛽 − 1) ∑ ln(𝑡𝑖) − (
𝑡

𝛾
)

𝛽
𝑛

𝑖=1

 (28)  

Furthermore, Eq 25 is derived with respect to 𝛽 and 𝛾 so that the maximum likelihood estimator 

is obtained as follows: 

𝛽̂ =
𝑛

∑ ln (
𝑡
𝑡𝑖

)𝑛
𝑖=1

 
(29)  

𝛾 =
𝑡

𝑛
1

𝛽̂

 (30)  

3. Results and discussion 

3.1. Meteorological drought exploration using the SPEI method 

The SPEI is a drought index used to analyze meteorological drought conditions by considering 

the standardization of rainfall deficits with potential evapotranspiration (PET) or climate water balance. 

In this study, the SPEI calculation time scale used a 1-month period, which is adjusted to the needs of 

researchers to evaluate drought in the short term. SPEI defines a drought event as occurring when the 

SPEI value is below or equal to the -1 threshold, and the drought event ends when the SPEI value 

returns to positive. The index classifies drought levels into three main categories: dry, very dry, and 

extremely dry. The classification of drought levels by SPEI is based on the SPI classification table as 

follows [14,15,36]: 

1) Moderately dry: Occurs when the SPEI value is between –1 and –1.49. This indicates mild drought 

that may affect water availability. 

2) Severely dry: Occurs when the SPEI value is between –1.5 and –1.99. This indicates a more 

serious drought that can significantly impact agriculture, clean water, and ecosystems. 

3) Extremely dry: Occurs when the SPEI value is below –2. This category represents the worst 

drought index and can cause major losses to agriculture, water availability, and the environment. 

The SPEI calculation process uses Eqs 1–15. A time series plot of the calculated values of the 1-

month SPEI for each observation area on Timor Island is shown in Figure 2. 
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Figure 2. Time series plot of 1-month SPEI values in the observation areas: (A) Kupang 

City, (B) Kupang, (C) South Central Timor, (D) North Central Timor, (E) Malaka, (F) Belu. 

Figure 2 shows that SPEI values close to 0 in each observation area indicate near-normal conditions, 

while positive or negative values indicate above or below-normal conditions. There are many negative 

SPEI values lower than or equal to –1, indicating that there are frequent droughts at dry, very dry, and 
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extremely dry levels in each observation area of Timor Island. This result aligns with the research of 

Kuswanto et al. [38], which shows that very dry events are more common in the eastern region of NTT; 

in this case, Timor Island is the eastern region of NTT.  

Furthermore, SPEI values lower than or equal to –1 were characterized to obtain drought intensity, 

duration, and severity during the observation period [14]. The characterization of 1-month SPEI values 

in each region of Timor Island can be seen in Table 2. 

Table 2. Characterization of SPEI drought index value for 1-month period. 

Observation 

area 

Extremely dry index Longest 

drought 

duration 

Intensity of drought months by drought level 

Value Month of 

incident 

Moderately 

dry 

Severely dry Extremely 

dry 

Total 

Kupang City –2.47 August 

1988 

4 months 63 months 25 months 6 months 94 

months 

Kupang –2.74 April 2016 4 months 62 months 26 months 5 months 93 

months 

South Central 

Timor 

–3.86 August 

1998 

4 months 59 months 25 months 6 months 90 

months 

North Central 

Timor 

–2.61 August 

1998 

4 months 62 months 20 months 6 months 88 

months 

Malaka –2.82 August 

2010 

5 months 66 months 25 months 4 months 95 

months 

Belu –3.07 August 

2010 

4 months 59 months 23 months 5 months 87 

months 

The worst SPEI indices, with values lower than or equal to –2 (extremely dry conditions), have 

occurred throughout Timor Island. On average, the most severe SPEI drought indices occurred in April, 

except in Kupang Regency. The most extreme short-term meteorological drought ever recorded on 

Timor Island occurred in South Central Timor Regency, with a drought index of –3.86 in August 1998. 

The longest droughts were as follows: In Kupang City for 4 consecutive months from August to 

November 1988; in Kupang Regency for 4 consecutive months, occurring from June to September 

1998; in South Central Timor Regency for 4 consecutive months from May to September 1998 and 

again from February to March 2018; in North Central Timor Regency for 4 consecutive months, also 

in two different periods, namely from June to September 1996 and June to September 1998; in Malaka 

Regency for 5 consecutive months, occurring from August to November 2020; and in Belu Regency 

for 4 consecutive months, occurring from November 1997 to February 1998 and again from June to 

September 1998. In addition, the intensity of drought events in each region varies greatly. The 

distribution of the intensity of drought events can be seen in Figure 3. 

Figure 3 illustrates the pattern of variance in the intensity of drought events, which is that 

extremely dry events tend to occur less frequently than severely dry and moderately dry ones. This 

phenomenon demonstrates the complexity of drought as a natural phenomenon that involves factors 

such as time distribution, scale, and varying intensity of occurrence. An appropriate and effective 

method is needed to understand and describe drought dynamics. 

In the analysis of short-term meteorological drought using the 1-month SPEI on Timor Island, the 

natural trend where more severe events tend to be less frequent than weaker events can be interpreted 

with a stochastic process model, the power law process. This process can explain how the event’s 
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intensity is inversely proportional to its magnitude [16,18]. The power law process helps researchers 

understand the pattern of drought intensity and can be used to predict the likelihood of future drought 

events. Therefore, to better understand the spatial distribution of SPEI values on Timor Island, the 

SPEI index was mapped every month in 2023, as shown in Figure 4. 

 

Figure 3. Distribution of drought intensity based on SPEI ≤ –1 drought level in Timor Island Region. 

 

Figure 4. Map of drought distribution on Timor Island in 2023. 
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The 2023 drought distribution map shows that all areas of Timor Island were affected by drought, 

as seen from the orange and red colors. In 2023, there were 3 months of drought in Kupang City, 

Kupang, South Central Timor, and Malaka, and 2 months in North Central Timor and Belu. In January, 

all observed areas experienced drought at a moderately dry level; in October, almost all observed areas 

experienced drought at a severely dry level, except for Malaka Regency, which experienced a 

moderately dry level. In November, a moderately dry drought occurred in Malaka Regency, while other 

regions had returned to normal. In December, an extremely dry drought occurred in South Central 

Timor Regency, and a severely dry drought was observed in Kupang City and Kupang Regency. 

The presentation of the drought distribution map only for 2023 is based on the need to provide 

up-to-date information on drought conditions on Timor Island. Although the range of observations 

covers the years 1981–2023, 2023 was chosen due to the relevance of the current information desired 

in this study. By focusing on that year, a more in-depth understanding of the current spatial distribution 

of SPEI values in the Timor Island region can be obtained. 

3.2. Cramér-von Mises test 

We tested the suitability of the power law process model using the Cramér-von Mises test [17]. 

The hypothesis used is as follows: 

𝐻0: The intensity of drought events based on the 1-month SPEI fits the power law process model.  

𝐻1: The intensity of drought events based on the 1-month SPEI does not fit the power law process model. 

The Cramér-von Mises statistic (𝐶𝑅
2) is obtained using Eqs 23–25. The results are presented in 

Table 3.  

Table 3. Cramér-von Mises test. 

Observation area 𝑪𝑹
𝟐  Critical value Decision 

Kupang City 0.082 0.22 𝐻0 accepted 

Kupang 0.062 0.22 𝐻0 accepted 

South Central Timor 0.089 0.22 𝐻0 accepted 

North Central Timor 0.171 0.22 𝐻0 accepted 

Malaka 0.043 0.22 𝐻0 accepted 

Belu 0.022 0.22 𝐻0 accepted 

Based on Table 3, the 𝐶𝑅
2 value of all observation areas is below the critical value determined 

based on the frequency of drought events, and 𝐻0  is accepted. These results indicate that the 

intensity of drought events based on 1-month SPEI in each region of Timor Island fits the power law 

process model.  

3.3. Parameter estimation of power law process intensity function 

The estimated values of the shape (𝛽)  and scale (𝛾)  parameters in the power law process 

intensity function were obtained using the MLE method based on Eqs 29 and 30 using the time 

truncated estimate of the power law process [17]. Data used are drought frequency, time of occurrence, 

and observation time span. The parameter estimation results are presented in Table 4. 
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Table 4. Parameter estimation value of power law process intensity function. 

Observation area Parameter 

𝛽̂ 𝛾 

Kupang City 1.063 7.170 

Kupang 1.174 10.859 

South Central Timor 1.095 8.481 

North Central Timor 1.049 7.245 

Malaka 1.034 6.296 

Belu 1.112 9.282 

Table 4 shows that the 𝛽̂  parameter in each observation area was higher than 1. Based on the 

characteristics of the power law process, if the intensity function is greater than 1, the intensity of an 

event will increase [13]. Therefore, it can be concluded that the intensity of drought events in each region 

of Timor Island will increase, so it is necessary to estimate the frequency of future drought events.  

3.4. Estimating the frequency of future drought events 

Suppose the time value of drought occurrence in each observation area is 𝑡𝑖 < 𝑡2 < ⋯ < 𝑡𝑛 < 𝑡 

so that 𝑁(𝑡) = {𝑁, 𝑡𝑖 < 𝑡2 < ⋯ < 𝑡𝑛; (0, 𝑡]}  with N expressing the frequency of months with 

drought occurrence in the time interval (0,t]. It is known that the total months observed from 1981–

2023 are t = 516 months. The period of months to be estimated is the following 12 months, so if t + s, 

then 516 + 12 = 528, meaning that the last month of estimation is the 528th month. The initial time of 

estimation starts from the time after the last time of observation, so the estimation time interval 

becomes [517,528]. The number of months to be estimated is 12, so the possible value of n is n = 1, 2, 

3, ..., 12. The interpretation of the observation time based on the range of 1981–2023 is as follows: 

The first month is January 2023, and the 516th month is December 2023. For the estimation months, 

the 517th month is January 2024, and the 528th month is December 2024. 

The expected frequency m(t) of drought occurrence in the observation time [1,516] can be obtained 

by substituting the estimated values of parameters 𝛽̂ and 𝛾 in each region of Timor Island into Eq 22. 

A comparison between expected values and real monthly frequency values is presented in Figure 5. 

 

Figure 5. Comparison between expected frequency and real frequency in observations [1,516]. 



696 

 

AIMS Environmental Science  Volume 11, Issue 5, 682–702. 

Based on Figure 4, the expected value shows a very good level of agreement with the actual value. 

This indicates that the power law process model accurately predicts the number of months with drought 

events. Furthermore, the estimation of the expected value (𝑚(𝑡 + 𝑠)) of drought frequency in the 

future 12 months or in observations [517,528] is presented in Table 5.  

Table 5. Estimated frequency of drought occurrence within 12 months in the future in each 

region of Timor Island. 

Months Kupang 

City 

Kupang South Central 

Timor 

Nort Central 

Timor  

Malaka Belu 

517 (Jan 2024) 94.207 93.244 90.195 87.957 95.393 87.374 

518 (Feb 2024) 94.400 93.456 90.386 88.136 95.584 87.562 

519 (Mar 2024) 94.594 93.668 90.577 88.314 95.775 87.750 

520 (Apr 2024) 94.788 93.879 90.768 88.493 95.965 87.938 

521 (May 2024) 94.981 94.091 90.959 88.671 96.156 88.126 

522 (Jun 2024) 95.175 94.304 91.150 88.850 96.347 88.315 

523 (Jul 2024) 95.369 94.516 91.342 89.028 96.538 88.503 

524 (Aug 2024) 95.563 94.728 91.533 89.207 96.729 88.691 

525 (Sep 2024 95.756 94.940 91.724 89.385 96.920 88.879 

526 (Oct 2024) 95.950 95.152 91.916 89.564 97.111 89.067 

527 (Nov 2024) 96.144 95.365 92.107 89.743 97.301 89.256 

528 (Dec 2024) 96.338 95.577 92.299 89.921 97.492 89.444 

The predicted results show that, in the next 12 months, the drought frequency in each region of 

Timor Island will increase by 2 months from the initial observation. For example, in Kupang City, the 

drought frequency in the 516-month observation is 94 months, and in the 528-month observation is 96 

months. The same is true for every other observation area, where in the next 12 months, the frequency 

of drought events will increase by 2 months. Therefore, it is imperative to make early preparations and 

implement effective mitigation strategies to reduce the possible impacts of more frequent droughts in 

the future. 

Using the homogeneous Poisson process, the probability value of the expected future frequency 

of drought can be obtained by substituting the expected value m(t+s) into the non-homogeneous 

Poisson process based on Eq 20, where m(t) is the expected value at the last time of observation. As 

mentioned, the power law process is a special case of the non-expected frequency of drought 

occurrence in the future, as presented in Tables 6–11. For example, if the expected frequency of drought 

in the next 12 months is 2 months, the probability values based on Tables 6–11 for each region of 

Timor Island are 0.264 for Kupang City, 0.254 for Kupang, 0.265 for South Central Timor, 0.269 for 

North Central Timor, 0.266 for Malaka, and 0.267 for Belu. In addition, the probability value of the 

expected frequency is 1, 3, and 12 months. For example, in Table 7, it is shown that the probability of 

drought frequency being 3 months in the future 12 months in Kupang City is 0.205. Meanwhile, in Kupang 

Regency, that probability value is 0.216. This interpretation also applies to each of the following estimates. 

Note that a limitation of this study lies in the estimation of the power law process model, where 

the researchers stipulated that the value of the shape parameter (β) should be greater than 1 to indicate 

an increase in event intensity, as described in Rigdon and Basu’s study [17]. In addition, it should be 

noted that other modeling approaches or the use of different drought index datasets can be considered. 

For example, Ghasemi et al. used a Gaussian process regression model to forecast the SPEI drought 
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index [22]; other drought indices, such as the Palmer drought severity index (PDSI) or the Z-Index, 

may also be used. However, it is important to highlight that future research could focus on modeling 

and comparing different results. Furthermore, the model used to analyze the SPEI drought index in 

Timor Island has a wide potential application in cases where extreme events are rare compared to 

common weaker events, such as in the study of earthquakes, extreme weather, temperature changes, 

and others. 

Table 6. A probability value of drought frequency in Kupang City for 12 months.  

Months n 

1 2 3 4 5 6 7 8 9 10 11 12 

517 (Jan 2024) 0.160 

           

518 (Feb 2024) 0.263 0.051 

          

519 (Mar 2024) 0.325 0.094 0.018 

         

520 (Apr 2024) 0.357 0.138 0.036 0.007 

        

521 (May 2024)  0.368 0.178 0.057 0.014 0.003 

       

522 (Jun 2024) 0.364 0.211 0.082 0.024 0.006 0.001 

      

523 (Jul 2024) 0.349 0.237 0.107 0.036 0.010 0.002 0.000 

     

524 (Aug 2024) 0.329 0.255 0.132 0.051 0.016 0.004 0.001 0.000 

    

525 (Sep 2024 0.305 0.266 0.154 0.067 0.023 0.007 0.002 0.000 0.000 

   

526 (Oct 2024) 0.279 0.270 0.175 0.085 0.033 0.011 0.003 0.001 0.000 0.000 

  

527 (Nov 2024) 0.253 0.270 0.191 0.102 0.043 0.015 0.005 0.001 0.000 0.000 0.000 

 

528 (Dec 2024) 0.227 0.264 0.205 0.119 0.055 0.021 0.007 0.002 0.001 0.000 0.000 0.000 

Table 7. A probability value of drought frequency in Kupang Regency for the future 12 

months. 

Months n 

1 2 3 4 5 6 7 8 9 10 11 12 

517 (Jan 2024) 0.172 

           

518 (Feb 2024) 0.277 0.059 

          

519 (Mar 2024) 0.337 0.107 0.023 

         

520 (Apr 2024) 0.363 0.154 0.043 0.009 

        

521 (May 2024)  0.367 0.194 0.069 0.018 0.004 

       

522 (Jun 2024) 0.357 0.227 0.096 0.031 0.008 0.002 

      

523 (Jul 2024) 0.336 0.250 0.123 0.046 0.014 0.003 0.001 

     

524 (Aug 2024) 0.311 0.264 0.149 0.063 0.021 0.006 0.001 0.000 

    

525 (Sep 2024 0.283 0.270 0.172 0.082 0.031 0.010 0.003 0.001 0.000 

   

526 (Oct 2024) 0.254 0.270 0.191 0.101 0.043 0.015 0.005 0.001 0.000 0.000 

  

527 (Nov 2024) 0.226 0.264 0.205 0.120 0.056 0.022 0.007 0.002 0.001 0.000 0.000 

 

528 (Dec 2024) 0.200 0.254 0.216 0.137 0.070 0.030 0.011 0.003 0.001 0.000 0.000 0.000 
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Table 8. A probability value of drought frequency in South Central Timor Regency for 12 

months. 

Months n 

1 2 3 4 5 6 7 8 9 10 11 12 

517 (Jan 2024) 0.158 

           

518 (Feb 2024) 0.261 0.050 

          

519 (Mar 2024) 0.323 0.093 0.018 

         

520 (Apr 2024) 0.356 0.136 0.035 0.007 

        

521 (May 2024)  0.367 0.175 0.056 0.013 0.003 

       

522 (Jun 2024) 0.364 0.209 0.080 0.023 0.005 0.001 

      

523 (Jul 2024) 0.351 0.235 0.105 0.035 0.009 0.002 0.000 

     

524 (Aug 2024) 0.331 0.253 0.129 0.049 0.015 0.004 0.001 0.000 

    

525 (Sep 2024 0.308 0.265 0.152 0.065 0.022 0.006 0.002 0.000 0.000 

   

526 (Oct 2024) 0.283 0.270 0.172 0.082 0.031 0.010 0.003 0.001 0.000 0.000 

  

527 (Nov 2024) 0.257 0.270 0.189 0.100 0.042 0.015 0.004 0.001 0.000 0.000 0.000 

 

528 (Dec 2024) 0.231 0.265 0.203 0.116 0.053 0.020 0.007 0.002 0.000 0.000 0.000 0.000 

Table 9. A probability value of drought frequency in North Central Timor Regency for 12 

months. 

Months 
n 

1 2 3 4 5 6 7 8 9 10 11 12 

517 (Jan 2024) 0.149            

518 (Feb 2024) 0.250 0.045           

519 (Mar 2024) 0.313 0.084 0.015          

520 (Apr 2024) 0.350 0.125 0.030 0.005         

521 (May 2024)  0.366 0.163 0.049 0.011 0.002        

522 (Jun 2024) 0.367 0.197 0.070 0.019 0.004 0.001       

523 (Jul 2024) 0.358 0.224 0.093 0.029 0.007 0.002 0.000      

524 (Aug 2024) 0.342 0.244 0.116 0.042 0.012 0.003 0.001 0.000     

525 (Sep 2024 0.322 0.259 0.139 0.056 0.018 0.005 0.001 0.000 0.000    

526 (Oct 2024) 0.299 0.267 0.159 0.071 0.025 0.008 0.002 0.000 0.000 0.000   

527 (Nov 2024) 0.276 0.271 0.177 0.087 0.034 0.011 0.003 0.001 0.000 0.000 0.000  

528 (Dec 2024) 0.251 0.269 0.192 0.103 0.044 0.016 0.005 0.001 0.000 0.000 0.000 0.000 
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Table 10. A probability value of drought frequency in Malaka Regency for the future 12 months.  

Months n 

1 2 3 4 5 6 7 8 9 10 11 12 

517 (Jan 2024) 0.158 

           

518 (Feb 2024) 0.261 0.050 

          

519 (Mar 2024) 0.323 0.092 0.018 

         

520 (Apr 2024) 0.356 0.136 0.035 0.007 

        

521 (May 2024)  0.367 0.175 0.056 0.013 0.003 

       

522 (Jun 2024) 0.364 0.209 0.080 0.023 0.005 0.001 

      

523 (Jul 2024) 0.351 0.235 0.104 0.035 0.009 0.002 0.000 

     

524 (Aug 2024) 0.332 0.253 0.129 0.049 0.015 0.004 0.001 0.000 

    

525 (Sep 2024 0.308 0.265 0.152 0.065 0.022 0.006 0.002 0.000 0.000 

   

526 (Oct 2024) 0.283 0.270 0.172 0.082 0.031 0.010 0.003 0.001 0.000 0.000 

  

527 (Nov 2024) 0.257 0.270 0.189 0.099 0.042 0.015 0.004 0.001 0.000 0.000 0.000 

 

528 (Dec 2024) 0.232 0.266 0.203 0.116 0.053 0.020 0.007 0.002 0.000 0.000 0.000 0.000 

Table 11. A probability value of drought frequency in Belu Regency for the future 12 months. 

Months n 

1 2 3 4 5 6 7 8 9 10 11 12 

517 (Jan 2024) 0.156 

           

518 (Feb 2024) 0.258 0.049 

          

519 (Mar 2024) 0.321 0.090 0.017 

         

520 (Apr 2024) 0.354 0.133 0.033 0.006 

        

521 (May 2024)  0.367 0.173 0.054 0.013 0.002 

       

522 (Jun 2024) 0.365 0.206 0.077 0.022 0.005 0.001 

      

523 (Jul 2024) 0.353 0.232 0.102 0.034 0.009 0.002 0.000 

     

524 (Aug 2024) 0.334 0.251 0.126 0.047 0.014 0.004 0.001 0.000 

    

525 (Sep 2024 0.311 0.264 0.149 0.063 0.021 0.006 0.001 0.000 

    

526 (Oct 2024) 0.287 0.270 0.169 0.080 0.030 0.009 0.003 0.001 0.000 

   

527 (Nov 2024) 0.261 0.270 0.186 0.096 0.040 0.014 0.004 0.001 0.000 0.000 

  

528 (Dec 2024) 0.236 0.267 0.201 0.113 0.051 0.019 0.006 0.002 0.000 0.000 0.000 0.000 

4. Conclusions 

The analysis of short-term meteorological drought events using SPEI for a 1-month period on 

Timor Island shows that extremely dry events are less frequent than very dry and dry events. The 

results of the power law process parameter estimation show a 𝛽 > 1 value in all regions of Timor 

Island, specifically 1.063 for Kupang City, 1.174 for Kupang Regency, 1.095 for South Central Timor 

Regency, 1.049 for North Central Timor Regency, 1.034 for Malaka Regency, and 1.112 for Belu 

Regency. This indicates an increase in drought events in the future. In the next 12 months, the estimated 

duration of short-term meteorological droughts in all regions is 2 months, with the following 

probability values: 0.264 for Kupang City, 0.25 for Kupang, 0.265 for South Central Timor, 0.269 for 

North Central Timor, 0.265 for Malaka, and 0.266 for Belu. 
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