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Abstract: This study is focused on the use of random forest (RF) to forecast the streamflow in the 
Kesinga River basin. A total of 169 data points were gathered monthly for the years 1991–2004 to 
create a model for streamflow prediction. The dataset was allotted into training and testing stages using 
various ratios, such as 50/50, 60/40, 70/30, and 80/20. The produced models were evaluated using 
three statistical indices: the root mean square error (RMSE), the mean absolute error (MAE), and the 
correlation coefficient (CC). The analysis of the models' performances revealed that the training and 
testing ratios had a substantial impact on the RF model's predictive abilities; models performed best 
when the ratio was 60/40. The findings demonstrated the right dataset ratios for precise streamflow 
prediction, which will be beneficial for hydraulic engineers during the water-related design and 
engineering stages of water projects. 
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1. Introduction  

Water is an essential natural resource that sustains life, ecosystems, and society ([1]). Due to the 
overexploitation of this natural resource, many parts of the world have been experiencing deteriorating 
situations such as rivers having little to no discharge [2–5], ecosystems being degraded [6], reduced 
water table levels [7], and decreasing lakes and wetland areas [8]. The hydrological time series is 
becoming increasingly essential for the effective distribution, management, and planning of water 
resources [9]. Furthermore, human activity and socioeconomic growth, in addition to climate change, 
have an impact on hydrological processes such as temperature, evaporation, and precipitation [10–13]. 
As a result, nonlinear and time-varying hydrological time series are a constant [14]. The intricate 
nonlinearity, high irregularity, and multi-scale irregularity of hydrological time series make forecasting 
an intimidating task. Hydrological time series prediction has been the subject of numerous studies [15], 
but a thorough knowledge of hydrological processes is still lacking. Particularly for complex time 
series, the existing forecasting methods still have low forecast accuracy. Highly precise streamflow 
predictions are necessary for hydrological application operations and planning on a range of time scales, 
including daily, weekly, and monthly. While long-term forecasting, such as weekly and monthly flow, 
is essential for planning hydropower generation, reservoir release scheduling, irrigation management, 
river sediment transport, and several others, real-time streamflow forecasting, or hourly and daily flow, 
is crucial for flood control and mitigation [16–18]. 

In the past few decades, data-driven machine-learning approaches have included support vector 
machines (SVMs), neural networks (NNs) [19–21], fuzzy logic [22–24], and hybrid ML techniques, 
which include a blend of deep learning algorithms, the nonlinear autoregressive network with 
exogenous inputs, multilayer perceptron, and random forest [25]. Additionally, grey wolf optimization 
(GWO)-integrated AI models [26] have drawn a lot of attention for streamflow forecasting applications. 
For instance, a study investigated and compared the effect of different dataset ratios in the prediction 
of groundwater using NN methods, observing that dataset size and model choice had significant effects 
on output [27]. Researchers working with ML algorithms have used training/testing ratios of 70/30, 
80/20, and 90/10 for producing datasets [28–30]. ML-based models have been established and applied 
effectively and efficiently to solve a lot of real-world challenges [31–35]. The primary benefit of ML 
is its ability to subjectively analyze an infinite quantity of data and produce accurate results and 
evaluations. However, the quality of the data as well as how it is utilized determines the outcome [36]. 
Thus, in order to choose an appropriate data splitting for improved ML-based modeling, it is necessary 
to evaluate the impact of data splitting on the execution of soft computing models. This study 
investigates how data splitting affects the performance of random forest (RF) in predicting streamflow. 
The primary goal of the research was to develop hydrological models using monthly hydrological data 
and apply different training/testing ratios, namely 50/50, 60/40, 70/30, and 80/20. The objective was 
to analyze the impact of these ratios on the RF approach for forecasting river flow in the Kesinga sub-
catchment of the Mahanadi basin. 

2. Materials and methods 

2.1. Modeling approach 

2.1.1. Random forest (RF) 
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RF is the ML model based on the ensemble method of learning [37–39]. RF is a highly preferred 
ensemble learning method in ML research and practice, having been introduced by [37], and 
successfully performing classification and regression tasks. The combination of decision trees is the 
basic idea underlying RF; it creates variety among the trees and minimizes overfitting by training each 
tree on an arbitrary subset of input characteristics and a different subset of the training data. To build 
an RF, a decision tree is created using a randomly selected subdivision of the training data by 
bootstrapping [40]. For each split, a selection of the input features is randomly considered, coined as 
the "random subspace" approach, to ensure each tree is different from the others. Adjusting the number 
of decision trees to be generated (Ntree) is a significant parameter to consider. Increasing the number 
of trees often improves the performance of RF. Since overfitting has little impact on RF, Ntree can be 
scaled relatively high. A subset of data can be used, known as out-of-bag (OOB) samples, for 
estimating the performance of the RF without needing a separate validation set. When performing RF 
regression, the individual trees are grown using the CART algorithm without pruning. Each tree uses 
different random subsets of features for splitting at every node and is grown to its maximum depth. 
The estimates of individual trees are combined to generate the final regression output, typically taking 
an average. A significant aspect of RF is the ability to determine variable importance. Variable 
importance is computed by evaluating how much a variable contributes to the improvement of 
prediction performance when it is randomly permuted. This approach can be used to evaluate the 
relevance of multiple features in the dataset and to select the most crucial variables for a particular 
task [41]. In conclusion, with their robustness, effectiveness, and interpretability, RFs are powerful and 
versatile ensemble learning models that have gained popularity. Figure 1 illustrates the working of RFs. 

 

Figure 1. Schematic representation of random forest. 

2.2. Methodology and dataset 

To develop a model for the prediction of streamflow, a total of 169 data points were collected on 
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a monthly basis for the years 1991–2004, from the Central Water Commission (CWC), Mahanadi and 
Eastern Rivers division, Bhubaneswar, Odisha. The total sample was then randomly chosen and 
segregated into two subsets, i.e., training and testing, with a 50/50, 60/40, 70/30, and 80/20 ratio. The 
models were generated using WEKA 3.9.5 software. The input characteristics were assessed to predict 
the aeration efficiency outcome using statistical measures like correlation coefficient (CC), mean 
absolute error (MAE), and root mean square error (RMSE). Figure 2 shows a schematic representation 
of the study site whereas, Figure 3 shows the flowchart for the current study. 

 

(a) 
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Figure 2. Study site: (a) Indian map showing the states; (b) Mahanadi Basin; (c) Kesinga 
sub-catchment. 

(b) 
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In developing a model, choosing the input variable is the most important step. Samples of 12 
distinct input data combinations were grouped, as shown in Table 2, in order to accomplish this. The 
number of variables that were chosen by looking at the monthly river flow is shown in the input M-1 
to M-12. Models for streamflow prediction were developed using the same combinations of inputs. 
The details of the models are shown in Table 1.  

 

Figure 3. Flowchart of the methodology adopted in the current study. 

2.3. Performance evaluation parameters 

The precision of the models utilized for E20 at different jet geometries in an open channel was 
assessed using three statistical measurements: correlation coefficient (CC), mean absolute error 
(MAE), and root mean square error (RMSE). The calculations for CC, MAE, and RMSE are outlined 
in Eqs (1–3): 

CC =  
∑ (oi − o�)(pi − p�)N
i=1 

�∑ (oi − o�)2 ∑ (pi − p�)2N
i=1

N
i=1

 (1)  

MAE =  
1
N
�|pi − oi|
N

i=1

 (2)  

RMSE = �1
N
∑ (pi − oi)2N
i=1  (3)  

Where o = observed values 
 𝑜𝑜 = average of observed values 
 p = predicted values 
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 𝑝𝑝= average of predicted values 

 N = number of observations 

Table 1. Model structure with input parameter combinations. 

Model Input combinations 
M-1 Zx = f (ax-1) 
M-2 Zx = f (ax-1, ax-2) 
M-3 Zx = f (ax-1, ax-2, ax-3) 
M-4 Zx = f (ax-1, ax-2, ax-3, ax-4) 
M-5 Zx = f (ax-1, ax-2, ax-3, ax-4, ax-5) 
M-6 Zx = f (ax-1, ax-2, ax-3, ax-4, ax-5, ax-6) 
M-7 Zx = f (ax-1, ax-2, ax-3, ax-4, ax-5, ax-6, ax-7) 
M-8 Zx = f (ax-1, ax-2, ax-3, ax-4, ax-5, ax-6, ax-7, ax-8) 
M-9 Zx = f (ax-1, ax-2, ax-3, ax-4, ax-5, ax-6, ax-7, ax-8, ax-9) 
M-10 Zx = f (ax-1, ax-2, ax-3, ax-4, ax-5, ax-6, ax-7, ax-8, ax-9, ax-10) 
M-11 Zx = f (ax-1, ax-2, ax-3, ax-4, ax-5, ax-6, ax-7, ax-8, ax-9, ax-10, ax-11) 
M-12 Zx = f (ax-1, ax-2, ax-3, ax-4, ax-5, ax-6, ax-7, ax-8, ax-9, ax-10, ax-11, ax-12) 

3. Results 

3.1. 50/50 ratio 

There were two user-defined parameters in RF regression-based models. First, there are k trees to 
be produced, and then there are m variables to be used in order to create a tree. It was discovered that 
1 was the ideal value of k to obtain the optimal model, the M-11. Table 2 indicates that the M-11 RF 
model outperformed the other models. The CC, MAE, and RMSE performance values for the 50/50 
separation method are displayed in the table. The table shows that M-11 has the lowest errors, the 
maximum CC value of 0.737, MAE = 94.468, and RMSE = 137.116. Using the M-11 RF model, Figure 
4a, b shows the variation between the experimental and anticipated values of streamflow for the 
Kesinga basin.  
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Table 2. Performance evaluation parameters using different data ratios. 

Separation  Training Testing 

Models CC MAE RMSE CC MAE RMSE 

50/50 M-1 0.956 44.433 72.055 0.731 88.207 135.771 

M-2 0.974 35.728 56.577 0.679 95.683 147.251 

M-3 0.978 31.683 52.374 0.659 99.981 152.112 

M-4 0.976 34.474 55.117 0.639 108.467 158.318 

M-5 0.973 36.592 57.664 0.663 109.138 153.918 

M-6 0.976 36.581 56.497 0.658 110.903 154.807 

M-7 0.977 35.824 56.448 0.660 112.143 155.481 

M-8 0.977 35.319 56.607 0.661 113.066 155.373 

M-9 0.973 36.727 58.628 0.684 109.428 151.055 

M-10 0.976 35.643 56.626 0.725 100.850 141.984 

M-11 0.980 32.744 51.772 0.737 94.468 137.116 

M-12 0.984 28.970 46.125 0.708 90.424 141.166 

60/40 M-1 0.963 34.482 60.529 0.653 87.942 161.539 

M-2 0.972 31.465 55.33 0.736 77.978 141.503 

M-3 0.975 32.451 53.434 0.798 73.571 125.408 

M-4 0.974 33.030 53.853 0.809 70.598 122.587 

M-5 0.976 33.808 53.628 0.799 74.699 125.404 

M-6 0.976 34.342 55.438 0.804 76.240 124.710 

M-7 0.976 35.895 56.491 0.805 76.619 124.995 

M-8 0.976 34.553 55.873 0.789 79.412 128.837 

M-9 0.977 34.535 56.214 0.791 79.737 128.685 

M-10 0.977 35.143 57.584 0.767 82.673 134.468 

M-11 0.978 32.779 55.071 0.822 72.491 119.448 

M-12 0.976 30.904 53.845 0.844 69.367 111.976 

70/30 M-1 0.958 38.752 66.829 0.634 94.160 168.215 

M-2 0.975 30.038 53.587 0.745 76.024 144.438 

M-3 0.978 29.235 51.378 0.748 76.440 138.842 

M-4 0.977 30.009 51.736 0.744 76.912 139.626 

M-5 0.979 29.430 50.074 0.738 77.396 141.009 

M-6 0.981 29.861 49.188 0.739 79.247 140.047 

M-7 0.982 32.660 51.282 0.732 83.627 141.799 

M-8 0.9812 31.882 51.640 0.757 76.758 136.167 

M-9 0.982 30.907 50.207 0.743 79.559 139.651 

M-10 0.983 29.610 49.000 0.711 83.688 147.698 

M-11 0.984 27.606 45.975 0.688 92.821 151.125 

M-12 0.983 26.557 45.066 0.714 84.671 145.412 

80-20 M-1 0.968 31.072 56.058 0.467 106.620 196.171 

M-2 0.976 27.919 50.385 0.606 88.491 172.731 

M-3 0.978 27.755 50.202 0.681 87.882 157.734 
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M-4 0.980 27.790 49.072 0.688 85.108 154.887 

M-5 0.979 28.926 50.378 0.666 85.769 159.080 

M-6 0.982 28.887 49.219 0.675 85.142 156.360 

M-7 0.980 27.790 49.072 0.688 85.108 154.887 

M-8 0.981 30.202 49.489 0.617 90.404 166.448 

M-9 0.981 29.153 48.553 0.635 92.515 162.900 

M-10 0.981 27.142 48.077 0.623 94.394 165.182 

M-11 0.981 26.395 48.111 0.679 91.854 154.940 

M-12 0.979 26.924 48.047 0.708 95.575 150.163 

 
Figure 4. M-11 RF model prediction for 50/50 data separation during (a) training and (b) 
testing stage. 

3.2. 60/40 ratio  

The values in Table 2 represent the performance evaluation of M-1 to M-12 RF model based on 
the 60/40 ratio data separation method, showing the CC, MAE, and RMSE values. The M-12 RF model 
outperformed all other models with a CC value of 0.976 and 0.844, a MAE value of 30.904 and 69.367, 
and a RMSE value of 53.845 and 111.976 during training and testing stages, respectively. Figure 5 
shows the graphical representation of actual and predicted values of M-12 RF model during both 
training and testing stages. 
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Figure 5. M-12 RF model prediction for 60/40 data separation during (a) training and (b) 
testing. 

3.3. 70/30 ratio 

The evaluation index values given in Table 2 show that the M-8 RF model is superior when data 
is segregated in a 70/30 ratio. The CC value achieved by the M-8 RF model was 0.9812 in the training 
stage and 0.757 during the testing stage. The MAE and RMSE values during training and testing stages 
are 31.882, 51.640, 76.75, and 136.167, respectively. The graphical representation of actual and 
predicted streamflow with 70/30 data is shown in Figure 6. The input parameter to obtain the best 
model with 70/30 ratio is shown in Table 3. 
 

 

Figure 6. M-12 RF model prediction for 70/30 data separation during (a) training and (b) 
testing stage. 
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testing stage was obtained by the M-12 RF model. During the training stage, the CC value obtained 
was 0.979; the MAE and RMSE values were 26.924 and 48.047, respectively. The CC, MAE, and 
RMSE values during the testing stage were 0.708, 95.575, and 150.163, respectively. The prediction 
of streamflow with 80/20 data separation is shown in Figure 7a, b.  
 

 
Figure 7. M-12 RF model prediction for 80/20 data separation during (a) training and (b) 
testing stage. 

Table 3. Major factors using RF model. 

Separation method Best model Number of seeds (k) to get the optimum model 
50-50 M-11 k= 1 
60-40 M-12 k= 3 
70-30 M-8 k= 3 
80-20 M-12 k= 3 

3.5. Comparative results of data separation methods 

In the aforementioned sections, the best RF model was observed for each data segregation method. 
The comparison among each data segregation method is also needed to provide insightful knowledge 
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among data separation methods, the streamflow series hydrographs are shown in Figure 8. The actual 
and predicted streamflow with each data separation method is shown with colored dashed lines, which 
indicate consistent trends and static positions of each series. It is observed that the trend followed by 
the 60/40 data series is consistent with the actual data series. Figure 9 shows the box plot, which also 
confirms that the 60/40 data segregation method is the best. The lower and higher quartiles of the box 
are used to represent the 25th and 75th percentile values, while the box's median is used to represent 
the 50th percentile values. A vertical line matching the boxes indicates variation outside of the top and 
bottom quartiles. In Figure 9, the box plot for the prediction stage indicates that the width of the upper 
and bottom end of the boxes in the 60/40 data separation method is nearly identical to that of the actual 
values. Figure 10 also indicates that the 60/40 data separation method gives the highest CC during the 
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testing stage, among others.  

 
Figure 8. Prediction of data separation using a hydrograph for RF. 

 

Figure 9. Box plot for actual and predicted values using a data separation method for the 
testing stage. 
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Figure 10. Comparison among data separation me thods based on CC values during the 
testing stage. 

4. Discussion 

Before soft computing models, mathematical models were employed to predict streamflow. The 
results produced by mathematical models were quite satisfactory. The main disadvantage of using 
conventional methods for time series prediction is that it requires a lot of time [42]. Thus, research has 
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5. Conclusions 

The present study aimed to predict the streamflow of the Kesinga basin by using dataset splitting 
(training/testing), namely at 50/50, 60/40, 70/30, and 80/20 ratios. The RF model was used to predict 
the streamflow. Validation and comparison results showed that the 60/40 split provided the highest 
accuracy. The highest CC (0.844) was obtained by the M-12 RF model during the testing stage with a 
60/40 dataset split. The MAE and RMSE values during the testing stage acquired by the same model 
were 69.367 and 111.976, respectively. The 60/40 ratio was followed by the 70/30 ratio, with CC, 
MAE, and RMSE values of 0.7571, 76.7581, and 136.167, respectively, during the testing stage.  
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