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Abstract: Lockdowns were implemented in nearly all countries in the world in order to reduce the 
spread of COVID-19. The majority of the production activities like industries, transportation, and 
construction were restricted completely. This unprecedented stagnation of resident’s consumption and 
industrial production has efficiently reduced air pollution emissions, providing typical and natural test 
sites to estimate the effects of human activity controlling on air pollution control and reduction. Air 
pollutants impose higher risks on the health of human beings and also damage the ecosystem. Previous 
research has used machine learning (ML) and statistical modeling to categorize and predict air 
pollution. This study developed a binary spring search optimization with hybrid deep learning (BSSO-
HDL) for air pollution prediction and an air quality index (AQI) classification process during the 
pandemic. At the initial stage, the BSSO-HDL model pre-processes the actual air quality data and 
makes it compatible for further processing. In the presented BSSO-HDL model, an HDL-based air 
quality prediction and AQI classification model was applied in which the HDL was derived by the use 
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of a convolutional neural network with an extreme learning machine (CNN-ELM) algorithm. To 
optimally modify the hyperparameter values of the BSSO-HDL model, the BSSO algorithm-based 
hyperparameter tuning procedure gets executed. The experimental outcome demonstrates the 
promising prediction classification performance of the BSSO-HDL model. This model, developed on 
the Python platform, was evaluated using the coefficient of determination R2, the mean absolute error 
(MAE), and the root mean squared error (RMSE) error measures. With an R2 of 0.922, RMSE of 
15.422, and MAE of 10.029, the suggested BSSO-HDL technique outperforms established models 
such as XGBoost, support vector machines (SVM), random forest (RF), and the ensemble model (EM). 
This demonstrates its ability in providing precise and reliable AQI predictions. 

Keywords: air pollution monitoring; air quality index; deep learning; parameter optimization 
 

1. Introduction  

Air pollution is a major concern on a global scale. According to estimates from the World Health 
Organization (WHO), air pollution has caused illnesses in around 7 million individuals. Lung cancer, 
bronchitis, asthma, heart disease, skin infections, eye disorders, throat infections, and other ailments 
are among the conditions that are made more likely by air pollution. The risk of dying young may 
increase with prolonged exposure to air pollution. Children may face developmental challenges include 
impaired cognitive development and lung function. Early deliveries, low birth weights, and other 
difficulties are among the complications that expectant mothers may face. Apart from illnesses, a major 
danger to plants is air pollution. The high volume of emissions from vehicles and businesses 
contributes significantly to greenhouse effects. Air pollution will have a significant economic impact 
by raising healthcare costs for both individuals and the government. Productivity will suffer as a result 
of health problems caused by air pollution, resulting in economic costs for organizations and the 
government.  

According to a statistic, India's air pollution ranking will be eighth out of 131 countries worldwide 
in 2022. Chad, a nation in central Africa, has an AQI of 169, which is the highest amount of pollution. 
With an AQI of 164, Iraq is ranked second, and Pakistan is ranked third with an AQI of 159. With an 
AQI of 156, Bangladesh is ranked fifth, Burkina Faso is in sixth place, and Bahrain is in fourth place 
with an AQI of 157. With an AQI of 151, Kuwait comes in at number eight. The average index of air 
quality in India is 144. Twenty-one major Indian cities are expected to have the highest population in 
2019 according to another report. According to the statistical data, air pollution in India must be tackled 
adequately in order to protect the environment and human lives. Originating in Wuhan, China, Covid-
19 was a highly contagious disease that quickly swept around the world. On January 20, 2021, 
coronavirus infection caused more than 2 million deaths across the globe, having a death rate of 3.4% 
worldwide [1]. In response to the coronavirus infection, a nationwide lockdown of cities was suggested 
by the government of China after January 2020, i.e., its 1.3 billion people were staying inside their 
houses. Nearly all production activities, namely industries, transportation, and construction, were 
restricted [2]. This unexpected stagnation of trade and consumption has minimized air pollution 
emission, offering natural and typical test sites to predict the effects of human action controlling on air 
pollution reduction and control [3]. 

Observing the air pollution stages indicates the presence of air quality (AQ) that is measured by 
using sensor technologies. Measuring the amounts of carbon dioxide (CO), nitrogen dioxide (NO2), 
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sulfur dioxide (SO2), and ozone (O3) in the atmosphere produces the air quality index (AQI) [4]. 
Particulate matter is the main contaminant used to calculate the AQI (PM10 and PM2.5). Air quality 
levels are categorized into bad, good, moderate, severe, extremely poor, and satisfactory using the AQI, 
which has a range of 0 to 500. The environment and public health are affected differently by each AQI 
level [5]. Every polluting factor has its effects and source; therefore, one can get an idea about the air-
polluting sources in a region based on the maximum-level polluting particles, for instance, a higher 
level of NO2 indicates the burning of fossil fuel in that area, as well as denoting high traffic in that 
place, and so on [6]. The pollutant standard index (PSI), also called the air pollution index (API) or air 
quality index (AQI), is an illustration that shows the concentration of different pollutants within a given 
range. A simple technique for evaluating the effect of the lockdowns on AQ was making comparison 
between the average concentration of pollutants during and before lockdown. For determining the 
precise value of the AQI and to identify which of the air-polluting factors were accountable for this 
tragedy, several sensors from various groups presently available are utilized, such as electrochemical 
sensors related to a chemical reaction between the electrode in gases in the air and liquid inside a sensor, 
a photoionization detector, and even optical sensors or optical particle counters [7]. 

Many studies utilized ML and artificial neural network (ANN) techniques for predicting the AQ. 
But owing to the difficulty of the data attributable to seasonality and trend, many methods lack 
effective forecasting and classification of air pollution [8]. Provided the complicated data handling 
capacity and learning ability of ML, the usage of ML methods has quickly amplified. But critical 
problems like hyperparameter tuning, data pre-processing, data splitting, and class imbalance issues 
were poorly addressed for optimizing the model’s performance [9]. Specifically, many research works 
displayed low performance for the class with less observation and higher accurateness for the class 
with more observation; evidently, illusory accuracy was attained due to all of these problems. ML 
methods could offer output to nearly any given input related to training, but data pre-processing and 
proper hyperparameter tuning could foster the method with regard to stability, accuracy, and 
sensitivity [10]. There occurs a gap in the collective findings of the prevailing ML-related air pollution 
research because of improper optimization and data management. In recent times, DL methods have 
revealed a superior performance than ML on various predictive problems. 

Machine learning models are being employed in statistical linear approaches to reduce their 
computational complexity. Support vector and random forest regression are used in nonlinear regression 
forecasting. However, the regression model's performance lags because of the amount of data. Therefore, 
by choosing the best features from the dataset for the prediction process, the complexity can be decreased. 
Back propagation neural networks are used in some techniques to analyze predictions. Nevertheless, 
those prediction models have a local minima and need long-term learning. In comparison to other 
approaches, the convergence pace is relatively slow. Effective hyperparameter optimization is ensured 
by the BSSO component, resulting in optimal model performance and eliminating the risks associated 
with local minima. Based on empirical data, BSSO-HDL performs better than earlier models in important 
performance metrics, offering more accurate and reliable predictions that are necessary for real-time air 
quality monitoring and decision-making. 

This study presents a binary spring search optimization with hybrid DL (BSSO-HDL) for air 
pollution prediction and the AQI classification process during a pandemic. To transform the input data 
into a format that is useful, the BSSO-HDL model initially requires data pre-processing. The HDL 
model, which combines the development of a convolutional neural network with an extreme learning 
machine (CNN-ELM) technique, is used for air quality prediction and AQI classification. The BSSO 
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algorithm-based hyperparameter tuning procedure is approved in order to modify the BSSO-HDL 
model's hyperparameter standards as optimally as possible. To ensure the presentation improvements 
of the BSSO-HDL procedure, a detailed experimentation analysis is undertaken. 

2. Existing air pollution monitoring schemes 

Stephan et al. [11] used machine learning approaches to investigate the impact of COVID-19 on 
India's weather and renewable energy (RE) transitions. In this present COVID-19 crisis, the RE part 
helps in their low price and the Indian government has to perform procedures for running generators 
dependent upon renewable energy sources (RES). Unlike a fossil fuel-based power plant, RES could 
not be exposed to a similar supply chain disruption during this present epidemic condition.  

For the goal of AQI prediction, Li et al. [12] provided multiscale entropy and a thorough ensemble 
empirical model decomposition. Using empirical model decomposition, the AQI data has to be broken 
down. The components of the intrinsic model function are also produced by employing the intrinsic 
mode function of the bald eagle search method. Finally, in order to achieve higher prediction 
performance, rat swarm optimized kernel ELM is employed. Even if this model performs better, the 
presented method has a rather high computational complexity. 

Yang et al. [13] suggested an AQI prediction model that used a regression model to assess 
Beijing's and Taiyuan City's quality. For data decomposition, the variational decomposition model was 
originally included in the approach. Another step of decomposition was carried out for the remaining 
decomposed components. Ultimately, the components were recreated with greater correlation using 
enhanced support vector regression. Superior MSE and RMSE values were obtained with the presented 
technique, leading to superior prediction performances. 

Sassi and Fourati [14] proposed an IoT model for AQ monitoring and forecast employing 
augmented reality (AR) for data visualization and DL for data analysis. Utilizing recurrent neural 
network (RNN) and long short-term memory (LSTM) units as a framework to use data in the AQ time-
series dataset was made possible by the way the framework was constructed. Moreover, the integration 
of AR visualization with projected IoT techniques facilitates natural interaction between people and 
IoT devices, enhancing the comprehension of an AQ dataset through effective control of a more 
thorough analysis of data and quick decision-making processes. 

Shahne et al. [15] performed a study in Mashhad, Iran, to evaluate the potential links between 
Covid-19 instances and deaths and AQ environments. The LSTM-based hybrid DL structure has been 
applied to the traffic index, influence count of mortality, active COVID-19 cases, meteorological 
datasets, and AQI. Tsan et al. [16] proposed using DL to investigate the relationship between confirmed 
COVID-19 cases and air pollution. The author used LSTM-DL to train on established COVID-19 
instances and AQI limits over four different lag periods: one, three, seven, and fourteen days. 

During the COVID-19 lockdown, Lovric et al. [17] used a machine learning technique to look at 
isolated improvements in the quality of the air in Graz, Austria. Simple historical measurement 
comparisons to multiple different pollutants have been effectively replaced by the machine learning 
approach. Indicators of true pollution during the shutdown were forecasted using the true versus 
predictable variance. In order to anticipate the concentration, the machine learning techniques showed 
a higher degree of generalization. So, this technique is appropriate to analyze decreases in pollution 
concentration. Tyagi et al. [18] proposed, for predicting the AQI of the Delhi area during COVID-19, 
utilizing time series modeling (the ML technique). Time series modeling contains methods for 
appropriating a gathered dataset and making use of it to forecast the future values. The investigation 
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was dependent upon main pollutants such as particulate matter, ozone, SO, CO, NH3, and NO. 
SVM, seasonal autoregressive integrated moving average (SARIMA), and LSTM models were 

among the several machine learning models that Maltare et al. [19] compared and examined for 
Ahmedabad AQI prediction. The proposed methodology eliminated unused information and blank 
cells from the dataset in the preparation phase. Moreover, different classifiers were fed the 
preprocessed data, and their effectiveness was assessed. It is evident from experimental data that the 
support vector machine model outperforms other models. 

In order to improve prediction accuracy, Jing et al. [20] introduced a dynamic graph neural 
network-based predictive model for the AQI that includes configurable edge attributes. The model 
parameters and edge attributes were used in the stated approach to generate a bidirected dynamic graph. 
As a result, during the prediction procedure, adaptive edge information was collected, improving 
prediction performance above traditional methods.  

Conventional methods frequently struggle to capture the intricate temporal and spatial patterns 
originating in the data on air quality. This hybrid method provides a comprehensive description that 
leverages the capabilities of many DL models, such as CNNs for spatial analysis and LSTMs for 
temporal dependencies. The accumulation of an optimization technique progresses this framework by 
fine-tuning parameters to reach optimal performance, growing accuracy and reliability. This 
sophisticated predictive capability is important for providing rapid and precise air quality predictions, 
which are important for public health advisories, regulatory compliance, and proactive environmental 
management. Consequently, the hybrid tactic not only fills gaps left by traditional approaches, but it 
also creates a new benchmark for predictive analytics in air pollution predicting. 

3. The proposed BSSO-HDL model 

This work introduces a novel BSSO-HDL approach that is perfect for AQI classification and air 
pollution prediction during the widespread COVID-19 pandemic. Primarily, the BSSO-HDL model 
performs data pre-processing to transform raw data into a useful format. Additionally, it uses the CNN-
ELM method to efficiently perform AQI prediction and classification tasks. Finally, the CNN-ELM 
model's hyperparameters are optimally tuned using the BSSO algorithm. Figure 1 displays the whole 
BSSO-HDL method procedure. 

3.1. Data pre-processing 

The raw information underwent the data cleaning process in order to make data ready for 
modeling, increase the data understanding, and handle missing values. The initial step was to 
understand the missing values in the datasets. In contrast, CO, NO, NO2, SO2, O3, NOx, PM 2.5, and 
AQI are the more prominent values of pollutants. Pandas “dropna” function is used for removing 
missing values, where any NA value is existing in columns or rows. Based on the substitute field in 
the data for avoiding redundancy, the AQI_Bucket, field’s city, date, and Year_Month have been 
removed. 
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Figure 1. Overall process of the BSSO-HDL approach. 

3.2. Prediction and AQI classification 

In the BSSO-HDL model, the HDL model is applied for both prediction and classification 
processes and is derived by the integration of the CNN-ELM model. The HDL network contains two 
stages, namely classification and feature extraction. The feature extraction stage encompasses the max 
pooling, convolution, and   normalization layers [21]. Also, it gives a detailed description of the 
correlation parameters, namely, the stride of every sliding window, the number of every filter, the size 
of every feature map, and the kernel size of every filter. For instance, the initial convolution layer 
comprises 96 filters, its kernel size is 7 while the extent of the feature map is 56 × 56, and the sliding 
window has a stride of 4. A single convolutional layer is performed after the two phases, and fully 
connected layers convert the feature map into 1D vectors that are advantageous to the classification. 
Lastly, we integrate the ELM architecture with the proposed CNN models, and later utilize a hybrid 
mechanism for classifying the tasks of age and gender. Figure 2 illustrates the infrastructure of the 
CNN-ELM classifier. Then, the design of the hybrid architecture is discussed in detail. 
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Figure 2. Framework of the CNN-ELM model. 

3.2.1. Convolution layer 

In this work, convolution is implemented between the preceding layer and a sequence of filters, 

extracting features from the input feature map. Generally, 𝜂𝜂𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 represents the value of the unit at 

location (𝑚𝑚,𝑛𝑛) in the𝑗𝑗𝑡𝑡ℎfeature map in the 𝑖𝑖-𝑡𝑡ℎ layer, and it is formulated as follows: 
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In Eq (1), 𝑏𝑏𝑖𝑖𝑖𝑖 signifies the bias of the feature maps, whereas 𝛿𝛿 is the index over the sequence 

of feature maps in the (𝑖𝑖 − 1)𝑡𝑡ℎ  layers that are interconnected with the convolution layer. 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑝𝑝 

means the value at location (𝑝𝑝, 𝑞𝑞) of kernels that are interconnected with the 𝑘𝑘-𝑡𝑡ℎ feature maps, and 
the width and height of the filter kernels are 𝑃𝑃𝑖𝑖 and 𝑄𝑄𝑖𝑖, respectively.  

The convolution layer provides a non-linear mapping from the lower-level depiction of the image 
to the higher-level semantics, and it is given by the following:   

𝜂𝜂𝑖𝑖 = 𝜎𝜎 ��𝑤𝑤𝑖𝑖𝑖𝑖

 

 

⊗𝜂𝜂(𝑖𝑖−1)�.   (2)  

In Eq (2), ⊗  denotes the convolution function while 𝑤𝑤𝑖𝑖𝑖𝑖 , which is arbitrarily initialized and 

trained with BPNN, signifies the value of the 𝑖𝑖-𝑡𝑡ℎ layer in the 𝑗𝑗-𝑡𝑡ℎ feature maps. 𝜂𝜂(𝑖𝑖−1) indicates 
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the output of the (𝑖𝑖 − 1) layer and 𝜂𝜂𝑖𝑖 is described by the output of the 𝑗𝑗-𝑡𝑡ℎ feature maps in the 
convolution layer. 

3.2.2. Contrast normalization layer 

The proposed study aims to improve the local competition among its neighbors and one neuron 
as well as force the features of distinct feature maps in a similar spatial position to be calculated, which 
is inspired by neuroscience computation [22]. To accomplish the objective, two normalization 

processes, normalization, are implemented. Now, 𝜂𝜂𝑚𝑚𝑚𝑚/𝑐𝑐 represents the values of the unit at location 

(𝑚𝑚,𝑛𝑛) in the 𝑘𝑘-𝑡𝑡ℎ feature maps.  

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 − �  
𝑃𝑃 𝑖𝑖−1/2
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In Eq (3), 𝜀𝜀𝑝𝑝𝑝𝑝 represents a normalized Gaussian filter with 7 × 7 size at the initial phase and 
5 × 5 size at the next phase. 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 signifies the input of the divisive normalization operation and the 
output of the subtractive normalization operation. The operator of divisive normalization is shown 
below: 

𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚
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, (4)  

Where 
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And 

𝑀𝑀 = (� �𝑀𝑀
𝑠𝑠2

𝑚𝑚=1

𝑠𝑠1

𝑚𝑚=1

(𝑚𝑚,𝑛𝑛))/(𝑠𝑠1 × 𝑠𝑠2). (6)  

In the abovementioned normalized process, the Gaussian filter 𝜀𝜀𝑝𝑝𝑝𝑝 is evaluated using the zero‐
padded edges that imply the output size of the normalized operation similar to input. 

3.2.3. Max pooling layer 

In general, the pooling method aims to convert the joint feature representations into suitable ones 
that keep important data while discarding inappropriate information [23]. Every feature map in the 
subsampling layer is receiving a max pooling operation that is performed on the respective feature 
maps in the convolution layer. Eq (7) indicates the value of the unit at location (𝑚𝑚,𝑛𝑛) in the 𝑗𝑗-𝑡𝑡ℎ 
feature maps in the subsampling or the 𝑖𝑖-𝑡𝑡ℎ layers after the max pooling function: 
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( )( )
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− − −=  (7)  

The  max  pooling function creates location invariance over large local regions and down-
sampling of the input feature map. 

3.2.4. ELM classification layer 

After the subsampling and convolution functions, we used ELM to categorize the 1D vector that 
is transformed from the feature map. As mentioned above, it upgrades only the output weight whereas 
hidden‐layer bias and input weight are set at random. Therefore, it arbitrarily produces the input 
parameter and evaluates the output weight in the training phase. The entire procedure without an 
iterative process enhances the neural network generalization capability. The output (comprising 
2048 × 1 dimensionality) of fully linked layer is the input of ELM whereas the number of hidden 
neurons is the parameter that is demonstrated in this work. 

Connecting the convolutional network to the ELM is another crucial method. This method uses 
the fully connected layer's output as the input for the ELM, which comes preceding the convolutional 
layer [24]. Backward and forward propagation functions are the fundamental parts of the hybrid model 
and are thoroughly analyzed in the subsequent section.  

3.3. Hyperparameter tuning 

In the BSSO-HDL model, the BSSO algorithm-based hyperparameter tuning process gets 
executed for the HDL model. The BSSO is a physics‐based optimization approach that is used for 
solving different optimization challenges [25]. The presented method has a population matrix whose 
member is distinct weights that are moved in the searching space for achieving an optimum solution. 
Each desired weight is interconnected to one another in these systems via a unique spring whose 
stiffness coefficient can be defined according to the objective function value. The major conception is 
to utilize Hooke’s law among the springs and weights for accomplishment of the equilibrium opinion. 

Hooke’s law can be determined by Eq (8). 

𝐹𝐹𝑠𝑠 = −𝑘𝑘𝑘𝑘 (8)  

The spring force is denoted by 𝐹𝐹𝑠𝑠 in Eq. (8), the spring constant is denoted by 𝑘𝑘, and the spring 
density, or stretch, is shown by𝜒𝜒.  

Here, based on Hooke’s law, which is the same as the populace‐based algorithm, the mathematical 
formula of the BSSO is modeled. The BSSO has a populace matrix where every row signifies a 
population associated as a weight. Therefore, each population member refers to a vector, whereby 
every vector component defines the parameter value of the optimization issue. In this study, every 
population member is presented as follows. 

𝑋𝑋𝑖𝑖 = �𝑘𝑘𝑖𝑖1, … , 𝑘𝑘𝑖𝑖𝑑𝑑 , … , 𝑘𝑘𝑖𝑖𝑚𝑚�𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … ,𝑁𝑁 (9)  

In Eq (9), 𝑋𝑋𝑖𝑖 indicates the 𝑖𝑖-𝑡𝑡ℎ members of the population matrix, 𝑘𝑘𝑖𝑖𝑑𝑑 denotes the status of the 
𝑑𝑑 -𝑡𝑡ℎ  dimensions of the 𝑖𝑖 -𝑡𝑡ℎ  members of the population matrices, 𝑚𝑚  represents the number of 
parameters, and 𝑁𝑁  shows the amount of population members [26]. The first location of every 
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population member is considered at random in the searching space. Next, with the force that the spring 
applies on the weight, the population member moves in the search space and it is upgraded in all of 
the iterations as follows. 

𝐾𝐾𝑖𝑖,𝑖𝑖 = 𝐾𝐾 max �𝐹𝐹𝑚𝑚𝑖𝑖 − 𝐹𝐹𝑚𝑚
𝑖𝑖�max �𝐹𝐹𝑚𝑚𝑖𝑖,𝐹𝐹𝑚𝑚

𝑖𝑖� (10)  

Here, 𝐾𝐾𝑖𝑖,𝑖𝑖 indicates the spring constant that connects 𝑖𝑖 to weight 𝑗𝑗, 𝐾𝐾 max  shows the maximal 
worth of the spring constant (the worth is 1), and 𝐹𝐹𝑚𝑚 indicates the regularized impartial purpose, where 
𝐹𝐹𝑚𝑚𝑖𝑖 denotes a normalized objective function for the 𝑖𝑖-𝑡𝑡ℎ members. It is shown below: 

𝐹𝐹𝑚𝑚′𝑖𝑖 =
𝑓𝑓𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖

 min (𝑓𝑓𝑜𝑜𝑜𝑜𝑖𝑖)
, (11)  

𝐹𝐹𝑚𝑚𝑖𝑖 =
 min (𝐹𝐹𝑚𝑚′𝑖𝑖)

𝐹𝐹𝑚𝑚′𝑖𝑖
 (12)  

Here, 𝑓𝑓𝑜𝑜𝑜𝑜𝑖𝑖 refers to the vector of objective purpose, where 𝑓𝑓𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖  indicates the objective purpose 

for the 𝑖𝑖-𝑡𝑡ℎ members. An 𝑚𝑚‐parameter problem has an 𝑚𝑚‐dimension search space. The fixed point 
for a member is a member who has the best objective function when compared to others. This makes 
two single forces to be employed to every associate on every alliance from the right and left, which is 
defined in the following: 

𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑙𝑙𝑅𝑅
𝑖𝑖,𝑑𝑑 = �𝐾𝐾𝑖𝑖,𝑖𝑖

𝑚𝑚𝑅𝑅
𝑑𝑑

𝑖𝑖=1

𝑘𝑘𝑖𝑖,𝑖𝑖𝑑𝑑     (13)  

𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑙𝑙𝐿𝐿
𝑖𝑖,𝑑𝑑 = �𝐾𝐾𝑙𝑙,𝑖𝑖

𝑚𝑚𝐿𝐿
𝑑𝑑

𝑙𝑙=1

𝑘𝑘𝑙𝑙,𝑖𝑖𝑑𝑑  (14)  

Now, 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑙𝑙𝑅𝑅
𝑖𝑖,𝑑𝑑  and 𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑙𝑙𝐿𝐿

𝑖𝑖,𝑑𝑑  represent the overall forces exerted on the 𝑑𝑑-𝑡𝑡ℎ dimensions of the 𝑖𝑖-

𝑡𝑡ℎ members of the populace from the left and right, 𝑛𝑛𝑅𝑅𝑑𝑑 shows the amount of fixed points on the right 
in the 𝑑𝑑-𝑡𝑡ℎ dimension or axis, and 𝑛𝑛𝐿𝐿𝑑𝑑 indicates the amount of fixed points on the left in the 𝑑𝑑-𝑡𝑡ℎ 
dimension or axis. It is evaluated as follows:  

𝑑𝑑𝑋𝑋𝑅𝑅
𝑖𝑖,𝑑𝑑 =

𝐹𝐹𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑙𝑙𝑅𝑅
𝑖𝑖,𝑑𝑑

𝐾𝐾𝑒𝑒𝑝𝑝𝑒𝑒𝑡𝑡𝑙𝑙𝑅𝑅
𝑖𝑖  (15)  

𝑑𝑑𝑋𝑋𝐿𝐿
𝑖𝑖,𝑑𝑑 =

𝐹𝐹𝑖𝑖𝑜𝑜𝑖𝑖𝑡𝑡𝑙𝑙𝐿𝐿
𝑖𝑖,𝑑𝑑

𝐾𝐾𝑒𝑒𝑝𝑝𝑒𝑒𝑡𝑡𝑙𝑙𝐿𝐿
𝑖𝑖    (16)  

Let 𝑑𝑑𝑋𝑋𝑅𝑅
𝑖𝑖,𝑑𝑑 and 𝑑𝑑𝑋𝑋𝐿𝐿

𝑖𝑖,𝑑𝑑be the displacement count of the right and left side for the 𝑗𝑗-𝑡𝑡ℎ members 
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in the 𝑑𝑑-𝑡𝑡ℎ dimension or axis. In such cases, the last displacement values are evaluated by combining 
Eqs (15) and (16) based on Eq (17). 

𝑑𝑑𝑋𝑋𝑖𝑖,𝑑𝑑 = 𝑑𝑑𝑋𝑋𝑅𝑅
𝑖𝑖,𝑑𝑑 + 𝑑𝑑𝑋𝑋𝐿𝐿

𝑖𝑖,𝑑𝑑    (17)  

In Eq (17), 𝑑𝑑𝑋𝑋𝑖𝑖,𝑑𝑑 indicates the last displacement for the 𝑗𝑗-𝑡𝑡ℎ members in the 𝑑𝑑-𝑡𝑡ℎ dimension 
or axis [27]. After defining the displacement count, the novel location of every member in the searching 
space is upgraded as follows. 

𝑋𝑋𝑖𝑖,𝑑𝑑 = 𝑋𝑋0
𝑖𝑖,𝑑𝑑 + 𝑓𝑓1 × 𝑑𝑑𝑋𝑋𝑖𝑖,𝑑𝑑 (18)  

In Eq (18), 𝑋𝑋0
𝑖𝑖,𝑑𝑑 indicates the preceding location of the 𝑗𝑗-𝑡𝑡ℎ members in the 𝑑𝑑-𝑡𝑡ℎ dimension 

or axis, and 𝑓𝑓1 shows an arbitrary value with a standard distribution between [0–1]. The different 
steps of executing the BSSO are formulated below: 

Begin 
Step 1: Define the problem and its search space. 
Step 2: Generate a random starting population. 
Step 3: Normalize and evaluate the objective function. 
Step 4: Upgrade the spring constant. 
Step 5: Hooke's law is used to compute the amount of displacement to the left and right. 
Step 6: Evaluate last displacement. 
Step 7: Update population. 
Step 8: Repeat Steps 3–7 until the stopping criteria are met. 
Step 9: Return the optimal solution for the goal function. 
End 

3.3.1. Binary spring search algorithm (BSSA) 

The binary version of the spring search technique is presented in this section. Real values are 
represented in SSA using binary digits (zero and one) in a binary format. Because the search space is 
discrete, there needs to be a sufficient number of binary values assigned to each variable along the axis. 
Since there are only two potential values for a binary representation, displacement is the process of 
altering a value from zero to one or from one to zero. Applications utilizing the binary form of the 
displacement concept depend on probability functions. Depending on the amount that this probability 
function changes, each member's new places in each problem dimension could either increase or 
decrease. In the BSSA, 𝑑𝑑𝑋𝑋𝑗𝑗, 𝑑𝑑 denotes the likelihood of 𝑋𝑋𝑗𝑗, 𝑑𝑑 reaching zero or one. Both the binary and 
real versions follow the same methods for computing spring forces, figuring out spring constant values, 
displacement per population member, and update steps. The main difference is in the way they are 
updated in comparison to the population. Equation (19) states that for every member, the probability 
function, which is limited between zero and one, determines the probability of a dimensional change. 

, ,( ( )) | tanh( ( )) |i d i dS dX t dX t=  (19)  
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Equation (20), therefore, adjusts each member's new dimension position according to the 
probability function values. 

, , ,

, ,

( ( )) ( 1) ( ( ))
( 1) ( )

i d i d i d

i d i d

If rand S dX t Then X t complement X t
Else X t X t

< + =

+ =
 (20)  

Given Eq (20), there is a probability associated with each individual in a population moving. The 
greater the value of 𝑑𝑑𝑋𝑋𝑗𝑗, 𝑑𝑑, the higher the likelihood of object 𝑗𝑗 moving in dimension 𝑑𝑑. 𝑓𝑓𝑟𝑟𝑛𝑛𝑑𝑑 is a 
random number having a normal distribution in the range of [0−1]. Figure 3 depicts the multiple BSSA 
steps as a flowchart. 

 

Figure 3. A diagram of the binary spring search algorithm. 

Examine the subsequent standard function to demonstrate that the suggested approach looks for 
the most effective solution: 
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2
2

1
( ) i

i
f x x

=

=∑  (21)  

3.3.2. Features of the BSSA 

The spring force law was simulated in order to develop a new optimizer inside the suggested BSSA. 
The BSSA approach defines population members as interconnected weights that navigate the problem 
space. It is made simpler for these people to share knowledge because of the spring force mechanism. 
Each member has a rough idea of its surroundings, impacted by the locations of other things. To 
improve the population member arrangement over multiple iterations, an optimization technique has 
been devised. This is accomplished by adjusting the spring stiffness coefficient in the intervals between 
algorithmic rounds. Springs with a greater stiffness coefficient attract other objects by aligning with 
those that perform better fitness functions. Any object receives a force according to its size. Superior 
circumstances call for slower, shorter steps from objects. In order to do this, bigger weights are paired 
with springs that have a higher stiffness coefficient. Because of this mechanism, weights with an 
enlarged fitness function investigate their surroundings more thoroughly. The springs' force and 
stiffness coefficients steadily diminish over time. As a result, objects tend to concentrate around ideal 
locations, necessitating faster and more precise region identification. Over time, the spring's rigidity 
decreases. 

3.3.3. Exploration and exploitation of the BSSA 

Exploitation power and exploration power are important considerations when determining which 
optimization algorithms are suitable for solving particular optimization problems. The capacity of an 
optimization algorithm to identify the most effective solution is measured by its exploitation power. 
As a matter of fact, the potential for exploitation is higher for an algorithm that might produce a 
solution that is more like the original one. The exploration index is useful for determining the speed 
that an optimization algorithm can travel a predefined search space for a particular task. This becomes 
more important in domains with several local optimums. Consequently, the population of an algorithm 
that is able to systematically search the whole search space can be directed toward the central optimal 
areas and away from neighboring suboptimal parts. These criteria emphasize how crucial it is that early 
iterations of optimization algorithms have robust exploratory capabilities in order to examine a variety 
of regions in the search space. To attain the intended results, the algorithm's exploitation capabilities 
must be modified as it moves closer to its final iterations [28–29]. 

Using the appropriate population members as a basis, the BSSA can precisely scan the search 
space. The BSSA balances the two crucial indicators of exploration and exploitation by looking at the 
spring constant as the primary parameter. For allowing people within the population to apply Hooke's 
law and spring force to explore various regions of the search space, the BSSA's spring constant 
equation is initially created with large values. The spring constant has decreasing values as the 
algorithm's iterations increase and approach the final iterations; this closer examination of potential 
optimum sites provides the greatest feasible result. Eq (18) uses the previously mentioned method to 
modify the spring constant while preserving the power split between exploration and exploitation. 
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4. Experimental validation 

The air quality monitoring results of the BSSO-HDL model are tested using a series of simulations. 
We have used a dataset comprising 6000 samples under six class labels. Table 1 shows that there are 
1000 samples in the dataset for each class.  

Table 1. Dataset description.  

AQI Class Description No. of Samples 
0–50 1 Good 1000 
51–100 2 Satisfactory 1000 
101–200 3 Moderate 1000 
201–300 4 Poor 1000 
301–400 5 Very Poor 1000 
401–500 6 Severe 1000 
Number of Samples 6000 

Figure 4 reports the confusion matrix of BSSO-HDL generated for the whole dataset. According 
to the number, the BSSO-HDL model has identified 995 instances from period 1, 991 from period 2, 
984 from period 3, 987 from period 4, 998 from period 5, and 999 from period 6. 

 

Figure 4. Confusion matrix of the BSSO-HDL method under the entire dataset. 

The classification performance accomplished by the BSSO-HDL algorithm on the entire dataset 
of air quality monitoring is portrayed in Table 2 and Figure 5. The BSSO-HDL algorithm has identified 
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samples under class 1 with 𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦  of 99.72%, 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑦𝑦  of 99.50%, 𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎𝑦𝑦  of 99.76%, 𝐹𝐹𝑠𝑠𝑐𝑐𝑜𝑜𝑠𝑠𝑒𝑒  of 
99.15%, and MCC of 98.98%. Eventually, the BSSO-HDL algorithm detected samples under class 2 
with 𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦  of 99.85%, 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑦𝑦  of 99.10%, 𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎𝑦𝑦  of 100%, 𝐹𝐹𝑠𝑠𝑐𝑐𝑜𝑜𝑠𝑠𝑒𝑒  of 99.55%, and MCC of 
99.46%. Next to that, the BSSO-HDL algorithm has differentiated samples under class 5 with 𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦 
of 99.55%, 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑦𝑦 of 99.80%, 𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎𝑦𝑦 of 99.50%, 𝐹𝐹𝑠𝑠𝑐𝑐𝑜𝑜𝑠𝑠𝑒𝑒 of 98.67%, and MCC of 98.40%. 

Table 2. Analysis of the BSSO-HDL method's results for each class within the whole dataset. 

Entire Dataset 
Labels Accuracy Sensitivity Specificity F-Score MCC 
1 99.72 99.50 99.76 99.15 98.98 
2 99.85 99.10 100.00 99.55 99.46 
3 99.70 98.40 99.96 99.09 98.92 
4 99.77 98.70 99.98 99.30 99.16 
5 99.55 99.80 99.50 98.67 98.40 
6 99.88 99.90 99.88 99.65 99.58 
Average 99.74 99.23 99.85 99.23 99.08 

 

 

Figure 5. Overall dataset average analysis using the BSSO-HDL method. 
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Figure 6. Confusion matrix utilizing 70% TR data and the BSSO-HDL technique. 

Figure 6 presents the confusion matrix that the BSSO-HDL model generated for the full 70% of 
the TR dataset. According to the graph, the BSSO-HDL model recognized 694 models in period 1, 689 
models in period 2, 705 examples in period 3, 679 models in period 4, 699 models in period 5, and 705 
models in period 6.  

Table 3. Analysis of the BSSO-HDL technique's results using various class labels when 
less than 70% of the TR information are present. 

Training Phase (70%) 
Labels Accuracy Sensitivity Specificity F-Score MCC 
1 99.69 99.43 99.74 99.07 98.89 
2 99.86 99.14 100.00 99.57 99.48 
3 99.71 98.46 99.97 99.16 98.99 
4 99.81 98.84 100.00 99.41 99.30 
5 99.57 99.71 99.54 98.73 98.48 
6 99.88 100.00 99.86 99.65 99.58 
Average 99.75 99.26 99.85 99.26 99.12 

The classification performance offered by the BSSO-HDL model on 70% of the TR dataset of air 
quality monitoring is reported in Table 3 and Figure 7. The BSSO-HDL model has standard examples 
under class 1 with 𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦 of 99.69%, 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑦𝑦 of 99.43%, 𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎𝑦𝑦 of 99.74%, 𝐹𝐹𝑠𝑠𝑐𝑐𝑜𝑜𝑠𝑠𝑒𝑒 of 99.07%, and 
MCC of 98.89%. In time, the BSSO-HDL technique has distinguished samples under class 2 with 
𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦  of 99.86%, 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑦𝑦  of 99.14%, 𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎𝑦𝑦  of 100%, 𝐹𝐹𝑠𝑠𝑐𝑐𝑜𝑜𝑠𝑠𝑒𝑒  of 99.57%, and MCC of 99.48%. 
Following this, the BSSO-HDL technique has differentiated examples under class 5 with 𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦 of 
99.57%, 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑦𝑦 of 99.71%, 𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎𝑦𝑦 of 99.54%, 𝐹𝐹𝑠𝑠𝑐𝑐𝑜𝑜𝑠𝑠𝑒𝑒 of 98.73%, and MCC of 98.48%. 
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Figure 7. Average BSSO-HDL technique analysis with 70% of TR data. 

Figure 8 displays the confusion matrix that the BSSO-HDL model generated on 30% of the TS 
dataset. The BSSO-HDL model determined that there were 301 examples in class 1, 302 examples in 
lesson 2, 279 examples in class 3, 308 examples in class 4, 299 examples in class 5, and 296 examples 
in class 6, as shown on the graph. 

 

Figure 8. Confusion matrix of the BSSO-HDL method under 30% of TS information. 

The classification performance gained by the BSSO-HDL model on 30% of the TS dataset of air 
quality monitoring is given in Table 4 and Figure 9. The BSSO-HDL technique has found samples 
under class 1 with 𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦 of 99.78%, 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑦𝑦 of 99.67%, 𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎𝑦𝑦 of 99.80%, 𝐹𝐹𝑠𝑠𝑐𝑐𝑜𝑜𝑠𝑠𝑒𝑒 of 99.34%, and 
MCC of 99.21%. Ultimately, the BSSO-HDL technique has detected samples under class 2 with 
𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦 of 99.83%, 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑦𝑦 of 99.02%, 𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎𝑦𝑦 of 100%, 𝐹𝐹𝑠𝑠𝑐𝑐𝑜𝑜𝑠𝑠𝑒𝑒 of 99.51%, and MCC of 99.41%. At 
last, the BSSO-HDL method has distinguished examples under class 5 with 𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦 of 99.50%, 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑦𝑦 
of 100%, 𝑠𝑠𝑝𝑝𝑠𝑠𝑎𝑎𝑦𝑦 of 99.40%, 𝐹𝐹𝑠𝑠𝑐𝑐𝑜𝑜𝑠𝑠𝑒𝑒 of 98.52%, and MCC of 98.23%. 

 



568 

AIMS Environmental Science  Volume 11, Issue 4, 551–575. 

Table 4. Results of the BSSO-HDL method with various class labels within 30% of the TS data. 

Testing Phase (30%) 
Labels Accuracy Sensitivity Specificity F-Score MCC 
1 99.78 99.67 99.80 99.34 99.21 
2 99.83 99.02 100.00 99.51 99.41 
3 99.67 98.24 99.93 98.94 98.74 
4 99.67 98.40 99.93 99.04 98.84 
5 99.50 100.00 99.40 98.52 98.23 
6 99.89 99.66 99.93 99.66 99.60 
Average 99.72 99.17 99.83 99.17 99.00 

 

 

Figure 9. Average analysis of BSSO-HDL method under 30% of TS information. 

The training accuracy (TRA) and validation accuracy (VLA) on test data acquired with the BSSO-
HDL process are shown in Figure 10. The experimental findings show that the maximum VLA and 
TRA values were obtained using the BSSO-HDL approach. The VLA, in particular, appeared to be 
bigger than the TRA. 

The validation loss (VLL) and training loss (TRL) achieved on test data using the BSSO-HDL 
model are shown in Figure 11. According to the experimental data, the BSSO-HDL technique achieved 
the lowest TRL and VLL requirements. In particular, the VLL is lower than the TRL. 

 

Figure 10. TRA and VLA analysis of the BSSO-HDL method.  
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Figure 11. TRL and VLL analysis of the BSSO-HDL method.  

 

Figure 12. Precision-recall analysis of the BSSO-HDL method.  

Using test data, Figure 12 illustrates an important precision-recall aspect for the BSSO-HDL 
technique. The results show that, in every class, the BSSO-HDL approach produced better precision-
recall metrics. 

Table 5. Comparison of the BSSO-HDL method with existing procedures.  

Models 𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦 (%) 
BSSO-HDL 99.75 
XGBoost 99.20 
Support Vector Machine 99.00 
Random Forest 99.10 
Ensemble Model 96.00 
SMOTE-DNN 99.45 
Autoregression 98.25 

To ensure better consequences of the BSSO-HDL model, a comparative 𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦 examination is 
made with other existing models in Table 5 and Figure 13. The experimental values imply that the 
ensemble algorithm has achieved the smallest 𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦  value of 96%, whereas the autoregression 
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algorithm has achieved a slightly raised 𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦 of 98.25%. Along with that, the XGBoost, SVM, and 
RF algorithms have resulted in closer 𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦  values of 99.20%, 99%, and 99.10%, respectively. 
Meanwhile, the SMOTE-DNN algorithm has accomplished a reasonable 𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦  value of 99.45%. 
However, the presented BSSO-HDL algorithm has showcased better performance with an increased 
𝑟𝑟𝑎𝑎𝑎𝑎𝑢𝑢𝑦𝑦 of 98.25%. 

 

Figure 13. Comparative analysis of the BSSO-HDL method with existing procedures. 

Finally, Table 6 and Figure 14 exhibit modern techniques together with a brief comparison of 
computation time (CT) utilizing the BSSO-HDL methodology. The obtained values inferred that the 
SVM and SMOTE-DNN algorithms have reached lower CT of 11.50s and 10.61s, respectively. 
Meanwhile, the XGBoost and autoregression algorithms have resulted in slightly decreased CT of 
8.12s and 8.46s. Concurrently, the ensemble algorithm has gained reasonable CT of 7.44s. Although 
the RF algorithm has accomplished near optimal CT of 5.30s, the BSSO-HDL algorithm has provided 
lower CT of 3.75s. The detailed experimental results represent the supremacy of the BSSO-HDL model 
over other ML models.  

Table 6. CT analysis of the BSSO-HDL method with existing methodologies. 

Methods Computational Time (sec) 
BSSO-HDL 3.75 
XGBoost 8.12 
Support Vector 
Machine 

11.50 

Random Forest 5.30 
Ensemble Model 7.44 
SMOTE-DNN 10.61 
Autoregression 8.46 
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Figure 14. CT analysis of the BSSO-HDL method.  

The performance of the prediction model can be assessed using the MAE, RMSE, and 𝑅𝑅2 statistics. 
These metrics can evaluate the degree of data change and accuracy as well as the predictive power of 
sophisticated machine learning models. The calculation equation is 
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Table 7. Comparative analysis of the BSSO-HDL approach with existing methodologies. 

Methods 𝑅𝑅2 RMSE MAE 
BSSO-HDL 0.922 15.422 10.029 
XGBoost 0.635 16.439  13.823 
Support Vector 
Machine (SVM) 

0.781 17.826 14.823 
 

Random Forest (RF) 0.865 21.826 12.285 
Ensemble Model (EM) 0.4912 19.625 16.826 
SMOTE-DNN 0.5122 23.527 17.273 
Autoregression (AR) 0.4144 26.425 21.28 
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Figure 15. Comparative analysis of the BSSO-HDL approach. 

Table 7 and Figure 15 demonstrate an extensive R2 evaluation of the BSSO-HDL technique using 
alternative models. With a higher R2 value of 0.922, these results show that the BSSO-HDL approach 
was improved. The R2 values generated by the subsequent algorithms are as follows: XGBoost (0.635), 
random forest (RF) (0.865), SMOTE-DNN (0.5122), autoregression (AR) (0.4144), ensemble model 
(EM) (0.4912), and support vector machine (SVM) (0.781). 

The above figure presents a complete MAE and RMSE study of the BSSO-HDL technique with 
contemporary algorithms. The figure demonstrates improved performance with minimal MAE and 
RMSE values for the BSSO-HDL approach. The XGBoost, support vector machine (SVM), random 
forest (RF), ensemble model (EM), SMOTE-DNN, and autoregression (AR) techniques have produced 
maximum MAEs of 13.823, 14.823, 12.285, 16.826, 17.273, and 21.28, respectively, in comparison to 
the BSSO-HDL approach's minimal MAE of 10.029. The BSSO-HDL algorithm has also achieved the 
lowest RMSE of 15.422 in terms of RMSE, while the approaches of XGBoost, support vector machine 
(SVM), random forest (RF), ensemble model (EM), SMOTE-DNN, and autoregression (AR) have 
produced the highest RMSE of 16.439, 17.826, 21.826, 19.625, 23.527, and 26.425, respectively. 

5. Conclusion 

In conclusion, a major development in the domain of environmental monitoring and forecasting 
is the hybrid deep learning-based air pollution prediction and index classification using an optimization 
algorithm. This technique provides greater accuracy and robustness in air pollution level prediction 
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and air quality index classification by combining the features of multiple deep learning architectures 
with an efficient optimization algorithm. In the obtainable BSSO-HDL model, an HDL-based air 
quality prediction and AQI classification model is applied in which the HDL is derived by the use of a 
CNN-ELM model. To optimally change the hyperparameter standards of the BSSO-HDL model, the 
BSSO algorithm-based hyperparameter tuning procedure was executed. The results of the experiment 
designate that the BSSO-HDL model performs well in predictive classification. Nevertheless, one 
disadvantage of the BSSO-HDL method is its complexity, which results in greater computing costs 
and longer training durations, thus limiting its utility for real-time applications in resource-constrained 
contexts. Moreover, relying on huge amounts of high-quality data for training may limit the model's 
usefulness in areas with sparse or inaccurate data. The black-box aspect of deep learning models also 
complicates interpretability, making it problematic for stakeholders to understand and trust the 
predictions. The experimental results show that the BSSO-HDL model has good prediction and 
classification performance. This Python-based model is evaluated using the R2, MAE, and RMSE error 
measures, with an R2 of 0.922, RMSE of 15.422, and MAE of 10.029. Future research could look into 
developments to the proposed BSSO-HDL model or the making of hybrid models that combine the 
qualities of multiple methods. Comparative studies incorporating additional datasets and numerous 
modeling approaches may yield more robust conclusions on the recommended model's efficiency. 
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