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Abstract: The global concentration of fine particulate matter (PM25) is experiencing an upward trend.
This study investigates the utilization of space-time cubes to visualize and interpret PM2 s data in South
Africa over multiple temporal intervals spanning from 1998 to 2022. The findings indicated that the
mean PM2 s concentrations in Gauteng Province were the highest, with a value of 53 pg/m® in 2010,
whereas the lowest mean PM2 s concentrations were seen in the Western Cape Province, with a value
of 6.59 pg/m®in 1999. In 2010, there was a rise in the average concentration of PM,s across all
provinces. The increase might be attributed to South Africa being the host nation for the 2010 FIFA
World Cup. In most provinces, there has been a general trend of decreasing PM2.s concentrations over
the previous decade. Nevertheless, the issue of PM2s remains a large reason for apprehension. The
study also forecasts South Africa’s PM2s levels until 2029 using simple curve fitting, exponential
smoothing and forest-based models. Spatial analysis revealed that different areas require distinct
models for accurate forecasts. The complexity of PMa;s trends underscores the necessity for varied
models and evaluation tools.
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1. Introduction

Particulate matter of a diameter of 2.5 micrometers or less (PMas) refers to solid and liquid
particles that are floating in the atmosphere. These particles can transport harmful compounds across
geographical and physical boundaries. PM2 s pollution, which threatens public health, is mostly caused
by industry, mining, mobile vehicles, residential, and garbage burning [1]. The rapid economic and
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urbanisation growth in South Africa has led to the emergence of PM> s as a significant air pollutant [2].
The PM2 s concentration in South Africa was 4.5 times the World Health Organization’s annual air
quality guideline value in 2021 [3]. Coal plays a significant role in South Africa’s energy sector,
accounting for 69% of its primary energy and 90% of its electricity generation [4]. However, this
reliance on coal also leads to elevated levels of PM2 5. Epidemiological research indicates that high
levels of PM> s harm human health, leading to an elevated risk of cardiovascular disease morbidity and
mortality [5]. Investigating the spatio-temporal patterns and trends of PMjs contributes to
policymakers’ effective implementation of preventive measures and carries significant implications
for controlling air pollution [6].

The major sources for monitoring PM> s are aerosol optical depth (AOD) products and data from
the ground monitoring network [7]. The ground measurement locations for PM» s exhibit a relatively
discrete nature, consequently imposing constraints on the extent of spatial coverage. Satellite-derived
AOD is a suitable method for evaluating ground-level PM; 5 pollution in regions where surface PM> s
monitoring stations are scarce, owing to its extensive coverage, fine spatial resolution, and consistent
repeated observation [8]. The quantification of light absorption by aerosols is accomplished by
utilizing the AOD scale, which assesses the extent to which particles obstruct the passage of light into
the atmosphere. The retrieval of visual AOD exhibits heightened sensitivity towards particles ranging
from 0.1 to 2 m, which coincides with the particle size of PM2 s. This sensitivity is a crucial theoretical
foundation for establishing the connection between AOD and PM; 5 [9].

In South Africa, Kneen et al. [10] conducted a study that demonstrated the potential of satellite
technology as a reliable and effective alternative to traditional ground-based monitoring methods.
Similarly, Muyemeki et al. [11] explored using satellite remote sensing as a possible replacement for
ground-based surveillance. They used a dataset spanning eight years (2009-2016) and focused their
research on the Vaal Triangle Airshed Priority Area (VTAPA) in South Africa. However, they generally
observed a discrepancy between the PM; 5 estimates from satellite data and the PM> 5 measurements
recorded at ground level. The root mean square error (RMSE) values exhibited a range of 6 to 11 pg/m?,
whereas the correlation coefficient values spanned from —0.89 to 0.32. The paper proposed additional
research to enhance the precision and accuracy of PM; s measurements obtained by satellite retrieval.
Great progress has been made in developing regional algorithms, such as the Random Forest algorithm,
enabling the retrieval of PM» s concentrations on a broad scale with high spatial resolutions [12]. These
developments have demonstrated satisfactory concordance with ground measurements, as van
Donkelaar et al. [13] reported. Retrievals of PM» s micrometers or less have proven to be effective in
evaluating the extended regional and temporal trends in several regions, including West Europe, China,
and Australia [12,14,15]. The spatiotemporal analysis in this study utilizes the global-scale compilation
of PM:s big data conducted by [13]. The dataset presented in this study incorporates a geophysical-
hybrid approach that combines satellite retrievals, chemical transport modelling, and ground monitor-
based calibration. This methodology allows for reliable long-term global [16] and regional [17]
estimates of PMa s concentrations.

Despite the valuable insights offered by most spatial analysis approaches, their limited temporal
sensitivity hinders the identification of time-based clusters. To address this limitation, a series of
discrete outputs is utilized to showcase the temporal impact, enabling the exploration of time-
dependent patterns [18]. Utilizing space-time cube analysis offers a notable benefit compared to
absolute and relative location mapping, spatial autocorrelation, Getis-Ord Gi*, and local Anselin
Moran’s I [19]. This advantage stems from its implementation of a three-dimensional model, which
enables the depiction of space in a horizontal manner and time in a vertical manner. The space-time
cube is a method that combines discrete events into bins, leading to the creation of precise
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representations of spatio-temporal data organized into time-based clusters. These clusters include new,
consecutive, persistent, oscillating, and sporadic hot or cold spots [19]. The importance of spatial time
cube has played a pivotal role in comprehending the spread of COVID-19, pedestrian collisions, and
climate patterns [20—22]. This study uses space-time pattern mining tools described under the methods
section to explore national differences in PM; 5 patterns in space and time, find areas with extreme or
unusual pollution patterns, and forecast yearly average PM2 5 concentrations to 2029. Consequently,
this research comprises two major analytical components. The first component involves quantitatively
examining variations in PM2 s concentration utilizing a space-time cube. The second component entails
the forecasting of PM2 s concentrations till the year 2029. Four distinct steps was derived from the
cube, namely: 1) The Mann-Kendall trend test, which was employed to detect statistically significant
upward or downward trends over time; 2) the emerging hot spot analysis, which was utilized to
examine the pattern of trends; 3) the 3D visualisation of the space-time cube, which facilitated visual
exploration of each time step throughout the entire study period and in each specific area of interest
simultaneously; and 4) the time series forecast, which aimed to predict the future behaviour of PM> 5
pollution in space and time based on current patterns. This work presents several contributions. The
study aims to offer a comprehensive analysis of PM2 5 concentrations in South Africa over twenty-
three years (1998-2022) while employing a space-time cube methodology to conduct spatiotemporal
data analysis. To overcome the limitations of traditional spatial analysis approaches, we employed a
space-time cube methodology to capture the dynamic nature of PM2 s pollution patterns.

2. Materials and methods
2.1. Study area

The present investigation was conducted in South Africa (Figure 1), a country with nine provinces
that exhibit significant variations in their respective sizes. Gauteng is the smallest province in terms of
geographical size (18,179 km?) and accounts for only 1.5% of the country’s land area, yet Gauteng
houses more than a quarter of the entire nation’s population, making up 26% of the total count [23].
On the other hand, the Northern Cape is the largest province in terms of land area, encompassing about
one-third of the total land area of South Africa. Despite its vast expanse, the Northern Cape has the
smallest population share among the provinces. South African economy is experiencing rapid
development, characterised by notable strengths in natural resources, energy, and finance [2]. The
Highveld Plateau, encompassing the provinces of Free State, North West, Mpumalanga, and Gauteng,
is characterised by a significant presence of industrial zones and coal-fired power plants [1]. The
Gauteng Province encompasses a substantial conurbation known as the Johannesburg-Tshwane-
Ekurhuleni mega-city, wherein Johannesburg stands as the most populous urban center in the country.
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Figure 1. Map of South African provinces (Source: Author).
2.2. Material

This study examines the air quality in South Africa by utilizing annual PM> s (ug/m?) at 0.01° x 0.01°
resolution data from the years 1998 to 2022. The data was obtained from an open-access worldwide
database provided by Washington University in St. Louis, USA [24]. The estimation of PM2s data
involves the integration of various satellite-based measurements, including NASA’s MODIS, MISR,
and SeaWiFS instruments. These measurements are combined with the GEOS chemical transport
model, incorporating gridded emission inventories. The resulting estimates are then calibrated against
global ground-based observations of PM2s using Geographically Weighted Regression (GWR), as
described in the study by van Donkelaar et al. [13].

2.3. Methods
2.3.1. Space-time pattern mining

To gain a deeper comprehension of a geographical phenomenon, a space-time analysis considers
space and time in investigating patterns and correlations [25]. Mining for space-time patterns allows
for the detailed analysis of regional and temporal data trends. The subsequent steps delineate the
procedure for creating space-time cubes using ArcGIS Pro. The process involves several steps: a)
Initiating a blank mosaic dataset to accommodate the inclusion of raster files; b) incorporating 25 raster
files, each representing a specific year within the range of 1998-2022, into the mosaic dataset; c)
augmenting the footprint attribute table with two additional fields, one for the variable (PM2.s) and
another for the timestamp; d) establishing multidimensional information; e) generating a
multidimensional raster layer; and f) constructing a space-time cube based on the aforementioned
multidimensional raster layer. Following the construction of the space-time cube, subsequent analysis
is conducted on the cube to ascertain the trends and patterns of the concentration of PMz 5. The analysis
encompass the Mann-Kendall trend test, identification of hot spots, and time series forecasting [25].
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2.3.2. Mann-Kendall trend test method

The Mann-Kendall method, first introduced by Mann and Kendall, is a statistical test used to
analyze the correlation between the numerical values of geographical events and the ranks of
corresponding time series [26]. The Mann-Kendall test method is considered non-parametric, as it does
not rely on assumptions about the underlying distribution of the data. One advantage of this test is that
it does not necessitate the data adhering to a specific distribution or being influenced by outliers [27].
Consequently, it may effectively assess the fluctuations in the data variables as they increase or
decrease over time.

The present study used the Mann-Kendall test to examine the space-time cube’s temporal and
spatial distribution trends. The Mann-Kendall trend approach conducts tests on the time series of
spatiotemporal columns at each data location. The temporal progression of each space-time bar is
documented in the form of a z-score and a p-value. A p-value that is minimal in magnitude suggests
that the observed trend possesses statistical significance. Symbols linked to a z-score can indicate an
upward trend in spatiotemporal bars (indicated by a positive z-score) or a downward trend in space-
time bars (shown by a negative z-score). For the time series, X = {X;, X, ..., Xp,}, and the Mann-

Kendall trend test is as shown in Eqs 1 and 2:

S= 2?;11 ?=i+1 sgn (X; — Xy), (D
1, xj > Xi,

sgn (X] -X)=40 %= x )
—1, .'X'j < Xi.

When n equals or exceeds 10, the spatiotemporal column statistic, S, for PM> s, follows a normal
distribution. With a mean value of 0, the variance is determined using Eqs 3 and 4:

n(n-1)(2n+5)

Var(S) = o \ 3)

S—1
JVvar(s)’ 5>0,
Z.= 0,S=0, 4)
S+1
k '—Var(S)’S < 0.
The Mann-Kendall method is a statistical technique that can be employed to identify and assess
the presence of a changing trend in PM3 s levels and determine the statistical significance of such a
trend [25].

2.3.3.  Emerging hot spot analysis

A hotspot is a region with more events than predicted from a random distribution [28]. The
Emerging Hot Spot Analysis (EHSA) tool identifies statistically significant spatio-temporal trends [29].
It uses a Hot spot analysis tool (Getis-Ord Gi*) to analyze varied spatiotemporal patterns [30]. Positive
z-scores are hot spots, while negative z-scores are cold spots. The Mann-Kendall trend test then
assesses these trends. The Mann-Kendall trend test evaluates notable trends of hotspot categories on
every independent bin time-series test by determining the bin value and their time sequence [30]. Bins
are the individual aggregation units that make up a space-time cube. In this study, EHSA categorises
hot spot (increasing PM2.s) and cold spot (dropping PM2.s) patterns into 17 classes (eight hot spots,
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eight cold spots, and one unidentified pattern) based on temporal and spatial evolution tendencies. See
the ESRI manual for a description of each model [25].

2.3.4. Time series forecast

Time series forecasting estimates future events by understanding historical trends and assuming
similar patterns. This is done by building best-fit models that match historical time series trends and
extrapolating future values. The more time series data fed into the model, the higher the accuracy. Essential
detection could forecast the value at t + 1 given previously measured values at times t=1, ..., t [31]. Simple
curve fitting, exponential smoothing and a forest-based technique (Table 1) can be employed to
forecast time series data within ArcGIS Pro’s space-time cube. These forecasting methods are executed
concurrently on the space-time cube. The process of automatically selecting the optimal forecast is
facilitated by Eq 5, which computes the validation root mean square error (RMSE). This metric is
calculated based on the final time steps omitted during the fitting phase. The effectiveness of the
prediction model in forecasting time series values is then assessed by a validation model [32]. In the
validation model, the final time steps of each time series are withheld, and the forecasting model is
applied to the remaining data. This validation model is then used to forecast the data values withheld.
The forecasted values are compared to the observed values of the hidden data to calculate the
validation RMSE. In this study, 18% of the time, steps are withheld for validation. In forecasting and other
predictive techniques, at least 18 to 20% is held out for validation [33,34]. The exclusion of time steps
should not exceed 25 percent of the total time steps [35]. The validation root mean square error (RMSE) is
computed as the square root of the mean of the squared differences between the projected and the raw
values of the missing time steps [32].

T _
Validation RMSE = \/Z“T'm“(“ e’ %)

m

where T represents the total number of time steps, m denotes the number of time steps reserved for
validation, ¢ symbolises the projected value derived from the initial T-m time steps, and r represents
the unprocessed value of the time series reserved for validation at time t.

Table 1. Time Series Forecasting toolset [32].

Tool Description

Curve Fit Forecast Curve fitting is used to forecast the values of each. Linear, parabolic,
(CFF) exponential, or S-shaped curves are all possible (Gompertz).

Evaluate Forecasts by This allows various Time Series Forecasting tools with the same data to
Location select the best forecast for each location.

Exponential Holt-Winters exponential smoothing predicts the values of each node in a

Smoothing Forecast  space-time cube by breaking down the time series at each node into seasonal
(ESF) and trend components.

Forest-based Forecast It uses a modified random forest prediction algorithm to predict values at
(FBF) each location.
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3. Results and discussion
3.1. The spatiotemporal trend of PM25 in 1998-2022

A profile chart is created on the multidimensional raster layer to examine pollution time series in
different provinces of South Africa. Over the past two decades, the distribution of average PMa2s
concentrations (Figure 2) reveals that Gauteng Province had the highest mean PM25s concentrations (53 pg/mq)
in 2010, while Western Cape had the lowest (6.59 pg/m®) in 1999. Several provinces’ PM2 s pollution
levels are comparable. Most area readings exceed the South African National Ambient Air Quality
Standards (NAAQS) of 20 pg/m?® for the yearly average [2]. In 2010, all provinces had an increase in
mean PMas. The increase could be ascribed to South Africa hosting the 2010 FIFA World Cup.
According to a Chilean study [36], the probability that the association between PM2s maxima and the
2014 FIFA World Cup is purely coincidental is 0.002%. Suggesting pollution spiked in Chile tied to
the soccer event. Consequently, there is a strong association between these two gatherings, as
evidenced by the prevalence of barbecues during sporting events. Due to the distances between match
venues in South Africa, intercity transportation emissions were also a factor after international transit [37].
PM2 s concentrations have declined in most provinces, except for an increase in Eastern Cape, Northern
Cape, Western Cape, and Free State provinces after 2010.
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Figure 2. Pollution time series.
3.2. The space-time cube trend analysis of PM2s

The Mann-Kendall trend test was used for the independent spatio-temporal column time series at
each place within the PM2s space-time cube. The spatio-temporal bars of the first period are being
compared to the spatio-temporal bars of the second period in terms of their values. If the value of the
former is smaller than the latter’s, the comparison outcome is denoted as 1. If the value of the former
exceeds that of the latter, the result of the comparison is represented by the integer -1. If the two entities
being compared are equal, the comparison outcome will be represented by the numerical value of 0.
The temporal pattern of each spatio-temporal bar is quantified using a z-score and a p-value [25].
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A high z-value suggests a discernible rising trend in the sequence of PM. increases. When the
z-value approaches zero, a substantial change trend is absent. The significance of the change trend is
then assessed and graded according to the information provided in Table 2.

Table 2. Grading table of the variation trend of PM2 5 [25].

Classification ~ Z-Score p-value Confidence Trend of Change
(%)

-3 Z<-2.58 p<0.01 99 Downward

-2 —2.58 <Z<-1.96 0.01<p<0.05 95 Downward

-1 -1.96 <Z<-1.65 0.05<p<0.1 90 Downward

0 -1.65<72<1.65 p=0.1 - no significant trend

1 1.65<72<1.96 0.05<p<0.1 90 Upward

2 196 <Z7<258 0.01<p<0.05 95 Upward

3 Z>2.58 p<0.1 99 Upward

The hierarchical visualisation of the data obtained from the Mann-Kendall trend test is depicted
in Figure 3, with the values of Trend Bin being used as the basis for the hierarchy. The figure illustrates
the presence of green regions, which correspond to the PM2 s data bars exhibiting a declining trend.
Out of the 9907 data cube locations representing PM2s sites, 1099 data cube locations showed a
discernible decrease trend. In general, the spatial distribution of these declining space-time cube bars
is mainly concentrated in Mpumalanga (36.6%), Limpopo (16.5%), KwaZulu Natal (10.7%), and in
the Gauteng region, comprising 1.8% of the total percentage. The areas in purple in Figure 3 exhibit a
temporal and spatial increase in PM2s levels. No significant trend occurred in the 6762 data cube
locations, accounting for 68.3%. Using the map in Figure 3, it is possible to see the overall trends of
PM2s in the different South African provinces. Over this period (1998-2022), annual PMa2s has
steadily declined in Limpopo, North West, Gauteng, Mpumalanga, and Kwa-Zulu Natal regions to the
point where it is now consistently below the long-term average. In the Northern Cape and Eastern Cape
provinces, the PM2 s has increased. Annual PM_ s trends in the Western Cape and Free State provinces
are more challenging to identify as the upward and downward trends are balanced, but it appears they
have slowly but steadily increased.

Trend Classifications
Up Trend - 99% Confidence
[ up Trend - 95% Confidence
I Up Trend - 90% Confidence
Il \o Significant Trend
Il Down Trend - 90% Confidence
B Down Trend - 95% Confidence
Down Trend - 99% Confidence

12°E 14°E 16°E 18°E 20°E 2 26°E 28°E 30°E

Figure 3. Space-time cube trend of PM2 s using the Mann-Kendall trend test from 1998-2022.
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Areas with no significant trend in the central area (Figure 3) are identified as Intensifying Hot
Spots in Figure 4. This might seem to show a discrepancy, but the difference lies in the focus of the
two methods. The Mann-Kendall trend test focuses on trends in the data values over time, while the
Emerging Hot Spot Analysis focuses on the spatial clustering of these values and how it changes over
time. Therefore, an area could show no significant trend in the Mann-Kendall trend test (meaning the
values do not consistently increase or decrease over time), but be identified as an “Intensifying Hot
Spot” in the Emerging Hot Spot Analysis. This could occur if the area has been a significant hot spot
for most of the time steps and the intensity of clustering in each time step is significantly increasing.
This means that even though the values themselves may not show a consistent trend over time, the
spatial clustering of these values is becoming more intense, which is what the Emerging Hot Spot
Analysis is designed to detect.

3.3. Spatio-temporal hot and cold spot patterns of PM2s concentrations

This study utilised the space-time cube representation of PM.s concentrations in South Africa to
identify areas with elevated and reduced levels of PM2s dispersion. It also examined the dynamic
aggregation characteristics of these areas from 1998 to 2022. The findings indicate that 9.3% of sites
were Intensifying Hot Spots, 6.9% were Persistent Hot Spots, 2.7% were Diminishing Hot Spots,
21.4% were Persistent Cold Spots, and 42.6% exhibited no discernible pattern (Figure 4). Hotspots
were notably concentrated in provinces such as North West, Free State, KwaZulu-Natal, Gauteng,
Mpumalanga, and Limpopo’s foothills, which collectively account for over fifty percent of South
Africa’s population [38]. Specifically, in Mpumalanga, hotspots were observed around Mbombela,
Secunda, Ermelo, Delmas, and Ogies, regions known for a notable density of coal-fired power plants.
Emissions from 14 facilities in these areas resulted in 305 to 650 premature fatalities in 2016 [39].
Similarly, the Gauteng conurbation, South Africa’s most densely populated province, exhibited the
largest concentration of anthropogenic emissions from various sources [40]. Weather patterns transport
contaminated air, particularly from Mpumalanga’s power stations and biomass burning, to major
metropolises like Johannesburg and the country’s capital, Pretoria, in Gauteng province [41]. Persistent
Hotspot areas in the North West Province include Rustenburg, Brits, Lichtenburg, and Sun City. The
provinces of North West, Gauteng, Mpumalanga, and portions of Limpopo persistently exhibited
elevated PM_ s levels for 90% of the period from 1998 to 2022.

Emerging Hot Spot Analysis Patterns

L_JNew Hot Spot
Consecutive Hot Spot

. JIntensifying Hot Spot
Persistent Hot Spot
Diminishing Hot Spot
Sporadic Hot Spot

i Oscillating Hot Spot
Historical Hot Spot

L_INew Cold Spot
Consecutive Cold Spot

L} Intensifying Cold Spot
Persistent Cold Spot
Diminishing Cold Spot
Sporadic Cold Spot

B Oscillating Cold Spot
Historical Cold Spot

No Pattern Detected -
12°E 14°E 16°E 18°E 20°E 22°E 24°E 26°E 28°E 30°E

Figure 4. Emerging hot spot patterns of PM.s from 1998-2022.
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In the Free State, Sasolburg town is classified as an Intensifying Hot Spot, Harrismith town as a
Persistent Hot Spot, and Petrusburg and Boshof towns as Sporadic Hot Spots. Air quality in Sasolburg
is influenced by the existence of coal and the making of liquid fuels out of coal [42]. PM2s
concentrations range from Persistent, Intensifying, Consecutive, and Sporadic Hot spots from the
western portions of KwaZulu Natal to Durban. KwaZulu Natal and Free State are generally designated
as Sporadic Hot Spots, which means they have had high PM2s readings less than 90% of the time
during the past 25 years. In addition, they have never had statistically low PM_ s levels. The statistically
significant spatial clusters of high values (Hot Spots) identified in the above areas form part of the
Vaal Triangle Airshed Priority Area (VTAPA). The VTAPA is confronted with intricate and enduring
air pollution challenges due to its proximity to various commercial, agricultural, residential, industrial,
and mining activities [43]. It was estimated that the source group comprising industrial, mining, and
institutional fuel-burning in the Vaal triangle accounted for 65% of the cases of chronic bronchitis [44].

Western Cape, Northern Cape, and Eastern Cape are statistically insignificant. Hence, no pattern
for PM2s was identified. South Africa’s southern and western coastline regions have the lowest
quantities of pollution, whereas inland cities have the highest concentrations. Coastal regions exhibit
lower exposure levels to emissions from power plants compared to inland urban areas. In their study,
Adeyemi et al. [41] observed the presence of air masses that originated from countries located to the north
of South Africa. These air masses were found to migrate inland due to biomass-burning activities primarily
conducted for space heating. The researchers further noted that these air masses have a significant
impact on the air quality conditions, particularly in the city of Johannesburg, as compared to coastal
regions [41,42,44]. The geographical disparities in emission sources between inland and coastal areas
exhibit variations. For instance, in provinces such as KwaZulu Natal and Western Cape, the emission
sources are susceptible to the influence of transboundary air pollution, which occurs when air masses
from neighbouring jurisdictions settle in these areas. Conversely, inland emissions predominantly affect
Johannesburg, although transboundary sources also contribute to the overall pollution levels [45].

3.4. Spatio-temporal 3D representation of hot and cold spots

In Figure 5, the vertical columns extending from the bottom to the top illustrate the evolution of PM2s
values over time. The bottom cube represents the year 1998, and the top cube represents the year 2022.
Red blocks represent locations and times with elevated PM2 s readings. Blue blocks represent low-
level values. Figure 5(a) depicts a Diminishing Hot Spot at eMahlaleni, where values have declined to
below 30 pug/m3 since 2012. eMahlaleni is located inside the highveld priority area, which is
characterised by intensive mining, coal-fired power plants, and industry. Similarly, a study by
Matandirotya and Burger [46] identified a decreasing trend for PM2 s values with a confidence interval
of p0.001 in eMahlaleni. A Diminishing Hot Spot has been a statistically significant hot spot for 90%
of the time-step intervals, including the last time step. In addition, the level of clustering in each time
step is statistically and significantly decreasing over time. In Figure 5(b), Sasolburg shows space-time
cubes are Hot and increasing over time. Sebokeng, as illustrated in Figure 5(c), is a Persistent Hot Spot
characterised by relatively stable values (39.9 to 49.1 ng/m®) across the entire time series, exhibiting
minimal variation. Sebokeng and Sasolburg are constituent localities within the Vaal Triangle, an
extensively industrialised region officially classified as a priority area for air pollution mitigation. This
designation is primarily motivated by public health concerns arising from the region’s elevated levels
of air pollution, as acknowledged by Shikwambana et al. [47]. One enduring consequence of the
planning policies implemented during the Apartheid era was the deliberate clustering of industry and
working-class neighbourhoods near one another. This was helpful in the 1960s and 1970s. However,
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the subsequent population growth in these towns and the concurrent rise in industrial production have
given rise to a significant environmental predicament [48]. The main contributors to PM.s air pollution
in Sebokeng include particulate matter from dust, emissions from vehicles, and the combustion of coal in
residential areas [46]. Also, the regions above experience the highest amounts of PM2s in winter [1].

PM2.,5 yearly average
PM 2.5

9 <2.38

9 <5.27

¥ <8.54

¥ <12.40
¥ <17.32
y <23.98
¥ <33.15
¥ <46.39
¥ <65.15
9 <1213

Thabazimbi
Sebokeng
Sasolburg
eMahlaleni
@ Edandale

"‘""""""'QJ

1

Figure 5. Space-time cube of South African yearly PM2s concentrations in a) eMahlaleni,
b) Sasolburg, ¢) Sebokeng, d) Edendale, and €) Thabazimbi.

Due to the increasing demand for space heating, residential fuel consumption in low-income
communities increases throughout the winter. The Sasol Chemical Industries Complex in Sasolburg is
a prominent source of PM2s and generates secondary aerosols in surrounding areas [49]. During the
winter season, a significant portion of the trajectory, approximately 75%, is influenced by an air mass
originating from northern South Africa. This air mass follows a brief journey through Botswana and
the mining regions of the North West Province. This observation highlights the contribution of both
local and regional sources of pollutants. The summer/autumn air mass originates from Mozambique
and traverses the mining and industrial districts of the Mpumalanga region along its trajectory. The
predominant air mass is responsible for most (55%) of the arriving trajectories towards the regions
next to Sasolburg and Sebokeng [49]. The presence of these air masses may influence the observed
high concentrations of PM2 s in certain places. Figure 5(d) depicts a Consecutive Hot Spot in Edendale,
where statistically significant hot spots have occurred continuously over numerous years. The PMas
concentration ranges from 23.98 to 33.15 pg/m®. The areas close to Thabazimbi (Figure 5(e)) are Sporadic
Hot Spots, where an “on-again, off-again hot spot” is depicted by a switch between lighter and darker
colours multiple times over the time series. The PMy5s concentration ranges from 17.32 to 33.15 pg/m?®.

3.5. PM2 5 concentration forecasting through 2029
In this study, South Africa’s PMa s yearly average concentration is projected to 2029 using the Time
Series Forecasting tool. After applying three forecasting algorithms to the space-time cube of PMa2s

concentrations, the Evaluate Forecast by Location tool determines the ideal forecast for each area in South
Africa. The outcome is a hybrid forecast in which each site is predicted using the optimal technique. The
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Vaal Triangle, particularly Vereeniging, is notorious for its air pollution and respiratory diseases [50]. The
major causes of pollution include mining, energy production, and other industrial activities.

With a Validation Root Mean Square Error of 1.45 pg/m?, the Curve Fit Forecast tool determined
that the exponential curve type best fits Vereeniging. The blue dots in the graph of Figure 6 represent
the actual measured PM2 s values, while the orange dots represent the fitted and predicted values. The
South African map (top right corner) in Figure 6 has a heavier shade of blue, indicating places with
high PM_ 5 forecasts, while the lighter shade of blue indicates areas with low PM_ s forecasts. The map
in Figure 6 displays the results of the Exponential Smoothing Forecast on PM2 s data in South Africa.
Figure 6 also displays the PM. s time series graph that exhibits cyclic increases and decreases for
Vereeniging (green dot on the map).

Forecast Root Mean Square Error 2.008455

Validation Root Mean Square Error (Validation Steps: 4) 1.573727

Season Length 1

Forecast Method exponential smoothing;

Figure 6. Forecasting of PM2s for Vereeniging (in green) to 2029 using ESF with pop-up
showing forecast values and confidence interval.

A confidence interval is also supplied to show the forecast’s reliability. The fluctuating trend in
Vereeniging increases the confidence interval. The approach produces a 90% confidence interval for
the estimates, represented by the orange translucent cone surrounding the predicted line in Figure 6.

The map in Figure 7 depicts PM2s prediction for South Africa to 2029 using a Forest-based
Forecast. The darker shades represent higher PM2s concentrations, while lighter shades represent
lower concentrations. Figure 7 also shows the pop-up graph displaying Vereeniging’s forecast values
and confidence interval (green dot on the map). According to the graph, the overall PM2s concentration
in Vereeniging is anticipated to remain above the South African annual air quality guideline of 20 pg/m?®.
It will not meet the current national PM2 s standard within the forecasted years.
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Forecast Root Mean Square Error 1.178999

Validation Root Mean Square Error (Validation Steps:  1.38421
4)

Time Window 5
Is Seasonal 0
Forecast Method forest-based,

1998

2003 2008 2013 2018 2023 2028

=+ Original Value -+ Fitted Value Confidence Interval -* Forecasted Value

Figure 7. Forecasting of PM..s for Vereeniging (in green) to 2029 using FBF with a pop-
up showing forecast values and confidence interval.

Different areas in South Africa exhibit varying upward and downward trend patterns. Hence, a
single forecast model cannot be applied to all areas. Once all three forecasting algorithms have been
used for the dataset, the Evaluate Forecasts by Location tool becomes instrumental in discerning the
most suitable forecast for each location. The result is a hybrid forecast that employs the most
appropriate technique for predicting PM2s levels across various areas in South Africa. Figure 8
demonstrates that the Forest-based Forecast can accurately capture the complex trends and patterns of
PM2 5 concentrations in Vereeniging.

v| Forecast method

[:] Linear

D Exponential

D Parabolic
CurveFitForecast Validation RMSE 1452694 Bl Gompertz :
ExponentialSmoothingForecast Validation RMSE 1.573727 - Exponential smoothing
ForestBasedForecast Validation RMSE 1.38421 - Forest-based

-+ *Forest-based[2]

Figure 8. Best forecast method at Vereeniging (in green) to 2029.

In this study, the performance of three distinct models was assessed using validation RMSE, which
measures the models’ forecasting capability during the validation run. According to the data presented
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in Figure 8 and Table 3, it can be observed that the validation RMSE values at Vereeniging were the
lowest for the Forest-based Forecast model (1.38), followed by Curve Fit (1.45) and Exponential
Smoothing (1.57). This suggests that the Forest-based Forecast model exhibits higher prediction
accuracy, aligning with the findings of [51], who also reported superior performance of forest-based
models in predicting air quality parameters.

Table 3. The result of three different models at Vereeniging.

Indicators  Models

CFF ESF FBF
FrMsE 1.96 2.01 1.18
VRrMsE 1.45 1.57 1.38

This suggests that the Forest-based Forecast model exhibits higher prediction accuracy. A larger
root mean square error (RMSE) signifies a significant discrepancy between the observed and predicted
values. Because this study adopts a spatial approach to this problem and allows these models to differ
from location to location, one of the most effective methods to comprehend spatiotemporal trends is
the Evaluate Forecasts by Location method. The Evaluate Forecasts by location technique reveals that
complicated time series patterns in Hot Spot areas of North West, Free State, KwaZulu Natal, Gauteng,
and Mpumalanga are primarily modeled using Forest-based forecasting or exponential smoothing. In
South Africa, Exponential smoothing and Forest-based Forecasting account for 24.6% and 20.9% of
forecasting methods, respectively. Both exponential smoothing and the random forest-based technique
effectively handle complex time series, including seasonal or cyclical characteristics in the data that
can make forecasting difficult, a finding that corroborates the work of Liu et al. [52]. Curve Fit Forecast
is primarily used to model places with cold spots and no significant trends. Curve Fit Forecast makes
up 54.5% (Exponential, 8.7; Gompertz, 23.4; Linear, 13.8; Parabolic, 8.6). The Evaluate Forecasts by
Site tool allows the mapping of several forecasting models over the study region based on how well
they correspond to each location. If the PMas levels exhibited a consistent pattern throughout all
regions in South Africa, it would be anticipated that the map in Figure 8 would predominantly display
a uniform colour. Given the absence of this circumstance, it becomes evident that the process of
modeling PM2s is highly intricate, underscoring the significance of possessing multiple methods
available and the tools to evaluate them. This finding corroborates previous research highlighting the
multifaceted nature of air quality forecasting and the importance of employing diverse modelling
techniques [53]. Observing different locations for which the same model is applied provides significant
insight into the likelihood that these locations also share comparable characteristics.

4. Conclusions

The primary contribution of this work is the investigation of spatio-temporal dynamic 3D
properties of PM. s concentrations at a high resolution using emerging geographical and temporal hot
spots. This study shows fine particulate matter remains a significant concern, particularly in the North
West, Gauteng, Free State, and Mpumalanga. The temporal profile chart and space-time cube depicted
an overall decrease in PM2s concentration across the research period. The Mann-Kendall trend test
shows downward trending space-time cube bars are mainly distributed in Mpumalanga (36.6%) and
Limpopo (16.5%). At the current rate, compliance with existing requirements will take years and
decades at specific sites. The results obtained in this study are similar to those obtained by [10].
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However, this study expands the literature using space-time mining analysis and locational forecasting.
Space-time pattern mining tools are utilized to analyze and comprehend pollutant data. 3D
visualisation enhanced comprehension of the patterns that each hot spot reflects. The Time Series
Forecasting tool identifies future patterns and recommends the most appropriate statistical model to
employ in a given area. Even though time series forecasting is not explicitly spatial, it is now possible
to detect spatial patterns in the data by observing which model is selected at various areas, making
capturing these hybrid results quite intriguing. Future studies will benefit from improved accuracy of
satellite retrieved PM2 s if monitoring stations in South Africa are optimised to have monitoring data
that are more spatially representative.

Use of Al tools declaration

The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this
article.

Acknowledgments

The data was obtained from an open-access worldwide database provided by Washington University
in St. Louis, USA (WUSTL, 2022). Available from: https://sites.wustl.edu/acag/datasets/surface-pm?2-5/.

Conflict of interest

The author confirms that no known conflict of interest is associated with this publication, and
there has been no financial support for this work that could have influenced its outcome.

References

1. Katoto PDMC, Byamungu L, Brand AS, et al. (2019) Ambient air pollution and health in Sub-
Saharan Africa: Current evidence, perspectives and a call to action. Environ Res 173: 174-188.
https://doi.org/10.1016/j.envres.2019.03.029

2. Edlund KK, Killman F, Moln&a P, et al. (2021) Health risk assessment of PM2s5 and PM_ s5-bound
trace elements in Thohoyandou, South Africa. Int J Environ Res 18: 1359.
https://doi.org/10.3390/ijerph18031359

3. Indoor Quality Air. Air quality in South Africa, 2022. Available from:
https://www.igair.com/south-africa.

4. Zulu T, Aphane O, Audat T, et al. (2019) South Africa energy sector report. Available from:
http://www.energy.gov.za/files/media/explained/2019-South-African-Energy-Sector-Report.pdf.

5. ZhangR, DiB, Luo Y, etal. (2018) A nonparametric approach to filling gaps in satellite-retrieved
aerosol optical depth for estimating ambient PMazs levels. Environ Pollut 243: 998-1007.
https://doi.org/10.1016/j.envpol.2018.09.052

6. YanJW, Tao F, Zhang SQ, et al. (2021) Spatiotemporal distribution characteristics and driving
forces of PM_ s in three urban agglomerations of the Yangtze River Economic Belt. Int J Env Res
Pub He 18: 2222. https://doi.org/10.3390/ijerph18052222

7. Chudnovsky AA, Koutrakis P, Kloog I, et al. (2014) Fine particulate matter predictions using
high-resolution aerosol optical depth (AOD) retrievals. Atmos Environ 89: 189-198.
https://doi.org/10.1016/j.atmosenv.2014.02.019

AIMS Environmental Science Volume 11, Issue 3, 426-443.


https://doi.org/10.1016/j.envres.2019.03.029
https://www.iqair.com/south-africa
https://doi.org/10.1016/j.envpol.2018.09.052
https://doi.org/10.3390/ijerph18052222
https://doi.org/10.1016/j.atmosenv.2014.02.019

441

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

Stowell JD, Bi J, Al-Hamdan MZ, et al. (2020) Estimating PMas in Southern California using
satellite data: Factors that affect model performance. Environ Res Lett 15: 094004.
https://doi.org/10.1088/1748-9326/ab9334

Hu X, Waller LA, Al-Hamdan MZ, et al. (2013) Estimating ground-level PM2.s concentrations in
the southeastern U.S. using geographically weighted regression. Environ Res 121: 1-10.
https://doi.org/10.1016/j.envres.2012.11.003

Kneen MA, Lary DJ, Harrison WA, et al. (2016) Interpretation of satellite retrievals of PM2s over
the southern African Interior. Atmos Environ 128: 53-64.
https://doi.org/10.1016/j.atmosenv.2015.12.016

Muyemeki L, Burger R, Piketh SJ (2020) Evaluating the potential of remote sensing imagery in
mapping ground-level fine particulate matter (PMzs) for the Vaal triangle priority area. Clean Air
J 30: 1-7. https://doi.org/10.17159/caj/2020/30/1.8066

Hu X, Belle JH, Meng X, et al (2017) Estimating PM2 s concentrations in the conterminous United
States using the random forest approach. Environ Sci Technol 51: 6936-6944.
https://doi.org/10.1021/acs.est.7b01210.s001

van Donkelaar A, Hammer M, Bindle L, et al. (2021) Monthly global estimates of fine particulate
matter and  their  uncertainty.  Environ  Sci  Technol 55:  15287-15300.
https://doi.org/10.1021/acs.est.1c05309

Knibbs LD, van Donkelaar A, Martin RV, et al. (2018) Satellite-based land-use regression for
continental-scale long-term ambient PM..s exposure assessment in Australia. Environ Sci Technol
52: 12445-12455. https://doi.org/10.1021/acs.est.8b02328

de Hoogh K, Gulliver J, van Donkelaar A, et al. (2016) Development of West-European PM2 5
and NO: land use regression models incorporating satellite-derived and chemical transport
modelling data. Environ Res 151: 1-10. https://doi.org/10.1016/j.envres.2016.07.005

Hammer MS, van Donkelaar A, Li C, et al. (2020) Global estimates and long-term trends of fine
particulate matter concentrations (1998-2018). Environ Sci Technol 54: 7879-7890.
https://doi.org/10.1021/acs.est.0c01764

van Donkelaar A, Martin RV, Li C, et al. (2019) Regional estimates of chemical composition of
fine particulate matter using a combined geoscience-statistical method with information from
satellites, models, and monitors. Environ Sci Technol 53: 2595.
https://doi.org/10.1021/acs.est.8b06392

Fenderson LE, Kovach Al, Llamas B (2020) Spatiotemporal landscape genetics: Investigating
ecology and evolution through space and time. Mol Ecol 29: 218-246.
https://doi.org/10.1111/mec.15315

Osman A, Owusu AB, Adu-Boahen K, et al. (2023) Space-time cube approach in analysing
conflicts in Africa. Soc Sci Humanit Open 8. https://doi.org/10.1016/j.ssah0.2023.100557

Yoon J, Lee S (2021) Spatio-temporal patterns in pedestrian crashes and their determining factors:
Application of a space-time cube analysis model. Accident Anal Prev 161.
https://doi.org/10.1016/j.aap.2021.106291

Allen MJ, Allen TR, Davis C (2021) Exploring spatial patterns of Virginia tornadoes using kernel
density and space-time cube analysis (1960-2019). ISPRS Int J Geo-Inf 10: 310.
https://doi.org/10.3390/ijgi10050310

Mo C, Tan D, Mai T, et al. (2020) An analysis of spatiotemporal pattern for COVID-19 in China
based on space-time cube. J Med Virol 92: 1587-1595. https://doi.org/10.1002/jmv.25834

South  African Yearbook (2021) South Africa Yearbook 2021/22. Available:
https://www.gcis.gov.za/south-africa-yearbook-202122.

AIMS Environmental Science Volume 11, Issue 3, 426-443.


https://doi.org/10.1088/1748-9326/ab9334
https://doi.org/10.1016/j.envres.2012.11.003
https://doi.org/10.1016/j.atmosenv.2015.12.016
https://doi.org/10.17159/caj/2020/30/1.8066
https://doi.org/10.1021/acs.est.7b01210.s001
https://doi.org/10.1021/acs.est.1c05309
https://doi.org/10.1021/acs.est.8b02328
https://doi.org/10.1016/j.envres.2016.07.005
https://doi.org/10.1021/acs.est.0c01764
https://doi.org/10.1021/acs.est.8b06392
https://doi.org/10.1111/mec.15315
https://doi.org/10.1016/j.ssaho.2023.100557
https://doi.org/10.1016/j.aap.2021.106291
https://doi.org/10.3390/ijgi10050310
https://www.gcis.gov.za/south-africa-yearbook-202122

442

24,

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

WUSTL (Washington University in St. Louis) (2022) Atmospheric composition analysis group-
surface PM2s. Available from: https://sites.wustl.edu/acag/datasets/surface-pm2-5/.

ESRI (2022) How Emerging Hot Spot Analysis Works. Available from:
https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-
mining/learnmoreemerging.htm.

Malik A, Kumar A, Pham QB, et al. (2020) Identification of EDI trend using Mann-Kendall and
innovative trend methods (Uttarakhand, India). Arab J Geosci 13: 951.
https://doi.org/10.1007/s12517-020-05926-2

Cui J, Liu Y, Sun J, et al. (2021) G-STC-M spatiotemporal analysis method for archaeological
sites. ISPRS Int J Geo-Inf 10: 312. https://doi.org/10.3390/ijgi10050312

Zhang H, Tripathi NK (2018) Geospatial hot spot analysis of lung cancer patients correlated to
fine particulate matter (PM..s) and industrial wind in Eastern Thailand. J Clean Prod 170: 407—
424. https://doi.org/10.1016/j.jclepro.2017.09.185

Harris NL, Goldman C, Gabris J, et al. (2017) Using spatial statistics to identify emerging hot
spots of forest loss using spatial statistics to identify emerging hot spots of forest loss. Environ
Res Lett 12. https://doi.org/10.1088/1748-9326/aa5a2f

Wan Y, Beydoun MA (2007) The obesity epidemic in the United States—gender, Age,
socioeconomic, racial/ethnic, and geographic characteristics: A systematic review and meta-
regression analysis. Epidemiol Rev 29. https://doi.org/10.1093/epirev/mxm007

Barazzetti L, Previtali M, Roncoroni F (2022) Visualisation and processing of structural
monitoring data using space-time cubes, International Conference on Computational Science and
Its Applications, Springer, Cham. https://doi.org/10.1007/978-3-031-10450-3 2

Zhou R, Chen H, Chen H, et al. (2021) Research on traffic situation analysis for urban road
network through spatiotemporal data mining: A case study of Xi’an, China. IEEE Access 9:
75553-75567. https://doi.org/10.1109/access.2021.3082188

Cherchi E, Cirillo C (2010) Validation and forecasts in models estimated from multiday travel
survey. Transport Res Rec 2175: 57-64. https://doi.org/10.3141/2175-07

Arsham H (2020) Time-critical decision-making for business administration. Time Series Ana Bus
Forecast.

ESRI (2023) Train time series forecasting model. Available from: https://pro.arcgis.com/en/pro-
app/latest/tool-reference/geoai/train-time-series-forecasting-model.htm.

Lapere R, Menut L, Mailler S, et al. (2020) Soccer games and record-breaking PM2 s pollution
events in Santiago, Chile. Atmos Chem Phys 20: 4681-4694. https://doi.org/10.5194/acp-20-
4681-2020

van der Merwe C (2010) The World Cup’s 2,7 MT carbon footprint and what’s being done about
it. Available from: https://www.engineeringnews.co.za/article/the-world-cups-27-million-ton-
carbon-footprint-2010-01-22.

Paul M (2022) Different air under one sky: Almost everyone in South Africa breathes polluted
air. Available from: https://www.downtoearth.org.in/news/health-in-africa/different-air-under-
one-sky-almost-everyone-in-south-africa-breathes-polluted-air-84743.

Gray HA (2019) Air quality impacts and health effects due to sizeable stationary source emissions
in and around South Africa’s Mpumalanga highveld priority area, San Rafael, CA USA: Gray
Sky Solutions.

Zhang D, Du L, Wang W, et al. (2021) A machine learning model to estimate ambient PM25
concentrations in industrialized highveld region of South Africa. Remote Sens Environ 266:
112713. https://doi.org/10.1016/j.rse.2021.112713

AIMS Environmental Science Volume 11, Issue 3, 426-443.


https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoreemerging.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoreemerging.htm
https://doi.org/10.1007/s12517-020-05926-2
https://doi.org/10.3390/ijgi10050312
https://doi.org/10.1016/j.jclepro.2017.09.185
https://doi.org/10.1088/1748-9326/aa5a2f
https://doi.org/10.1093/epirev/mxm007
https://doi.org/10.1007/978-3-031-10450-3_2
https://doi.org/10.1109/access.2021.3082188
https://doi.org/10.3141/2175-07
https://pro.arcgis.com/en/pro-app/latest/tool-reference/geoai/train-time-series-forecasting-model.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/geoai/train-time-series-forecasting-model.htm
https://doi.org/10.5194/acp-20-4681-2020
https://doi.org/10.5194/acp-20-4681-2020
https://www.engineeringnews.co.za/article/the-world-cups-27-million-ton-carbon-footprint-2010-01-22
https://www.engineeringnews.co.za/article/the-world-cups-27-million-ton-carbon-footprint-2010-01-22
https://www.downtoearth.org.in/news/health-in-africa/different-air-under-one-sky-almost-everyone-in-south-africa-breathes-polluted-air-84743
https://www.downtoearth.org.in/news/health-in-africa/different-air-under-one-sky-almost-everyone-in-south-africa-breathes-polluted-air-84743
https://doi.org/10.1016/j.rse.2021.112713

443

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

Adeyemi A, Molnar P, Boman J, et al. (2022) Particulate matter (PM..5) characterization, air
quality level and origin of air masses in an urban background in Pretoria. Arch Environ Con Tox
83: 77-94. https://doi.org/10.1007/s00244-022-00937-4

Mollo VM, Nomngongo PN, Ramontja J (2022) Evaluation of surface water quality using various
indices for heavy metals in Sasolburg, South Africa. Water 14: 2375.
https://doi.org/10.3390/w1415237

Moreoane L, Mukwevho P, Burger R (2021) The quality of the first and second Vaal triangle
airshed priority area air quality management plans. Clean Air J 31. 1-14.
https://doi.org/10.17159/caj/2020/31/2.12178

Scorgie Y, Kneen A, Annegarn HJ, et al. (2003) Air pollution in the Vaal triangle-quantifying
source contributions and identifying cost-effective solutions. Clean Air J 13: 5-18.
https://doi.org/10.17159/caj/2003/13/2.7152

Venter AD, Beukes JP, Van Zyl PG (2012) An air quality assessment in the industrialised western
Bushveld Igneous Complex, South  Africa. S Afr J Sci 108: 1-10.
https://doi.org/10.4102/sajs.v108i9/10.1059

Matandirotya NR, Burger R (2023) An assessment of NO> atmospheric air pollution over three
cities in South Africa during 2020 COVID-19 pandemic. Air Qual Atmos Hith 16: 263-276.
https://doi.org/10.1007/s11869-022-01271-3

Shikwambana L, Mhangara P, Mbatha N (2020) Trend analysis and first time observations of
sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data. Int J
Appl Earth Obs 91. https://doi.org/10.1016/j.jag.2020.102130

Department of Environmental Affairs (DEA) (2019) The second generation Vaal triangle airshed
priority area air quality management plan: Draft baseline assessment report, Pretoria: DEA.
Norman R, Cairncross E, Witi J, et al. (2007) Estimating the burden of disease attributable to
urban outdoor air pollution in South Africa in 2000. S Afr Med J 97: 748-753.

Muyemeki L, Burger R, Piketh SJ, et al. (2021) Source apportionment of ambient PM10-25 and
PM2s for the Vaal triangle, South Africa. S Afr J Sci 117: 1-11.
https://doi.org/10.17159/sajs.2021/8617

Oosthuizen MA, Mundackal AJ, Wright CY (2014) The prevalence of asthma among children in
South Africa is increasing-is the need for medication increasing as well? A case study in the Vaal
triangle. Clean Air J 24: 28-30. https://doi.org/10.17159/caj/2014/24/1.7050

Liu H, Yan G, Duan Z, et al. (2021) Intelligent modeling strategies for forecasting air quality time
series: A review. Appl Soft Comput 102. https://doi.org/10.1016/j.as0c.2020.106957

Gilliam RC, Hogrefe C, Rao ST (2006) New methods for evaluating meteorological models used
in air quality applications. Atmos Environ 40: 5073-5086.
https://doi.org/10.1016/j.atmosenv.2006.01.023

© 2024 the Author(s), licensee AIMS Press. This is an open access

ATMS ATMS Press article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

AIMS Environmental Science Volume 11, Issue 3, 426-443.


https://doi.org/10.1007/s00244-022-00937-4
https://doi.org/10.3390/w1415237
https://doi.org/10.17159/caj/2020/31/2.12178
https://doi.org/10.17159/caj/2003/13/2.7152
https://doi.org/10.4102/sajs.v108i9/10.1059
https://doi.org/10.1007/s11869-022-01271-3
https://doi.org/10.1016/j.jag.2020.102130
https://doi.org/10.17159/sajs.2021/8617
https://doi.org/10.17159/caj/2014/24/1.7050
https://doi.org/10.1016/j.asoc.2020.106957
https://doi.org/10.1016/j.atmosenv.2006.01.023
http://creativecommons.org/licenses/by/4.0

