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Abstract: The global concentration of fine particulate matter (PM2.5) is experiencing an upward trend. 

This study investigates the utilization of space-time cubes to visualize and interpret PM2.5 data in South 

Africa over multiple temporal intervals spanning from 1998 to 2022. The findings indicated that the 

mean PM2.5 concentrations in Gauteng Province were the highest, with a value of 53 μg/m3 in 2010, 

whereas the lowest mean PM2.5 concentrations were seen in the Western Cape Province, with a value 

of 6.59 μg/m3 in 1999. In 2010, there was a rise in the average concentration of PM2.5 across all 

provinces. The increase might be attributed to South Africa being the host nation for the 2010 FIFA 

World Cup. In most provinces, there has been a general trend of decreasing PM2.5 concentrations over 

the previous decade. Nevertheless, the issue of PM2.5 remains a large reason for apprehension. The 

study also forecasts South Africa’s PM2.5 levels until 2029 using simple curve fitting, exponential 

smoothing and forest-based models. Spatial analysis revealed that different areas require distinct 

models for accurate forecasts. The complexity of PM2.5 trends underscores the necessity for varied 

models and evaluation tools. 
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1. Introduction 

Particulate matter of a diameter of 2.5 micrometers or less (PM2.5) refers to solid and liquid 

particles that are floating in the atmosphere. These particles can transport harmful compounds across 

geographical and physical boundaries. PM2.5 pollution, which threatens public health, is mostly caused 

by industry, mining, mobile vehicles, residential, and garbage burning [1]. The rapid economic and 
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urbanisation growth in South Africa has led to the emergence of PM2.5 as a significant air pollutant [2]. 

The PM2.5 concentration in South Africa was 4.5 times the World Health Organization’s annual air 

quality guideline value in 2021 [3]. Coal plays a significant role in South Africa’s energy sector, 

accounting for 69% of its primary energy and 90% of its electricity generation [4]. However, this 

reliance on coal also leads to elevated levels of PM2.5. Epidemiological research indicates that high 

levels of PM2.5 harm human health, leading to an elevated risk of cardiovascular disease morbidity and 

mortality [5]. Investigating the spatio-temporal patterns and trends of PM2.5 contributes to 

policymakers’ effective implementation of preventive measures and carries significant implications 

for controlling air pollution [6].  

The major sources for monitoring PM2.5 are aerosol optical depth (AOD) products and data from 

the ground monitoring network [7]. The ground measurement locations for PM2.5 exhibit a relatively 

discrete nature, consequently imposing constraints on the extent of spatial coverage. Satellite-derived 

AOD is a suitable method for evaluating ground-level PM2.5 pollution in regions where surface PM2.5 

monitoring stations are scarce, owing to its extensive coverage, fine spatial resolution, and consistent 

repeated observation [8]. The quantification of light absorption by aerosols is accomplished by 

utilizing the AOD scale, which assesses the extent to which particles obstruct the passage of light into 

the atmosphere. The retrieval of visual AOD exhibits heightened sensitivity towards particles ranging 

from 0.1 to 2 m, which coincides with the particle size of PM2.5. This sensitivity is a crucial theoretical 

foundation for establishing the connection between AOD and PM2.5 [9].   

In South Africa, Kneen et al. [10] conducted a study that demonstrated the potential of satellite 

technology as a reliable and effective alternative to traditional ground-based monitoring methods. 

Similarly, Muyemeki et al. [11] explored using satellite remote sensing as a possible replacement for 

ground-based surveillance. They used a dataset spanning eight years (2009–2016) and focused their 

research on the Vaal Triangle Airshed Priority Area (VTAPA) in South Africa. However, they generally 

observed a discrepancy between the PM2.5 estimates from satellite data and the PM2.5 measurements 

recorded at ground level. The root mean square error (RMSE) values exhibited a range of 6 to 11 μg/m3, 

whereas the correlation coefficient values spanned from –0.89 to 0.32. The paper proposed additional 

research to enhance the precision and accuracy of PM2.5 measurements obtained by satellite retrieval. 

Great progress has been made in developing regional algorithms, such as the Random Forest algorithm, 

enabling the retrieval of PM2.5 concentrations on a broad scale with high spatial resolutions [12]. These 

developments have demonstrated satisfactory concordance with ground measurements, as van 

Donkelaar et al. [13] reported. Retrievals of PM2.5 micrometers or less have proven to be effective in 

evaluating the extended regional and temporal trends in several regions, including West Europe, China, 

and Australia [12,14,15]. The spatiotemporal analysis in this study utilizes the global-scale compilation 

of PM2.5 big data conducted by [13]. The dataset presented in this study incorporates a geophysical-

hybrid approach that combines satellite retrievals, chemical transport modelling, and ground monitor-

based calibration. This methodology allows for reliable long-term global [16] and regional [17] 

estimates of PM2.5 concentrations. 

Despite the valuable insights offered by most spatial analysis approaches, their limited temporal 

sensitivity hinders the identification of time-based clusters. To address this limitation, a series of 

discrete outputs is utilized to showcase the temporal impact, enabling the exploration of time-

dependent patterns [18]. Utilizing space-time cube analysis offers a notable benefit compared to 

absolute and relative location mapping, spatial autocorrelation, Getis-Ord Gi*, and local Anselin 

Moran’s I [19]. This advantage stems from its implementation of a three-dimensional model, which 

enables the depiction of space in a horizontal manner and time in a vertical manner. The space-time 

cube is a method that combines discrete events into bins, leading to the creation of precise 
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representations of spatio-temporal data organized into time-based clusters. These clusters include new, 

consecutive, persistent, oscillating, and sporadic hot or cold spots [19]. The importance of spatial time 

cube has played a pivotal role in comprehending the spread of COVID-19, pedestrian collisions, and 

climate patterns [20–22]. This study uses space-time pattern mining tools described under the methods 

section to explore national differences in PM2.5 patterns in space and time, find areas with extreme or 

unusual pollution patterns, and forecast yearly average PM2.5 concentrations to 2029. Consequently, 

this research comprises two major analytical components. The first component involves quantitatively 

examining variations in PM2.5 concentration utilizing a space-time cube. The second component entails 

the forecasting of PM2.5 concentrations till the year 2029. Four distinct steps was derived from the 

cube, namely: 1) The Mann-Kendall trend test, which was employed to detect statistically significant 

upward or downward trends over time; 2) the emerging hot spot analysis, which was utilized to 

examine the pattern of trends; 3) the 3D visualisation of the space-time cube, which facilitated visual 

exploration of each time step throughout the entire study period and in each specific area of interest 

simultaneously; and 4) the time series forecast, which aimed to predict the future behaviour of PM2.5 

pollution in space and time based on current patterns. This work presents several contributions. The 

study aims to offer a comprehensive analysis of PM2.5 concentrations in South Africa over twenty-

three years (1998–2022) while employing a space-time cube methodology to conduct spatiotemporal 

data analysis. To overcome the limitations of traditional spatial analysis approaches, we employed a 

space-time cube methodology to capture the dynamic nature of PM2.5 pollution patterns. 

2. Materials and methods 

2.1. Study area 

The present investigation was conducted in South Africa (Figure 1), a country with nine provinces 

that exhibit significant variations in their respective sizes. Gauteng is the smallest province in terms of 

geographical size (18,179 km2) and accounts for only 1.5% of the country’s land area, yet Gauteng 

houses more than a quarter of the entire nation’s population, making up 26% of the total count [23]. 

On the other hand, the Northern Cape is the largest province in terms of land area, encompassing about 

one-third of the total land area of South Africa. Despite its vast expanse, the Northern Cape has the 

smallest population share among the provinces. South African economy is experiencing rapid 

development, characterised by notable strengths in natural resources, energy, and finance [2]. The 

Highveld Plateau, encompassing the provinces of Free State, North West, Mpumalanga, and Gauteng, 

is characterised by a significant presence of industrial zones and coal-fired power plants [1]. The 

Gauteng Province encompasses a substantial conurbation known as the Johannesburg-Tshwane-

Ekurhuleni mega-city, wherein Johannesburg stands as the most populous urban center in the country. 
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Figure 1. Map of South African provinces (Source: Author). 

2.2. Material 

This study examines the air quality in South Africa by utilizing annual PM2.5 (ug/m3) at 0.01° × 0.01° 

resolution data from the years 1998 to 2022. The data was obtained from an open-access worldwide 

database provided by Washington University in St. Louis, USA [24]. The estimation of PM2.5 data 

involves the integration of various satellite-based measurements, including NASA’s MODIS, MISR, 

and SeaWiFS instruments. These measurements are combined with the GEOS chemical transport 

model, incorporating gridded emission inventories. The resulting estimates are then calibrated against 

global ground-based observations of PM2.5 using Geographically Weighted Regression (GWR), as 

described in the study by van Donkelaar et al. [13].  

2.3. Methods 

2.3.1. Space-time pattern mining 

To gain a deeper comprehension of a geographical phenomenon, a space-time analysis considers 

space and time in investigating patterns and correlations [25]. Mining for space-time patterns allows 

for the detailed analysis of regional and temporal data trends. The subsequent steps delineate the 

procedure for creating space-time cubes using ArcGIS Pro. The process involves several steps: a) 

Initiating a blank mosaic dataset to accommodate the inclusion of raster files; b) incorporating 25 raster 

files, each representing a specific year within the range of 1998–2022, into the mosaic dataset; c) 

augmenting the footprint attribute table with two additional fields, one for the variable (PM2.5) and 

another for the timestamp; d) establishing multidimensional information; e) generating a 

multidimensional raster layer; and f) constructing a space-time cube based on the aforementioned 

multidimensional raster layer. Following the construction of the space-time cube, subsequent analysis 

is conducted on the cube to ascertain the trends and patterns of the concentration of PM2.5. The analysis 

encompass the Mann-Kendall trend test, identification of hot spots, and time series forecasting [25]. 
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2.3.2. Mann-Kendall trend test method 

The Mann-Kendall method, first introduced by Mann and Kendall, is a statistical test used to 

analyze the correlation between the numerical values of geographical events and the ranks of 

corresponding time series [26]. The Mann-Kendall test method is considered non-parametric, as it does 

not rely on assumptions about the underlying distribution of the data. One advantage of this test is that 

it does not necessitate the data adhering to a specific distribution or being influenced by outliers [27]. 

Consequently, it may effectively assess the fluctuations in the data variables as they increase or 

decrease over time. 

The present study used the Mann-Kendall test to examine the space-time cube’s temporal and 

spatial distribution trends. The Mann-Kendall trend approach conducts tests on the time series of 

spatiotemporal columns at each data location. The temporal progression of each space-time bar is 

documented in the form of a z-score and a p-value. A p-value that is minimal in magnitude suggests 

that the observed trend possesses statistical significance. Symbols linked to a z-score can indicate an 

upward trend in spatiotemporal bars (indicated by a positive z-score) or a downward trend in space-

time bars (shown by a negative z-score). For the time series, x = {x1, x2, …, xn,}, and the Mann-

Kendall trend test is as shown in Eqs 1 and 2:  

S =  ∑ ∑ sgn (𝑋𝐽 − 𝑋𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 ,        (1) 

sgn (𝑋𝐽 − 𝑋𝑖) =  {

1, 𝑥𝑗 > 𝑥𝑖,

0, 𝑥𝑗 = 𝑥𝑖,

−1, 𝑥𝑗 < 𝑥𝑖 .
       (2) 

When n equals or exceeds 10, the spatiotemporal column statistic, S, for PM2.5, follows a normal 

distribution. With a mean value of 0, the variance is determined using Eqs 3 and 4: 

Var(S) =
n(n−1)(2n+5)

18
,        (3) 

𝑍𝑐 = 

{
 
 

 
 

S−1

√Var(S)
, S > 0,

0, S = 0,
S+1

√Var(S)
, S < 0.

        (4) 

The Mann-Kendall method is a statistical technique that can be employed to identify and assess 

the presence of a changing trend in PM2.5 levels and determine the statistical significance of such a 

trend [25]. 

2.3.3. Emerging hot spot analysis 

A hotspot is a region with more events than predicted from a random distribution [28]. The 

Emerging Hot Spot Analysis (EHSA) tool identifies statistically significant spatio-temporal trends [29]. 

It uses a Hot spot analysis tool (Getis-Ord Gi*) to analyze varied spatiotemporal patterns [30]. Positive 

z-scores are hot spots, while negative z-scores are cold spots. The Mann-Kendall trend test then 

assesses these trends. The Mann-Kendall trend test evaluates notable trends of hotspot categories on 

every independent bin time-series test by determining the bin value and their time sequence [30]. Bins 

are the individual aggregation units that make up a space-time cube. In this study, EHSA categorises 

hot spot (increasing PM2.5) and cold spot (dropping PM2.5) patterns into 17 classes (eight hot spots, 
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eight cold spots, and one unidentified pattern) based on temporal and spatial evolution tendencies. See 

the ESRI manual for a description of each model [25]. 

2.3.4． Time series forecast 

Time series forecasting estimates future events by understanding historical trends and assuming 

similar patterns. This is done by building best-fit models that match historical time series trends and 

extrapolating future values. The more time series data fed into the model, the higher the accuracy. Essential 

detection could forecast the value at t + 1 given previously measured values at times t=1, ..., t [31]. Simple 

curve fitting, exponential smoothing and a forest-based technique (Table 1) can be employed to 

forecast time series data within ArcGIS Pro’s space-time cube. These forecasting methods are executed 

concurrently on the space-time cube. The process of automatically selecting the optimal forecast is 

facilitated by Eq 5, which computes the validation root mean square error (RMSE). This metric is 

calculated based on the final time steps omitted during the fitting phase. The effectiveness of the 

prediction model in forecasting time series values is then assessed by a validation model [32]. In the 

validation model, the final time steps of each time series are withheld, and the forecasting model is 

applied to the remaining data. This validation model is then used to forecast the data values withheld. 

The forecasted values are compared to the observed values of the hidden data to calculate the 

validation RMSE. In this study, 18% of the time, steps are withheld for validation. In forecasting and other 

predictive techniques, at least 18 to 20% is held out for validation [33,34]. The exclusion of time steps 

should not exceed 25 percent of the total time steps [35]. The validation root mean square error (RMSE) is 

computed as the square root of the mean of the squared differences between the projected and the raw 

values of the missing time steps [32]. 

Validation RMSE = √∑ (𝑐𝑡 − 𝑟𝑡)2
𝑇
𝑡=𝑇−𝑚+1

𝑚
,       (5) 

where T represents the total number of time steps, m denotes the number of time steps reserved for 

validation, ct symbolises the projected value derived from the initial T-m time steps, and rt represents 

the unprocessed value of the time series reserved for validation at time t.  

Table 1. Time Series Forecasting toolset [32]. 

Tool Description 

Curve Fit Forecast 

(CFF) 

Curve fitting is used to forecast the values of each. Linear, parabolic, 

exponential, or S-shaped curves are all possible (Gompertz). 

Evaluate Forecasts by 

Location 

This allows various Time Series Forecasting tools with the same data to 

select the best forecast for each location. 

Exponential 

Smoothing Forecast 

(ESF) 

Holt-Winters exponential smoothing predicts the values of each node in a 

space-time cube by breaking down the time series at each node into seasonal 

and trend components. 

Forest-based Forecast 

(FBF) 

It uses a modified random forest prediction algorithm to predict values at 

each location.  
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3. Results and discussion 

3.1. The spatiotemporal trend of PM2.5 in 1998–2022 

A profile chart is created on the multidimensional raster layer to examine pollution time series in 

different provinces of South Africa. Over the past two decades, the distribution of average PM2.5 

concentrations (Figure 2) reveals that Gauteng Province had the highest mean PM2.5 concentrations (53 μg/m3) 

in 2010, while Western Cape had the lowest (6.59 μg/m3) in 1999. Several provinces’ PM2.5 pollution 

levels are comparable. Most area readings exceed the South African National Ambient Air Quality 

Standards (NAAQS) of 20 μg/m3 for the yearly average [2]. In 2010, all provinces had an increase in 

mean PM2.5. The increase could be ascribed to South Africa hosting the 2010 FIFA World Cup. 

According to a Chilean study [36], the probability that the association between PM2.5 maxima and the 

2014 FIFA World Cup is purely coincidental is 0.002%. Suggesting pollution spiked in Chile tied to 

the soccer event. Consequently, there is a strong association between these two gatherings, as 

evidenced by the prevalence of barbecues during sporting events. Due to the distances between match 

venues in South Africa, intercity transportation emissions were also a factor after international transit [37]. 

PM2.5 concentrations have declined in most provinces, except for an increase in Eastern Cape, Northern 

Cape, Western Cape, and Free State provinces after 2010. 

 

Figure 2. Pollution time series. 

3.2. The space-time cube trend analysis of PM2.5 

The Mann-Kendall trend test was used for the independent spatio-temporal column time series at 

each place within the PM2.5 space-time cube. The spatio-temporal bars of the first period are being 

compared to the spatio-temporal bars of the second period in terms of their values. If the value of the 

former is smaller than the latter’s, the comparison outcome is denoted as 1. If the value of the former 

exceeds that of the latter, the result of the comparison is represented by the integer -1. If the two entities 

being compared are equal, the comparison outcome will be represented by the numerical value of 0. 

The temporal pattern of each spatio-temporal bar is quantified using a z-score and a p-value [25].  
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A high z-value suggests a discernible rising trend in the sequence of PM2.5 increases. When the 

z-value approaches zero, a substantial change trend is absent. The significance of the change trend is 

then assessed and graded according to the information provided in Table 2. 

Table 2. Grading table of the variation trend of PM2.5 [25]. 

Classification Z-Score p-value Confidence 

(%) 

Trend of Change 

–3 Z < –2.58 p < 0.01 99 Downward 

–2 –2.58 ≤ Z < –1.96 0.01 ≤ p < 0.05 95 Downward 

–1 –1.96 ≤ Z < –1.65 0.05 ≤ p < 0.1 90 Downward 

0 –1.65 ≤ Z < 1.65 p ≥ 0.1 – no significant trend 

1 1.65 ≤ Z < 1.96 0.05 ≤ p < 0.1 90 Upward 

2 1.96 ≤ Z < 2.58 0.01 < p ≤ 0.05 95 Upward 

3 Z ≥ 2.58 p ≤ 0.1 99 Upward 

The hierarchical visualisation of the data obtained from the Mann-Kendall trend test is depicted 

in Figure 3, with the values of Trend Bin being used as the basis for the hierarchy. The figure illustrates 

the presence of green regions, which correspond to the PM2.5 data bars exhibiting a declining trend. 

Out of the 9907 data cube locations representing PM2.5 sites, 1099 data cube locations showed a 

discernible decrease trend. In general, the spatial distribution of these declining space-time cube bars 

is mainly concentrated in Mpumalanga (36.6%), Limpopo (16.5%), KwaZulu Natal (10.7%), and in 

the Gauteng region, comprising 1.8% of the total percentage. The areas in purple in Figure 3 exhibit a 

temporal and spatial increase in PM2.5 levels. No significant trend occurred in the 6762 data cube 

locations, accounting for 68.3%. Using the map in Figure 3, it is possible to see the overall trends of 

PM2.5 in the different South African provinces. Over this period (1998–2022), annual PM2.5 has 

steadily declined in Limpopo, North West, Gauteng, Mpumalanga, and Kwa-Zulu Natal regions to the 

point where it is now consistently below the long-term average. In the Northern Cape and Eastern Cape 

provinces, the PM2.5 has increased. Annual PM2.5 trends in the Western Cape and Free State provinces 

are more challenging to identify as the upward and downward trends are balanced, but it appears they 

have slowly but steadily increased. 

 

Figure 3. Space-time cube trend of PM2.5 using the Mann-Kendall trend test from 1998–2022. 
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Areas with no significant trend in the central area (Figure 3) are identified as Intensifying Hot 

Spots in Figure 4. This might seem to show a discrepancy, but the difference lies in the focus of the 

two methods. The Mann-Kendall trend test focuses on trends in the data values over time, while the 

Emerging Hot Spot Analysis focuses on the spatial clustering of these values and how it changes over 

time. Therefore, an area could show no significant trend in the Mann-Kendall trend test (meaning the 

values do not consistently increase or decrease over time), but be identified as an “Intensifying Hot 

Spot” in the Emerging Hot Spot Analysis. This could occur if the area has been a significant hot spot 

for most of the time steps and the intensity of clustering in each time step is significantly increasing. 

This means that even though the values themselves may not show a consistent trend over time, the 

spatial clustering of these values is becoming more intense, which is what the Emerging Hot Spot 

Analysis is designed to detect. 

3.3. Spatio-temporal hot and cold spot patterns of PM2.5 concentrations  

This study utilised the space-time cube representation of PM2.5 concentrations in South Africa to 

identify areas with elevated and reduced levels of PM2.5 dispersion. It also examined the dynamic 

aggregation characteristics of these areas from 1998 to 2022. The findings indicate that 9.3% of sites 

were Intensifying Hot Spots, 6.9% were Persistent Hot Spots, 2.7% were Diminishing Hot Spots, 

21.4% were Persistent Cold Spots, and 42.6% exhibited no discernible pattern (Figure 4). Hotspots 

were notably concentrated in provinces such as North West, Free State, KwaZulu-Natal, Gauteng, 

Mpumalanga, and Limpopo’s foothills, which collectively account for over fifty percent of South 

Africa’s population [38]. Specifically, in Mpumalanga, hotspots were observed around Mbombela, 

Secunda, Ermelo, Delmas, and Ogies, regions known for a notable density of coal-fired power plants. 

Emissions from 14 facilities in these areas resulted in 305 to 650 premature fatalities in 2016 [39]. 

Similarly, the Gauteng conurbation, South Africa’s most densely populated province, exhibited the 

largest concentration of anthropogenic emissions from various sources [40]. Weather patterns transport 

contaminated air, particularly from Mpumalanga’s power stations and biomass burning, to major 

metropolises like Johannesburg and the country’s capital, Pretoria, in Gauteng province [41]. Persistent 

Hotspot areas in the North West Province include Rustenburg, Brits, Lichtenburg, and Sun City. The 

provinces of North West, Gauteng, Mpumalanga, and portions of Limpopo persistently exhibited 

elevated PM2.5 levels for 90% of the period from 1998 to 2022. 

 

Figure 4. Emerging hot spot patterns of PM2.5 from 1998–2022. 
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In the Free State, Sasolburg town is classified as an Intensifying Hot Spot, Harrismith town as a 

Persistent Hot Spot, and Petrusburg and Boshof towns as Sporadic Hot Spots. Air quality in Sasolburg 

is influenced by the existence of coal and the making of liquid fuels out of coal [42]. PM2.5 

concentrations range from Persistent, Intensifying, Consecutive, and Sporadic Hot spots from the 

western portions of KwaZulu Natal to Durban. KwaZulu Natal and Free State are generally designated 

as Sporadic Hot Spots, which means they have had high PM2.5 readings less than 90% of the time 

during the past 25 years. In addition, they have never had statistically low PM2.5 levels. The statistically 

significant spatial clusters of high values (Hot Spots) identified in the above areas form part of the 

Vaal Triangle Airshed Priority Area (VTAPA). The VTAPA is confronted with intricate and enduring 

air pollution challenges due to its proximity to various commercial, agricultural, residential, industrial, 

and mining activities [43]. It was estimated that the source group comprising industrial, mining, and 

institutional fuel-burning in the Vaal triangle accounted for 65% of the cases of chronic bronchitis [44]. 

Western Cape, Northern Cape, and Eastern Cape are statistically insignificant. Hence, no pattern 

for PM2.5 was identified. South Africa’s southern and western coastline regions have the lowest 

quantities of pollution, whereas inland cities have the highest concentrations. Coastal regions exhibit 

lower exposure levels to emissions from power plants compared to inland urban areas. In their study, 

Adeyemi et al. [41] observed the presence of air masses that originated from countries located to the north 

of South Africa. These air masses were found to migrate inland due to biomass-burning activities primarily 

conducted for space heating. The researchers further noted that these air masses have a significant 

impact on the air quality conditions, particularly in the city of Johannesburg, as compared to coastal 

regions [41,42,44]. The geographical disparities in emission sources between inland and coastal areas 

exhibit variations. For instance, in provinces such as KwaZulu Natal and Western Cape, the emission 

sources are susceptible to the influence of transboundary air pollution, which occurs when air masses 

from neighbouring jurisdictions settle in these areas. Conversely, inland emissions predominantly affect 

Johannesburg, although transboundary sources also contribute to the overall pollution levels [45]. 

3.4. Spatio-temporal 3D representation of hot and cold spots  

In Figure 5, the vertical columns extending from the bottom to the top illustrate the evolution of PM2.5 

values over time. The bottom cube represents the year 1998, and the top cube represents the year 2022. 

Red blocks represent locations and times with elevated PM2.5 readings. Blue blocks represent low-

level values. Figure 5(a) depicts a Diminishing Hot Spot at eMahlaleni, where values have declined to 

below 30 μg/m3 since 2012. eMahlaleni is located inside the highveld priority area, which is 

characterised by intensive mining, coal-fired power plants, and industry. Similarly, a study by 

Matandirotya and Burger [46] identified a decreasing trend for PM2.5 values with a confidence interval 

of p0.001 in eMahlaleni. A Diminishing Hot Spot has been a statistically significant hot spot for 90% 

of the time-step intervals, including the last time step. In addition, the level of clustering in each time 

step is statistically and significantly decreasing over time. In Figure 5(b), Sasolburg shows space-time 

cubes are Hot and increasing over time. Sebokeng, as illustrated in Figure 5(c), is a Persistent Hot Spot 

characterised by relatively stable values (39.9 to 49.1 μg/m3) across the entire time series, exhibiting 

minimal variation. Sebokeng and Sasolburg are constituent localities within the Vaal Triangle, an 

extensively industrialised region officially classified as a priority area for air pollution mitigation. This 

designation is primarily motivated by public health concerns arising from the region’s elevated levels 

of air pollution, as acknowledged by Shikwambana et al. [47]. One enduring consequence of the 

planning policies implemented during the Apartheid era was the deliberate clustering of industry and 

working-class neighbourhoods near one another. This was helpful in the 1960s and 1970s. However, 
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the subsequent population growth in these towns and the concurrent rise in industrial production have 

given rise to a significant environmental predicament [48]. The main contributors to PM2.5 air pollution 

in Sebokeng include particulate matter from dust, emissions from vehicles, and the combustion of coal in 

residential areas [46]. Also, the regions above experience the highest amounts of PM2.5 in winter [1]. 

 

Figure 5. Space-time cube of South African yearly PM2.5 concentrations in a) eMahlaleni, 

b) Sasolburg, c) Sebokeng, d) Edendale, and e) Thabazimbi. 

Due to the increasing demand for space heating, residential fuel consumption in low-income 

communities increases throughout the winter. The Sasol Chemical Industries Complex in Sasolburg is 

a prominent source of PM2.5 and generates secondary aerosols in surrounding areas [49]. During the 

winter season, a significant portion of the trajectory, approximately 75%, is influenced by an air mass 

originating from northern South Africa. This air mass follows a brief journey through Botswana and 

the mining regions of the North West Province. This observation highlights the contribution of both 

local and regional sources of pollutants. The summer/autumn air mass originates from Mozambique 

and traverses the mining and industrial districts of the Mpumalanga region along its trajectory. The 

predominant air mass is responsible for most (55%) of the arriving trajectories towards the regions 

next to Sasolburg and Sebokeng [49]. The presence of these air masses may influence the observed 

high concentrations of PM2.5 in certain places. Figure 5(d) depicts a Consecutive Hot Spot in Edendale, 

where statistically significant hot spots have occurred continuously over numerous years. The PM2.5 

concentration ranges from 23.98 to 33.15 μg/m3. The areas close to Thabazimbi (Figure 5(e)) are Sporadic 

Hot Spots, where an “on-again, off-again hot spot” is depicted by a switch between lighter and darker 

colours multiple times over the time series. The PM2.5 concentration ranges from 17.32 to 33.15 μg/m3. 

3.5. PM2.5 concentration forecasting through 2029 

In this study, South Africa’s PM2.5 yearly average concentration is projected to 2029 using the Time 

Series Forecasting tool. After applying three forecasting algorithms to the space-time cube of PM2.5 

concentrations, the Evaluate Forecast by Location tool determines the ideal forecast for each area in South 

Africa. The outcome is a hybrid forecast in which each site is predicted using the optimal technique. The 
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Vaal Triangle, particularly Vereeniging, is notorious for its air pollution and respiratory diseases [50]. The 

major causes of pollution include mining, energy production, and other industrial activities.  

With a Validation Root Mean Square Error of 1.45 μg/m3, the Curve Fit Forecast tool determined 

that the exponential curve type best fits Vereeniging. The blue dots in the graph of Figure 6 represent 

the actual measured PM2.5 values, while the orange dots represent the fitted and predicted values. The 

South African map (top right corner) in Figure 6 has a heavier shade of blue, indicating places with 

high PM2.5 forecasts, while the lighter shade of blue indicates areas with low PM2.5 forecasts. The map 

in Figure 6 displays the results of the Exponential Smoothing Forecast on PM2.5 data in South Africa. 

Figure 6 also displays the PM2.5 time series graph that exhibits cyclic increases and decreases for 

Vereeniging (green dot on the map). 

 

Figure 6. Forecasting of PM2.5 for Vereeniging (in green) to 2029 using ESF with pop-up 

showing forecast values and confidence interval. 

A confidence interval is also supplied to show the forecast’s reliability. The fluctuating trend in 

Vereeniging increases the confidence interval. The approach produces a 90% confidence interval for 

the estimates, represented by the orange translucent cone surrounding the predicted line in Figure 6. 

The map in Figure 7 depicts PM2.5 prediction for South Africa to 2029 using a Forest-based 

Forecast. The darker shades represent higher PM2.5 concentrations, while lighter shades represent 

lower concentrations. Figure 7 also shows the pop-up graph displaying Vereeniging’s forecast values 

and confidence interval (green dot on the map). According to the graph, the overall PM2.5 concentration 

in Vereeniging is anticipated to remain above the South African annual air quality guideline of 20 μg/m3. 

It will not meet the current national PM2.5 standard within the forecasted years. 
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Figure 7. Forecasting of PM2.5 for Vereeniging (in green) to 2029 using FBF with a pop-

up showing forecast values and confidence interval. 

Different areas in South Africa exhibit varying upward and downward trend patterns. Hence, a 

single forecast model cannot be applied to all areas. Once all three forecasting algorithms have been 

used for the dataset, the Evaluate Forecasts by Location tool becomes instrumental in discerning the 

most suitable forecast for each location. The result is a hybrid forecast that employs the most 

appropriate technique for predicting PM2.5 levels across various areas in South Africa. Figure 8 

demonstrates that the Forest-based Forecast can accurately capture the complex trends and patterns of 

PM2.5 concentrations in Vereeniging. 

 

Figure 8. Best forecast method at Vereeniging (in green) to 2029. 

In this study, the performance of three distinct models was assessed using validation RMSE, which 

measures the models’ forecasting capability during the validation run. According to the data presented 
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in Figure 8 and Table 3, it can be observed that the validation RMSE values at Vereeniging were the 

lowest for the Forest-based Forecast model (1.38), followed by Curve Fit (1.45) and Exponential 

Smoothing (1.57). This suggests that the Forest-based Forecast model exhibits higher prediction 

accuracy, aligning with the findings of [51], who also reported superior performance of forest-based 

models in predicting air quality parameters. 

Table 3. The result of three different models at Vereeniging. 

Indicators Models 

CFF ESF FBF 

FRMSE 1.96 2.01 1.18 

VRMSE 1.45 1.57 1.38 

This suggests that the Forest-based Forecast model exhibits higher prediction accuracy. A larger 

root mean square error (RMSE) signifies a significant discrepancy between the observed and predicted 

values. Because this study adopts a spatial approach to this problem and allows these models to differ 

from location to location, one of the most effective methods to comprehend spatiotemporal trends is 

the Evaluate Forecasts by Location method. The Evaluate Forecasts by location technique reveals that 

complicated time series patterns in Hot Spot areas of North West, Free State, KwaZulu Natal, Gauteng, 

and Mpumalanga are primarily modeled using Forest-based forecasting or exponential smoothing. In 

South Africa, Exponential smoothing and Forest-based Forecasting account for 24.6% and 20.9% of 

forecasting methods, respectively. Both exponential smoothing and the random forest-based technique 

effectively handle complex time series, including seasonal or cyclical characteristics in the data that 

can make forecasting difficult, a finding that corroborates the work of Liu et al. [52]. Curve Fit Forecast 

is primarily used to model places with cold spots and no significant trends. Curve Fit Forecast makes 

up 54.5% (Exponential, 8.7; Gompertz, 23.4; Linear, 13.8; Parabolic, 8.6). The Evaluate Forecasts by 

Site tool allows the mapping of several forecasting models over the study region based on how well 

they correspond to each location. If the PM2.5 levels exhibited a consistent pattern throughout all 

regions in South Africa, it would be anticipated that the map in Figure 8 would predominantly display 

a uniform colour. Given the absence of this circumstance, it becomes evident that the process of 

modeling PM2.5 is highly intricate, underscoring the significance of possessing multiple methods 

available and the tools to evaluate them. This finding corroborates previous research highlighting the 

multifaceted nature of air quality forecasting and the importance of employing diverse modelling 

techniques [53]. Observing different locations for which the same model is applied provides significant 

insight into the likelihood that these locations also share comparable characteristics. 

4. Conclusions 

The primary contribution of this work is the investigation of spatio-temporal dynamic 3D 

properties of PM2.5 concentrations at a high resolution using emerging geographical and temporal hot 

spots. This study shows fine particulate matter remains a significant concern, particularly in the North 

West, Gauteng, Free State, and Mpumalanga. The temporal profile chart and space-time cube depicted 

an overall decrease in PM2.5 concentration across the research period. The Mann-Kendall trend test 

shows downward trending space-time cube bars are mainly distributed in Mpumalanga (36.6%) and 

Limpopo (16.5%). At the current rate, compliance with existing requirements will take years and 

decades at specific sites. The results obtained in this study are similar to those obtained by [10]. 
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However, this study expands the literature using space-time mining analysis and locational forecasting. 

Space-time pattern mining tools are utilized to analyze and comprehend pollutant data. 3D 

visualisation enhanced comprehension of the patterns that each hot spot reflects. The Time Series 

Forecasting tool identifies future patterns and recommends the most appropriate statistical model to 

employ in a given area. Even though time series forecasting is not explicitly spatial, it is now possible 

to detect spatial patterns in the data by observing which model is selected at various areas, making 

capturing these hybrid results quite intriguing. Future studies will benefit from improved accuracy of 

satellite retrieved PM2.5 if monitoring stations in South Africa are optimised to have monitoring data 

that are more spatially representative.  
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