
AIMS Environmental Science, 11(2): 279–303. 
DOI: 10.3934/environsci.2024013 
Received: 24 January 2024 
Revised: 31 March 2024 
Accepted: 24 April 2024 
Published: 28 April 2024 

http://www.aimspress.com/journal/environmental 

 

Research article 

A comprehensive bi-objective optimization model to design circular 

supply chain networks for sustainable electric vehicle batteries 

Afshin Meraj1, Tina Shoa1, Fereshteh Sadeghi Naieni Fard2 and Hassan Mina3,* 

1 College of Engineering and Computing Sciences, Vancouver Campus, New York Institute of 
Technology, Vancouver, Canada 

2 Department of information Science, University of North Texas, Denton, TX76207, USA 
3 Prime School of Logistics, Saito University College, Petaling Jaya, Selangor, Malaysia 

* Correspondence: Email: Hassan.mina@saito.edu.my; Tel: +989382588496. 

Abstract: As electric vehicles (EVs) continue to advance, there is a growing emphasis on 
sustainability, particularly in the area of effectively managing the lifecycle of EV batteries. In this 
study, an efficient and novel optimization model was proposed for designing a circular supply chain 
network for EV batteries. In doing so, a comprehensive, bi-objective, mixed-integer linear 
programming model was employed. It is worth noting that the current model outlined in this paper 
involved both forward and reverse flows, illustrating the process of converting used batteries into 
their constituent materials or repurposing them for various applications. In line with the circular 
economy concept, the current model also minimized the total costs and carbon emission to develop 
an inclusive optimization framework. The LP-metric method was applied to solve the presented bi-
objective optimization model. We simulated six problems with different sizes using data and experts' 
knowledge of a lithium-ion battery manufacturing industry in Canada, and evaluated the performance 
of the proposed model by simulated data. The results of the sensitivity analysis process of the 
objective functions coefficients showed that there was a balance between the two objective functions, 
and the costs should be increased to achieve lower emissions. In addition, the demand sensitivity 
analysis revealed that the increase in demand directly affects the increase in costs and emissions. 

Keywords: circular economy; sustainable supply chain; electric vehicle battery; optimization; LP-
metric method 
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1. Introduction 

When it comes to sustainability in transportation, electric vehicle (EV) batteries are assigned 
much attention and are supposed to transform the automotive industry. Today, the whole world is 
thinking about how to counterattack global warming and climate change and how to minimize 
greenhouse gas emissions. In this light, EVs enter the scenario to solve the issue since their 
application may lead to the creation of a more environmentally friendly context [1]. Indeed, EV 
batteries are placed in the focal center of this technological transformation as they enable emission-
free mobility. These batteries make a great contribution to sustainable transportation since they 
prepare the needed energy sources for powering EVs and eliminate the need for fossil fuels [2]. 

There is a noticeable ecological footprint from EV battery production to their use in emission-
free vehicles. It is noteworthy that the processing of raw materials, including nickel, lithium, and 
cobalt for battery production often brings environmental and social challenges [3,4]. In addition, the 
manufacturing scenarios pertaining to battery production may lead to the emission of carbon and 
some other polluting elements. Although EVs are significantly less polluting than other alternatives, 
this environmental superiority may sometimes be ignored at the cost of the energy and resource 
necessary in the process of battery manufacturing [5]. Moreover, the end-of-life phase is another 
challenge since the inappropriate disposal or ineffective recycling of these batteries may result in the 
production of highly dangerous wastes and their release into the environment [6]. Suitable supply 
chain measures should be taken in this area to eliminate these adverse environmental consequences 
and develop sustainable criteria. Therefore, there is a pressing need for the development of a circular 
supply chain approach that contains proper recycling, eco-friendly manufacturing, responsible 
sourcing, and suitable disposal methods [7]. 

The circular supply chain, in the scope of EV batteries, has come into play as a transformative 
and revolutionary approach that calls for an updated version of sustainability [8]. A circular supply 
chain is beyond a linear approach and, indeed, is an interconnected series of processes whose aim is 
to opt for resource optimization, reduction of waste production, and improvement of closed-loop 
systems [9]. This concept receives a high status within the scope of EV batteries since it provides a 
desirable opportunity to cope with the adverse environmental impacts arising from the production, 
use, and end-of-life of EV batteries [10]. 

When great value is assigned to circularity, the conventional model of "take-make-dispose" can 
be replaced by another system with the capability of efficient recycling, recovery, and reuse of 
battery materials. In this inclusive approach, the whole lifespan of EVs is taken into account from the 
preparation of raw materials for their production to their application in vehicles and end-of-life [11].  

If EV batteries are carefully designed and manufactured, each phase of their lifecycle comes out 
with the least possible loss of useful resources and the highest possible degree of sustainability [12]. 
This involves adopting practices such as efficient sourcing of raw materials, waste reduction, reduced 
energy consumption, and the integration of the intended chain process from collection and 
refurbishment to the recycling of used batteries [13,14]. 

The unanimous practices and cooperation of multiple stakeholders is needed to appropriately 
develop circularity within the realm of EV batteries. In this area, battery manufacturers should 
employ eco-design tenets to make disassembly and reuse easy, and vehicle manufacturers should be 
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required to provide an accommodation of battery maintenance, replacement, and recycling. In the 
same way, battery recyclers should be responsible for the development of an effective and 
environmentally friendly roadmap for the extraction of useful materials from end-of-life batteries. 
Additionally, policymakers should adopt proper rules and regulations that support sustainability and 
economic circularity [15]. 

Another challenge in this area pertains to integrating mathematical programming models in the 
development of a desired circular supply chain for EVs as it is a great step to transitioning toward 
sustainability and circularity in the scope of battery production. Policymakers can have permission to 
direct the complex framework of economic circularity when mathematical optimization techniques 
are managed appropriately and effectively. This leads to the unity of waste reduction, resource use, 
and closed-loop systems. The output can be the emergence of a quantitative framework through 
which one can analyze different elements and processes in this domain, including inventory 
management, production capacity, recycling process, and transportation routes. Finally, cost-
effectiveness, minimized environmental pollution, and greenness will be there. With the application 
of multi-objective solution approaches, conflicting goals like simultaneous efficient resource use and 
minimized carbon emissions can be balanced, which can finally be directed toward the development 
of a desirable circular supply chain for EV batteries. 

The literature review shows that one of the most widely used tools in closed-loop/circular 
supply chain network configuration is the mathematical programming tool that has been employed in 
various industries, such as the healthcare industry [16–18], textile industry [19,20], automotive 
industry [21–23], lead acid battery industry [24–26], plastic industry [27], food industry [28,29], 
agriculture industry [30–32], and tire industry [33–35].  

In Table 1, our work is compared with existing papers to show the research gap. The literature 
review shows that there is only one article (i.e., Tavana et al. [11]) that has used the mathematical 
programming tool to structure a circular supply chain in the EV battery industry. For this purpose, 
Tavana et al. [11] developed a bi-objective mixed-integer linear programming (MILP) model to 
make optimal decisions in the EV battery industry by considering circularity. Although they consider 
both forward and reverse flows, their network was structured in a general form and lacked alignment 
with real-world scenarios. They have assumed that all retired batteries can be refurbished and after 
processing can be used as EV batteries, which is not necessarily the case. In practical scenarios, 
retired EV batteries are categorized into three groups. The first group consists of batteries with 
sufficient remaining capacity, suitable for use in the manufacturing of second-hand EV batteries. The 
second group encompasses batteries repurposed for backup power or energy storage applications. 
The third group involves batteries with low remaining capacity, considered cost-ineffective for reuse 
and necessitating recycling. According to our best knowledge, in this study, for the first time, a 
comprehensive bi-objective MILP model is formulated to structure a circular supply chain to 
optimize strategic and operational decisions in the EV battery industry. The proposed model reflects 
an accurate view of the real world in the EV battery industry by structuring operations with details. 
Overall, the key contributions of this study include: 
• Developing a comprehensive bi-objective MILP model to manage new and retired EV batteries 

considering different recycling technologies; 
• Applying an LP-metric method to minimize total costs and CO2 emissions simultaneously in 

both forward and reverse flows of the network; 
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• Investigating the effectiveness of the presented bi-objective MILP model using simulated data 
derived from the real world. 

Table 1. Comparison of the current study with some existing papers. 

 M
odel type 

M
ulti-product 

M
ulti-period 

M
ulti-objective 

Facility location 

Forw
ard flow

 

R
everse flow

 

R
ecycling technology 

H
eterogenous vehicles 

C
ircular econom

y 

Environm
ental issues 

Supplier selection 

O
rder allocation 

Centers 

EV
 battery industry 

M
anufacturing 

C
ollection 

R
efurbishm

ent 

R
ecycling 

D
isposal 

[27] MILP √ √ √ √ √ √ - - - - √ √ √ √ - √ - - 

[36] MILP √ √ √ √ √ √ - √ - √ √ √ √ √ √ - √ - 

[34] MILP √ - √ √ √ √ √ - - √ √ √ √ - - √ - - 

[24] MILP - - √ √ √ √ - - - √ - - √ √ - √ √ - 

[17] MILP √ √ √ √ √ √ - - - - √ √ √ - - √ - - 

[33] MILP √ √ √ √ √ √ - - - √ √ √ √ √ √ - √ - 

[21] MILP - - √ √ √ √ - √ - √ √ √ √ √ √ √ √ - 

[19] MILP √ √ √ √ √ √ - - - √ √ √ √ √ √ √ √ - 

[31] MILP √ √ √ √ √ √ - - √ √ - - √ - - √ - - 

[32] MILP √ √ √ √ √ √ - - √ √ √ √ √ √ - √ - - 

[9] MILP √ √ √ √ √ √ - √ √ √ √ √ √ √ - √ √ - 

[11] MILP √ √ √ √ √ √ - √ √ √ - - √ √ - - - √ 

This study MILP √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

The rest of this study is organized as follows. The problem statement and proposed MILP model 
are presented in Section 2. Section 3 is allocated to the results. Sensitivity analysis and managerial 
implications are presented in Sections 4 and 5, respectively. Finally, the conclusion is provided in 
Section 6. 

2. Problem statement and proposed model 

In this section, a bi-objective mathematical model is formulated to manage the production, 
distribution, recycling, and disposal of EV batteries in a circular supply chain network. EV battery 
assembly centers buy cells from suppliers and produce all kinds of EV batteries, then sending them 
to demand points. Retired EV batteries are collected from demand points by collection centers. In 
collection centers, retired EV batteries are divided into three groups. The first group are batteries that 
have the potential to be used in the EV battery industry. This group of batteries are sent to the EV 
battery assembly center. The second group are batteries that are not suitable for use in EV batteries, 
but are effective for providing backup power, energy storage, etc. This group of batteries should be 
transferred to a second life EV battery production center. Note that the second group of batteries is 
divided into two categories. The first category are batteries used for forklifts and heavy vehicles, and 
the second category are batteries that are utilized in the production of energy storage batteries. The 
third group of retired EV batteries are unusable and must be recycled. These batteries are broken 
down into their components. The components that can be recycled are processed in recycling centers, 
and the rest of them will be disposed. It should be noted that the recycled components are sold to 
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suppliers. The general structure of the investigated network is depicted in Figure 1. 

SuppliersEV battery 
assembly center

Demand 
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Recycling 
centers
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Second life battery 
production center

Second life battery 
markets

Forward flow
Reverse flow

 

Figure 1. The investigated network. 

The objectives of this model are to minimize total costs and CO2 emission simultaneously. 
Network costs are divided into two categories, including strategic and operational costs. Note that 
processing costs in centers, costs of purchasing cells, transportation costs, and ordering costs are 
considered operating costs, and setup costs are considered strategic costs. We have assumed that 
these costs are the influential costs in structuring the supply chain network of EV batteries. 

It should be noted that the implementation of a circular economy in any industry is always 
associated with barriers and challenges, such as a lack of funds, infrastructure limitations, etc. 
Researchers who use mathematical programming tools to design circular supply chain networks 
assume that there are no barriers to implementing a circular economy [9,11,37]. In other words, 
circular supply chain network design happens when barriers are removed. In this research, as in the 
papers presented in the literature, it is assumed that the barriers to the implementation of a circular 
economy in the EV battery industry have been removed. The assumptions of the presented 
optimization model are given below: 
• The proposed model is multi-product and multi-period, and considers forward and reverse flows 

in the network design. 
• There is one EV battery assembly center. 
• Collection, second life EV battery production, recycling, and disposal centers are located by the 

model. 
• Suppliers, collection, second life EV battery production, recycling, disposal centers, and vehicles 

are capacitated. 
• Vehicles are heterogeneous. 
• Shortages in demand points are not allowed. 

Mathematical Model 
Indices 

{ }1 2p P∈ , , ...,  Component 
{ }1 2b B∈ , , ...,  EV battery 
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{ }1 2q Q∈ , , ...,  Cell 
{ }1 2d D∈ , , ...,  Demand point 

{ }1 2c C∈ , , ...,  Collection center 

{ }1 2s S∈ , , ...,  Second life EV battery production center 

{ }1 2g G∈ , , ...,  Supplier 

{ }1 2r R∈ , , ...,  Recycling center 

{ }1 2e E∈ , , ...,  Recycling technology 

{ }1 2f F∈ , , ...,  Disposal center 

{ }1 2v V∈ , , ...,  Vehicle 

{ }1 2t T∈ , , ...,  Time period 

Parameters 
ASS

btδ  The cost of assembling the type b EV battery in time period t 
CL
bctδ  The cost of processing the type b EV battery at collection center c in time period t 
SL
bstδ  The cost of refurbishing the type b EV battery at second life EV battery production 

center s in time period t 
RC

bretδ  The average cost of recycling the components of the type b EV battery at recycling 
center r using recycling technology e in time period t 

DS
pftδ  The average cost of disposing of component p at disposal center f in time period t 
SP
qgtδ  The purchase price of one unit of a type q cell from supplier g in time period t 
SP
pgtλ  The suggested price of supplier g for buying each unit of component p in time period t 
MR I

btλ −  The selling price of the type b second life EV battery categorized in group I at the 
market in time period t 

MR II
btλ −  The selling price of the type b second life EV battery categorized in group II at the 

market in time period t 
SP ASS
gϑ

−  The distance between the supplier g and the EV battery assembly center 
ASS DM

dϑ
−  The distance between the EV battery assembly center and the demand point d 

DM CL
dcϑ −  The distance between the demand point d and the collection center c 
CL ASS
cϑ

−  The distance between the collection center c and the EV battery assembly center 
CL SL
csϑ −  The distance between the collection center c and second life EV battery production 

center s 
SP SL
gsϑ −  The distance between the supplier g and the second life EV battery production center s 
CL RC
crϑ −  The distance between the collection center c and the recycling center r 
SL
sϑ  The distance between the second life EV battery production center s and the second life 

EV battery market 
RC DS
rfϑ −  The distance between the recycling center r and the disposal center f 
RC SP
rgϑ −  The distance between the recycling center r and the supplier g 
SP
qgtκ  The capacity of the supplier g to supply a type q cell in time period t 
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CL
cκ  The capacity of the collection center c for processing the EV batteries 
SL
sκ  The capacity of the second life EV battery production center s 
RC
reκ  The capacity of the type e recycling technology at recycling center r 
DS
fκ  The capacity of the disposal center f 
VH
vκ  The capacity of the vehicle v 
SP
gtα  The cost of ordering the supplier g to purchase the cells in time period t 
CL
cα  The cost of establishing the collection center c 
RC
rtα  The cost of ordering to the recycling center r in time period t 
DS
ftα  The cost of ordering to the disposal center f in time period t 
SL
sα  The cost of establishing the second life EV battery production center s 
bdtβ  The demand of the demand point d for the type b EV battery in time period t 

vtξ  Cost of shipping for each unit distance by the vehicle v 
1
bWG  Weight of the type b EV battery  
2

qWG  Weight of the type q cell 

pbeΦ  Rate of the type p component extracted from the type b EV battery using type e 
recycling technology 

RC
beCO  The average amount of CO2 emitted for recycling components of the type b EV battery 

by type e recycling technology 
VH
vCO  The average amount of CO2 emitted by vehicle v per unit of distance 

pbγ  The amount of the type p component used in the type b EV battery 
1
qbϕ  The number of type q cells required to make one unit of the type b EV battery 
2
qbϕ  The average number of type q cells required to refurbish one unit of the type b EV 

battery usable in EVs 
3
qbϕ  The average number of type q cells required to make one unit of the type b second life 

EV battery categorized in group I 
4
qbϕ  The average number of type q cells required to make one unit of the type b second life 

EV battery categorized in group II 
bdtRB  The number of type b retired EV batteries at demand point d in time period t 

RC
bψ  Rate of the type b EV battery sent to the recycling centers 
ASS
bψ  Rate of the type b EV battery sent to the EV assembly center 
SL
bψ  Rate of the type b EV battery sent to the second life battery production centers to make 

the type I second life EV battery 
M  A large number 

Variables 
1
0

SP
gtU 



 
In case of selecting the supplier g to purchase the cells in time period t 
Otherwise 

1
0

CL
cU 




 In case of establishing the collection center c in time period t 
Otherwise 

1SLU 
  

In case of establishing the second life EV battery production center s 
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Otherwise 
1
0

RC
retU 




 
In case of selecting the recycling center r with type e technology in time period t 
Otherwise 

1
0

DS
ftU 




 
In case of selecting the disposal center f in time period t 
Otherwise 

SP ASS
gvtN −  The minimum number of vehicles v used to ship the cells from the supplier g to the EV 

battery assembly center in time period t 
ASS DM

dvtN −  The minimum number of vehicles v used to ship the EV batteries from the EV battery 
assembly center to the demand point d in time period t 

DM CL
dcvtN −  The minimum number of vehicles v used to ship the EV batteries from the demand 

point d to the collection center c in time period t 
CL ASS
cvtN −  The minimum number of vehicles v used to ship the EV batteries from the collection 

center c to the EV battery assembly center in time period t 
CL SL
csvtN −  The minimum number of vehicles v used to ship the EV batteries from the collection 

center c to the second life EV battery production center s in time period t 
SP SL
gsvtN −  The minimum number of vehicles v used to ship the cells from the supplier g to the 

second life EV battery production center s in time period t 
CL RC
crvtN −  The minimum number of vehicles v used to ship the EV batteries from the collection 

center c to the recycling center r in time period t 
SL I
svtN −  The minimum number of vehicles v used to ship the type I second life EV batteries 

from the second life EV battery production center s to the market in time period t 
SL II
svtN −  The minimum number of vehicles v used to ship the type II second life EV batteries 

from the second life EV battery production center s to the market in time period t 
RC DS
rfvtN −  The minimum number of vehicles v used to ship the components from the recycling 

center r to the disposal center f in time period t 
RC SP
rgvtN −  The minimum number of vehicles v used to ship the components from the recycling 

center r to the supplier g in time period t 
SP ASS

qgtW −  The number of type q cells purchased from the supplier g by the EV battery assembly 
center in time period t 

SP ASS I
qgtW − −  The number of type q cells purchased from the supplier g by the EV battery assembly 

center to make new EV batteries in time period t 
SP ASS II

qgtW − −  The number of type q cells purchased from the supplier g by the EV battery assembly 
center to make refurbished EV batteries in time period t 

ASS DM
bdtW −  The number of type b EV batteries shipped from the EV battery assembly center to the 

demand point d in time period t 
DM CL

bdctW −  The number of type b retired EV batteries shipped from the demand point d to the 
collection center c in time period t 

CL ASS
bctW −  The number of type b EV batteries shipped from the collection center c to the EV 

battery assembly center in time period t 
CL SL

bcstW −  The number of type b EV batteries shipped from the collection center c to the second 
life EV battery production center s in time period t 

SP SL
qgstW −  The number of type q cells shipped from the supplier g to the second life EV battery 

production center s in time period t 
CL RC

bcrtW −  The number of type b EV batteries shipped from the collection center c to the recycling 
center r in time period t 
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SL I
bstW −  The number of type b second life EV batteries categorized in group I shipped from the 

second life EV battery production center s to the market in time period t 
SL II

bstW −  The number of type b second life EV batteries categorized in group II shipped from the 
second life EV battery production center s to the market in time period t 

RC DS
prftW −  The amount of type p components shipped from the recycling center r to the disposal 

center f in time period t 
RC SP

prgtW −  The amount of type p components shipped from the recycling center r to the supplier g 
in time period t 

RC
bretW  The number of type b EV batteries recycled at the recycling center r using the type e 

technology in time period t 

Objective functions 

1
ASS ASS DM CL DM CL SL CL SL

bt bdt bct bdct bst bcst
b d t b d c t b c s t

RC CL RC DS RC DS SP SP ASS
bret bcrt pft prft qgt qgt

b c r e t p r f t q g t

SP SP SL SP SP
qgt qgst gt gt

q g s t g

Min Z W W W

W W W

W U

δ δ δ

δ δ δ

δ α

− − −

− − −

−

= × + × + × +

× + × + × +

× + ×

∑ ∑ ∑

∑ ∑ ∑

∑

, , , , , , , ,

, , , , , , , , ,

, , , ,

CL CL RC RC
c c rt ret

t c r e t

DS DS SL SL SP ASS SP ASS
ft ft s s vt g gvt

f t s g v t

ASS DM ASS DM DM CL DM CL
vt d dvt vt dc dcvt

d v t d c v t

CL ASS CL ASS CL SL
vt c cvt vt cs cs

c v t

U U

U U N

N N

N N

α α

α α ξ ϑ

ξ ϑ ξ ϑ

ξ ϑ ξ ϑ

− −

− − − −

− − −

+ × + × +

× + × + × × +

× × + × × +

× × + × ×

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

∑

, ,

, , ,

, , , , ,

, ,

CL SL
vt

c s v t

SL SL I SL II RC DS RC DS
vt s svt svt vt rf rfvt

s v t r f v t

RC SP RC SP SP RC SP MR I SL I
vt rg rgvt pgt prgt bt bst

r g v t p r g t b s t

MR II SL II
bt bst

b s t

N N N

N W W

W

ξ ϑ ξ ϑ

ξ ϑ λ λ

λ

−

− − − −

− − − − −

− −

+

× × + + × × +

× × − × − × −

×

∑

∑ ∑

∑ ∑ ∑

∑

, , ,

, , , , ,

, , , , , , , ,

, ,

( )

 

(1) 

The first objective function minimizes the total costs of the network. These costs include the cost of 
assembling the EV batteries, the cost of processing the EV batteries at the collection centers, the cost 
of refurbishing the EV batteries at the second life EV battery production centers, the cost of recycling 
and disposing of the EV batteries, the cost of purchasing the cells from the suppliers, the cost of 
ordering to the suppliers, the cost of establishing the collection centers, the cost of ordering to the 
recycling and disposal centers, the cost of establishing the second life EV battery production centers, 
and the cost of transportation, respectively. It should be noted that the income from the sale of 
components to suppliers and the sale of second life EV batteries categorized in group I and II in the 
market is deducted from the total cost of the network. 
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2
VH SP ASS SP ASS VH ASS DM ASS DM
v g gvt v d dvt

g v t d v t

VH DM CL DM CL VH CL ASS CL ASS
v dc dcvt v c cvt

d c v t c v t

VH CL SL CL SL VH SL SL I SL II
v cs csvt v s svt svt

c s v t

Min Z CO N CO N

CO N CO N

CO N CO N N

ϑ ϑ

ϑ ϑ

ϑ ϑ

− − − −

− − − −

− − − −

= × × + × × +

× × + × × +

× × + × × +

∑ ∑

∑ ∑

∑

, , , ,

, , , , ,

, , ,
(

s v t

VH RC DS RC DS VH RC SP RC SP RC RC
v rf rfvt v rg rgvt be bret

r f v t r g v t b r e t
CO N CO N CO Wϑ ϑ− − − −

+

× × + × × + ×

∑

∑ ∑ ∑
, ,

, , , , , , , , ,

)
 (2) 

The second objective function deals with the minimization of CO2 emissions caused by the 
transportation and recycling of the EV battery components. 

subject to: 
2SP ASS

qgt q
qSP ASS

gvt VH
v

W WG
N g v t

κ

−

−

×
≥ ∀
∑

, ,  (3) 

The minimum number of vehicles required to transport cells from the suppliers' locations to the EV 
battery assembly center is calculated by constraint (3). Both objective functions are minimized and 
include the variable SP ASS

gvtN − . This leads to the calculation of the smallest integer value greater than 
2SP ASS

qgt q
q

VH
v

W WG

κ

− ×∑
 for the variable SP ASS

gvtN − . 

1ASS DM
bdt b

ASS DM b
dvt VH

v

W WG
N d v t

κ

−

−
×

≥ ∀
∑

, ,  (4) 

With an argument similar to constraint (3), the minimum number of vehicles required to transport 
EV batteries from the EV battery assembly center to the demand points is determined by constraint 
(4). 

1DM CL
bdct b

DM CL b
dcvt VH

v

W WG
N d c v t

κ

−

−
×

≥ ∀
∑

, , ,  (5) 

Constraint (5) determines the minimum number of vehicles required to transport EV batteries from 
the demand points to collection centers. 

1CL ASS
bct b

CL ASS b
cvt VH

v

W WG
N c v t

κ

−

−
×

≥ ∀
∑

, ,  (6) 

1CL SL
bcst b

CL SL b
csvt VH

v

W WG
N c s v t

κ

−

−
×

≥ ∀
∑

, , ,  (7) 

1CL RC
bcrt b

CL RC b
crvt VH

v

W WG
N c r v t

κ

−

−
×

≥ ∀
∑

, , ,  (8) 



289 

AIMS Environmental Science  Volume 11, Issue 2, 279–303. 

Constraints (6) to (8) calculate the minimum number of vehicles required to transport the EV 
batteries from the collection centers to the EV battery assembly centers, second life EV battery 
production centers, and recycling centers, respectively. 

2SP SL
qgst q

qSP SL
gsvt VH

v

W WG
N g s v t

κ

−

−

×
≥ ∀
∑

, , ,  (9) 

The minimum number of vehicles required to transport cells from the suppliers' locations to the 
second life EV battery production centers is determined by constraint (9). 

1SL I
bst b

SL I b
svt VH

v

W WG
N s v t

κ

−

−
×

≥ ∀
∑

, ,  (10) 

1SL II
bst b

SL II b
svt VH

v

W WG
N s v t

κ

−

−
×

≥ ∀
∑

, ,  (11) 

Constraints (10) and (11) calculate the minimum number of vehicles required to transport the type I 
and II second life EV batteries from the second life EV battery production centers to the market, 
respectively. 

RC DS
prft

pRC DS
rfvt VH

v

W
N r f v t

κ

−

− ≥ ∀
∑

, , ,  (12) 

RC SP
prgt

pRC SP
rgvt VH

v

W
N r g v t

κ

−

− ≥ ∀
∑

, , ,  (13) 

Constraints (12) and (13) determine the minimum number of vehicles required to transport the 
components from the recycling center to the disposal centers and suppliers, respectively. 

SP ASS SP SL SP SP
qgt qgst qgt gt

s
W W U q g tκ− −+ ≤ × ∀∑ , ,  (14) 

Constraint (14) states that the number of cells shipped from each supplier to the EV battery assembly 
center and the second life EV battery production centers should not exceed the capacity of that 
supplier. 

DM CL CL CL
bdct c c

b d
W U c tκ− ≤ × ∀∑

,
,  (15) 

CL SL SL SL
bcst s s

b c
W U s tκ− ≤ × ∀∑

,
,  (16) 

RC RC RC
bret re ret

b
W U r e tκ≤ × ∀∑ , ,  (17) 

RC DS DS DS
prft f ft

p r
W U f tκ− ≤ × ∀∑

,
,  (18) 

Non-exceeding the capacity of the collection, the second life EV battery production, the recycling, 
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and the disposal centers are presented in constraints (15) to (18), respectively. 
SP ASS SP ASS I SP ASS II

qgt qgt qgtW W W q g t− − − − −= + ∀ , ,  (19) 

Cells purchased from suppliers by the EV battery assembly center are used to produce new and 
refurbished EV batteries. This issue is considered in constraint (19). 

0 1SP ASS II
qgtW q g t− − = ∀ =, ,  (20) 

In the first time period, the refurbished EV batteries are not produced in the assembly center. 
Therefore, the cells purchased for the production of refurbished EV batteries in this period should be 
zero. Constraint (20) guarantees this. 

1 1
SP ASS I

qgt ASS DM
bdt

q g dqb

W
W b t

ϕ

− −
−= ∀ =∑ ∑

,
,  (21) 

1 1
SP ASS I

qgt CL ASS ASS DM
bct bdt

q g c dqb

W
W W b t

ϕ

− −
− −+ = ∀ >∑ ∑ ∑

,
,  (22) 

The inventory balance at the EV battery assembly center for the first time period and subsequent 
periods are shown in constraints (21) and (22), respectively. 

2CL ASS SP ASS II
bct qb qgt

b c g
W W q tϕ− − −× = ∀∑ ∑

,
,  (23) 

Constraint (24) shows the relationship between the number of EV batteries shipped from collection 
centers to the assembly center and the number of cells purchased from suppliers to refurbish these 
batteries. 

ASS DM
bdt bdtW b d tβ− = ∀ , ,  (24) 

Constraint (24) guarantees that all of the demand points are serviced in all time periods. 
DM CL

bdct bdt
c

W RB b d t− = ∀∑ , ,  (25) 

In each time period, all retired EV batteries must be collected from the demand points. Constraint 
(25) provides these conditions. 

DM CL CL ASS CL SL CL RC
bdct bct bcst bcrt

d s r
W W W W b c t− − − −= + + ∀∑ ∑ ∑ , ,  (26) 

CL RC RC DM CL
bcrt b bdct

r d
W W b c tψ− −= × ∀∑ ∑ , ,  (27) 

CL ASS ASS DM CL
bct b bdct

d
W W b c tψ− −= × ∀∑ , ,  (28) 

Constraint (26) represents the inventory balance at the collection centers. Also, the number of EV 
batteries shipped from the collection centers to the recycling and assembly centers are calculated by 
constraints (27) and (28), respectively. 

CL SL SL I SL II
bcst bst bst

c
W W W b s t− − −= + ∀∑ , ,  (29) 
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Constraint (29) states that with the retired EV batteries transferred to the second life EV battery 
production center, two groups of EV batteries including the type I and II second life batteries are 
produced. 

SL I SL CL SL
bst b bcst

c
W W b s tψ− −= × ∀∑ , ,  (30) 

The number of second life EV batteries categorized in group I shipped from the second life EV 
battery production centers to the market are calculated by constraint (30). 

3 4SL I SL II SP SL
bst qb bst qb qgst

b b g
W W W q s tϕ ϕ− − −× + × = ∀∑ ∑ ∑ , ,  (31) 

Constraint (31) shows the inventory balance at the second life EV battery production centers. 
CL RC RC DS RC SP

bcrt pb prft prgt
b c f g

W W W p r tγ− − −× = + ∀∑ ∑ ∑
,

, ,  (32) 

The inventory balance at the recycling centers is stated by constraint (32). 
CL RC RC RC SP

bcrt pb pbe ret prgt
b c e g

W U W p r tγ− −× ×Φ × = ∀∑ ∑
, ,

, ,  (33) 

Constraint (33) calculates the amount of EV battery components purchased from recycling centers by 
suppliers. 

RC CL RC
bret bcrt

e c
W W b r t−= ∀∑ ∑ , ,  (34) 

The number of recycled EV batteries in each recycling center using each technology is determined 
by constraint (34). 

SP ASS SP SL SP
qgt qgst gt

q q s
W W M U g t− −+ ≤ × ∀∑ ∑

,
,  (35) 

The condition of buying cells from each supplier is to place an order with that supplier. Constraint 
(35) provides this condition. 

DM CL CL ASS CL SL CL RC CL
bdct bct bcst bcrt c

b d b b s b r
W W W W M U c t− − − −+ + + ≤ × ∀∑ ∑ ∑ ∑

, , ,
,  (36) 

CL SL SP SL SL I SL II SL
bcst qgst bst bst s

b c q g b b
W W W W M U s t− − − −+ + + ≤ × ∀∑ ∑ ∑ ∑

, ,
,  (37) 

Each center serves if it is established. This condition for collection and second life EV battery 
production centers is given in constraints (36) and (37), respectively. 

CL RC RC DS RC SP RC
bcrt prft prgt ret

b c p f p g e
W W W M U r t− − −+ + ≤ × ∀∑ ∑ ∑ ∑

, , ,
,  (38) 

RC RC
bret ret

b
W M U r e t≤ × ∀∑ , ,  (39) 

RC DS DS
prft ft

p r
W M U f t− ≤ × ∀∑

,
,  (40) 

We can only use the recycling and disposal centers that we have ordered from. Constraints (38) and 
(39) provide this condition for recycling centers, and constraint (40) provides it for disposal centers. 
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3. Results 

Table 2. The simulation algorithm for data generation. 

Indices/Parameters Functions 
p b q d c s g r e f v t, , , , , , , , , , ,  User should determine the value of indices 

ASS
btδ  Uniform (35,37) 
CL
bctδ  Uniform (2,3) 
SL
bstδ  Uniform (40,45) 
RC

bretδ  Uniform (80,90) 
DS
pftδ  Uniform (5,7) 
SP
qgtδ  Uniform (40,43) 
SP
pgtλ  Uniform (6,7) 
MR I

btλ −  Uniform (800,850) 
MR II

btλ −  Uniform (700,750) 
SP ASS ASS DM DM CL CL ASS CL SL SP SL
g d dc c cs gs

CL RC SL RC DS RC SP
cr s rf rg

ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

− − − − − −

− − −

, , , , ,

, , ,
 Uniform (10,20) 

SP
qgtκ  Round (Uniform (45000,60000)) 
CL
cκ  Round (Uniform (1500,2000)) 
SL RC DS
s re fκ κ κ, ,  Round (Uniform (500,700)) 
VH
vκ  Round (Uniform (3000,5000)) 
SP RC DS
gt rt ftα α α, ,  Uniform (300,350) 
CL SL
c sα α,  Uniform (1000,1200) 
bdtβ  Round (Uniform (70,90)) 

vtξ  Uniform (2,2.5) 
1
bWG  Uniform (100,120) 
2

qWG  Uniform (10,12) 

pbeΦ  Uniform (0.7,0.8) 
RC

beCO  Uniform (15,18) 
VH
vCO  Uniform (1,1.5) 

pbγ  Uniform (2,3) 
bdtRB  Round (Uniform (12,20)) 

RC ASS SL
b b bψ ψ ψ, ,  Uniform (0.3,0.4) 

In this section, we intend to examine the effectiveness of the proposed model using simulated 
data derived from the real world. To collect data, we used historical data and experts' knowledge of 
Company XYZ (The company name has been changed to protect its anonymity), which produces all 
kinds of lithium-ion batteries in Canada. The data collection process was associated with two 
challenges. First, we were not allowed to use real data directly due to privacy and competitive 
advantage. Second, there was no data related to some parameters in the company. The review of the 
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literature shows that in such situations, the use of simulation tools is a solution [11]. There are 
various approaches to data simulation. Using probabilistic distribution functions is one of the most 
common ones [36,38]. Tavana et al. [11] utilized probabilistic distribution functions to simulate data 
in the EV battery industry. In this vein, we also apply probabilistic distribution functions to simulate 
data, which is displayed in Table 2. 

In this paper, we utilize the LP-metric method provided by Mardan et al. [39] to convert the bi-
objective MILP model to a single-objective one. In the following, the applied LP-metric method is 
explained briefly. In this method, we must first determine the lower (upper) bound for the 
minimization (maximization) objective functions. In this research, both objective functions are 
minimization type; therefore, we must calculate the lower bound of both objective functions. For this 
purpose, we optimize the proposed model for each objective function without considering the other 

objective function. We define 1
LZ  and 2

LZ  as the lower bound of the first and second objective 

functions, respectively. Finally, we integrate the two objective functions together using Eq 41. 

1 1 2 2

1 2

(1 )
L L

LP
L L

Z Z Z ZZ w w
Z Z
− −

= × + − ×  (41) 

Where w shows the weight of the first objective function. 
When the simulated data is used to validate the optimization models, usually several problems 

are simulated in different sizes and the performance of the model is examined in the simulated 
problems. In this regard, this article simulates the data of six problems in different sizes. The sizes of 
the simulated problems are presented in Table 3. Note that the size of each simulated problem has 
increased compared to the previous problem, which means that it has grown in at least one index. 

Table 3. The size of the simulated problems. 

Problem p  b  q  d  c  s  g  r  e  f  v  t  
P1 1 1 1 3 2 2 2 2 2 2 1 2 
P2 2 1 2 4 2 2 2 2 2 2 2 2 
P3 3 2 2 4 3 2 3 2 2 2 2 3 
P4 3 2 3 5 3 3 3 3 3 3 3 3 
P5 3 3 3 6 3 3 4 3 3 3 3 4 
P6 4 3 3 7 3 3 4 3 3 3 3 4 

Now we intend to implement the proposed model for simulation problems in GAMS software. 
For this purpose, we must first change the bi-objective model to a single-objective one by applying 
the LP-metric method shown in Eq 41. Before applying the LP-metric method, we calculate the 
lower bound of the objective functions, which are given in Table 4. 

Table 4. The lower bound and optimal values of the objective functions. 

Problem 1
LZ  2

LZ  
P1 213916 848.68 
P2 279448 2194.58 
P3 814667 7040.87 
P4 1005299 10500.74 
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P5 2502051 26525.48 
P6 2814997 25935.58 

Then, with the help of Eq 41, the objective function related to the LP-metric method is 
structured for each simulated problem, which is reported in Table 5. It should be noted that the value 
of w is 0.6. 

Table 5. The LP-metric objective function for each problem. 

Problem LPZ  

P1 1 2

8
0 213916 848.68

213916
.6 0.4

848.6
Z Z− −

× + ×  

P2 1 2

8
0.6 0.4279448 2194.58

279448 2194.5
Z Z− −

× + ×  

P3 1 2

7
0.6 0.4814667 7040.87

814667 7040.8
Z Z− −

× + ×  

P4 1 2

4
0.6 0.41005299 10500.74

1005299 10500.7
Z Z− −

× + ×  

P5 1 2

8
0.6 0.42502051 26525.48

2502051 26525.4
Z Z− −

× + ×  

P6 1 2

8
0.6 0.42814997 25935.58

2814997 25935.5
Z Z− −

× + ×  

We ran the proposed model using simulated data in GAMS software and employed the CPLEX 
solver for this purpose. The optimal values of the objective functions for each simulated problem are 
denoted in Table 6. In addition, the runtime of the model in GAMS software for each problem is 
reported in Table 6. The results make it clear that the runtime grows as the problem size increases. 

Table 6. The optimal values of objective functions for each problem. 

Problem First objective function Second objective function Runtime (second) 
P1 214969 848.68 43.71 
P2 279918 2194.58 188.06 
P3 821917 7073.52 386.92 
P4 1016309 10581.32 867.55 
P5 2525691 27420.06 1278.23 
P6 2860242 26514.57 1834.89 

By comparing the results reflected in Tables 4 and 6, the logical performance of the model and 
the correctness of the results obtained from it are confirmed. The values presented in Table 4 are the 
lower bound of the objective functions and since both objective functions are minimization, the 
optimal value calculated for the objective functions by the LP-metric method should not be smaller 
than their lower bound. For example, the lower bound of the first and second objective functions for 
the first problem are equal to 213916 and 848.68, respectively. According to logical expectations, the 
optimal value obtained for both objective functions using the LP-metric method should be greater 
than or equal to their lower bound. In Table 6, the optimal values of the first and second objective 
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functions for the first problem are 214969 and 848.68, respectively, which indicates the accuracy of 
the results obtained from the model. 

4. Sensitivity analysis 

In this section, the correctness of the performance of the proposed model is investigated by 
performing the sensitivity analysis process. For this purpose, the sensitivity analysis process will be 
implemented on the demand and objective functions coefficients. In the following, first, the results of 
the demand sensitivity analysis are presented. Then the results obtained from the sensitivity analysis 
of the objective function coefficients are reported. 

4.1. Sensitivity analysis of demand 

In this section, we implement the sensitivity analysis process on the demand parameter (i.e., 

bdtβ ). Note that problem 4 (i.e., P4) is used for this purpose. We expect that with the increase in 

demand, the values of the first and second objective functions will not improve, and with its 
decrease, the values of both objective functions will not worsen. In this vein, we defined nine 
scenarios based on changes in the demand values of problem 4 and ran the proposed model for all 
scenarios in GAMS software. It should be noted that scenario 5 is the same as problem 4, and by 
moving from scenario 5 to scenario 1, the demand will gradually decrease. By moving from scenario 
5 to scenario 9, the demand will gradually increase. The mentioned scenarios along with their results 
are given in Table 7. Also, the behavior of the first and second objective functions for moving from 
scenario 1 to scenario 9 is shown in Figures 2 and 3, respectively. 

Table 7. The results obtained from the demand sensitivity analysis. 

Scenario Demand Objective function 1 Objective function 2 
S1-1 0 8 bdtβ×.  842390 9521.08 
S1-2 0 85 bdtβ×.  931544 9752.63 
S1-3 0 9 bdtβ×.  961912 10016.45 
S1-4 0 95 bdtβ×.  983674 10276.11 
S1-5 (P4) bdtβ  1016309 10581.32 
S1-6 1 05 bdtβ×.  1053642 10903.50 
S1-7 1 1 bdtβ×.  1089117 11233.98 
S1-8 1 15 bdtβ×.  1178738 11496.72 
S1-9 1 2 bdtβ×.  1210043 11764.62 
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Figure 2. The behavior of objective function 1 for moving from scenario 1 to scenario 9. 

 

 

Figure 3. The behavior of objective function 2 for moving from scenario 1 to scenario 9. 

The results reported in Table 7 show that with the increase (decrease) in demand, the value of 
both objective functions increase (decrease), which is in line with reasonable expectations.  

4.2. Sensitivity analysis of objective function coefficients 

In this section, the sensitivity of the proposed model to the objective functions coefficients is 
investigated. Similarly, the sensitivity analysis process is implemented on problem 4. When the 
coefficient of one objective function increases, the coefficient of the other objective function will 
certainly decrease. Therefore, it is expected that the optimal value of the objective function whose 
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objective function whose coefficient is reduced will not improve. In Table 8, we have defined seven 
scenarios with changes in the coefficients of the objective functions. The results of each scenario are 
given in Table 8. Also, the behavior of the first and second objective functions for moving from 
scenario 1 to scenario 7 is denoted in Figures 4 and 5, respectively. 

Table 8. The results obtained from the sensitivity analysis of the objective functions coefficients. 

Scenario w 1-w Objective function 1 Objective function 2 
S2-1 0.4 0.6 1027885 10522.44 
S2-2 0.45 0.55 1023559 10539.16 
S2-3 0.5 0.5 1021678 10554.70 
S2-4 0.55 0.45 1018950 10572.63 
S2-5 (P4) 0.6 0.4 1016309 10581.32 
S2-6 0.65 0.35 1013682 10589.21 
S2-7 0.7 0.3 1011203 10596.94 
 

 

Figure 4. The behavior of objective function 1 for moving from scenario 1 to scenario 7. 

 

 

Figure 5. The behavior of objective function 2 for moving from scenario 1 to scenario 7. 
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The results of Table 8 show that when the coefficient of each objective function increases, its 
optimal value decreases. Conversely, by decreasing the coefficient of each objective function, its 
optimal value increases. This means that the performance of the model is in line with reasonable 
expectations. Therefore, it can be concluded that the proposed model performs well and the results 
obtained from it are reliable. 

5. Managerial implications 

The current model aims at providing the conditions for the establishment of a circular supply 
chain network through which cost minimization, reduction of CO2 emission, resource use 
optimization, and sustainability improvement will come into play. This model enjoys the potential to 
act as an effective tool for stakeholders’ decision-making where they can detect the intricacies of the 
EV battery supply chain. In this way, sustainability practices are valued more than ever and, thereby, 
a bright resource-efficient future will be there. 

Moreover, manufacturers and decision-makers in this supply chain can benefit from this 
presented model, especially in terms of the EV battery issues. Manufacturers can make the best 
possible decisions so that collection centers will be set up effectively, optimal transportation 
requirements can be determined, and suitable suppliers will be selected optimally. When valuing the 
lifespan of EV batteries, the manufacturers will be able to set a sustainable supply chain network 
with the aim of mitigating costs and environmental adverse effects as well as improving resource 
efficiency. 

When it comes to operational decision-making, the optimization model helps practitioners and 
policymakers to deal with the issues of second-life EV battery production, recycling, and disposal. It 
is of help to decision-makers to determine the best possible recycling technologies, optimize item 
flow among various echelons, and opt for effective resource use. Such operational decisions improve 
the sustainable and circular nature of the EV battery supply chain. 

The production and distribution affairs of manufacturers can be optimally improved by means 
of this model. When the element of circularity is integrated into the supply chain network, 
manufacturers will be able to minimize their costs pertaining to the procurement and disposal of raw 
materials and also minimize CO2 emissions. This leads to both the betterment of environmental 
function and increased competitiveness and good image as sustainable manufacturers. 

Manufacturers involved in recycling have a critical role in the circular supply chain with regard 
to EV batteries where the optimization model greatly helps with the decision-making processes. In 
this regard, they can make educated decisions in terms of collection, sorting, and recycling processes. 
When recyclers optimize the selection of recycling affairs and go for the optimal flow of materials, 
they can minimize waste production and negative environmental impacts. By using this model, 
recyclers will have the ability to put sustainability into practice with regard to EV battery materials. 

Note that consumers as a part of the supply chain network are effective in the development of 
circular networks in the EV battery industry. Increasing environmental awareness of consumers can 
be a strong incentive to use refurbished batteries instead of new batteries. The cost-effectiveness of 
refurbished batteries compared to new batteries is another factor that is definitely important for 
consumers. Some consumers may refuse to use these batteries due to a lack of knowledge about the 
quality and lifespan of refurbished batteries. It is undeniable that a large part of increasing consumer 
awareness depends on the policies adopted by governments. 
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It should be noted that policymakers play a key role in improving the performance of supply 
chain networks. Their decisions can have a direct impact on increasing network efficiency, and 
reducing costs and emissions. Therefore, in this research, we suggest the following policy 
recommendations to improve network performance: 
• It is suggested that policymakers focus on cooperation between battery recyclers and electric 

vehicle manufacturers. By promoting cooperation and partnerships, there can be a more efficient 
flow of resources, information, and expertise, leading to improved sustainability and circularity 
in the EV battery industry. 

• It is suggested that governments and policymakers take policies based on financial incentives, 
such as granting long-term and low-interest facilities, tax exemptions, etc., to lead manufacturers 
and recyclers of EV batteries to adopt sustainable practices. 

• Policymakers should establish strict regulations for proper recycling and disposal of EV batteries. 
By applying proper disposal and responsible recycling practices, the harmful effects on the 
environment can be significantly reduced. 

• Governments should prioritize public awareness educational programs for promoting the 
importance of sustainable practices in the EV battery supply chain. Consumers can support 
sustainable initiatives and make informed choices by increasing public understanding of the 
social and environmental impacts of EV batteries and the benefits of circularity. 

6. Conclusion 

Recently, researchers have used the concept of a circular economy to increase the sustainability 
of supply chain networks. Applying the circular economy concept in the EV battery production 
industry has a significant effect on increasing the lifespan of battery components, reducing the use of 
resources, reducing costs, and generally increasing the sustainability of the supply chain network. 
Therefore, in this study, a new bi-objective MILP model was formulated for the structuring of a 
comprehensive supply chain network in the EV battery production industry considering the circular 
economy concept. Inspired by real-world assumptions, the proposed model optimized both strategic 
and operational decisions, and its objectives were to minimize total costs and CO2 emissions 
simultaneously. In the investigated network, retired batteries are divided into three categories: (1) 
refurbishable batteries used in EVs, (2) refurbishable batteries applied in other industries, and (3) 
batteries whose components must be recycled. In the proposed network, several heterogeneous 
recycling technologies are considered for the processing of unusable batteries, which differ from 
each other in terms of efficiency, processing cost, and CO2 emission. It should be noted that we 
applied the LP-metric method to create a balance between total costs and CO2 emissions, and used 
the scaled data of an EV battery manufacturing company in Canada to validate our proposed model. 
The results obtained from running the model for the simulated problems revealed that the proposed 
model had good performance and its outputs were reliable. 

Every research has its own set of weaknesses and strengths. Researchers should acknowledge 
and address these limitations in order to identify potential avenues for future research. In the 
following, we will discuss the limitations of the current paper and present suggestions for future 
studies: 
• In this paper, we presented our proposed model without considering regulatory approaches and 

geographical differences. In different regions, there are various regulations on recycling 
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processes, disposal, and emission standards, which significantly affect the model results. It is 
suggested to consider regional regulations in the structuring of the model in future researches and 
examine how much this criterion affects the results. 

• The model presented in this research is not resilient and external shocks, such as a lack of raw 
materials, fluctuations in demand, etc., can lead to network disruption. It is suggested to design a 
resilient supply chain network in the EV battery industry by using resilience strategies, such as 
cooperation with third-party logistics, collaboration with backup suppliers, etc., in future 
research. 

• The EV battery industry is a dynamic and evolving industry. The technologies applied in this 
industry, especially recycling technologies, are changing rapidly. Although our model considers 
multiple recycling technologies, its dynamics and consequences are not considered in the 
network design. It is suggested to develop a dynamic model in the field of EV battery 
management by focusing on the challenges associated with emerging technologies and 
considering the speed of development of these technologies. 

• In every industry, the transition from a traditional supply chain to a circular supply chain is 
associated with barriers and challenges. The EV battery industry is no exception to this. In this 
research, we have not considered the barriers of circular economy implementation in the network 
design. While there are many challenges to integrate new practices related to a circular economy 
with existing logistics and production processes. It is suggested that, in future studies, the barriers 
to the implementation of a circular economy in the EV battery industry should be identified and 
strategies to deal with them should be provided. In addition, it is suggested to consider some of 
these barriers, such as the high cost of setup, infrastructural limitations, etc., in the network 
design, and investigate the long-term effects of the transition from the traditional supply chain to 
the circular supply chain in reducing costs and CO2 emissions. 
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