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Abstract: Cassava (Manihot esculenta Crantz) has garnered global attention due to its importance as 
a crucial raw material for ethanol and other derivative production. Nonetheless, its agroindustry 
generates a substantial amount of residues. We examined the potential utilization of co–products from 
both agricultural and industrial sectors concerning starch extraction processes. A total of 319 million 
tons of fresh cassava roots are globally produced, yielding up to 55% of agricultural co–products 
during harvesting. For every ton of starch extracted, 2.5 tons of bagasse, along with 100 to 300 kg of 
peel per ton of fresh processed cassava, and 17.4 m3 of residual liquid tributaries are generated. 
Consequently, both solid agricultural biomass and solid/liquid residues could be directed towards 
cogenerating bioenergy such as bioethanol, biobutanol, biodiesel, bio–oil, charcoal, and other 
bioproducts. In conclusion, the conversion of cassava agroindustrial co–products into food and non–
food products with high added value could be promoted, thus fostering a circular economy to enhance 
profitability, sustainability, and crop promotion. 
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1. Introduction  

Cassava cultivation is primarily distributed in tropical and subtropical regions, typically within 
the geographical range of up to 30° parallels [1]. Its starch–rich tuberous root serves as a staple for 
over 800 million low–income individuals, positioning it as the fifth most significant energy crop 
following maize, rice, wheat, and potato [2]. Furthermore, cassava cultivation contributes to 
employment generation, while its trade serves as a crucial source of economic income [3,4]. From an 
agronomic perspective, farmers favor this starchy crop due to its minimal input requirements, 
attributed to its wide adaptability to various soil and climate conditions, including drought tolerance 
and resilience in marginal soils [5]. Hence, cassava is cultivated across approximately 29.95 million 
hectares, predominantly in the African continent (60.9%), followed by Asia (29.4%) and America 
(9.6%), with a total production exceeding 319 million tons of fresh roots [6]. 

The cassava harvest highlights two key aspects: First, a substantial amount of biomass remains in 
the field, including stems and leaves, with proportions typically around 44% and 6%, respectively [7]; 
and second, solid (bagasse and peel) and liquid (wastewater) co–products from the starch extraction 
industry are prevalent and widely utilized [8] due to their application as raw materials for high–value 
food and non–food industrial processes [2]. Despite lignocellulosic solid co–products being 
historically utilized for biofertilizer [9], and for heat and power cogeneration within the cassava 
agroindustry [10], these agricultural residues are undervalued. There exists a significant opportunity 
to integrate them into the biorefinery and circular bioeconomy model, enabling the efficient utilization 
of biomass by harnessing its potential for multiple bioenergy benefits and bioproducts, thereby 
advancing sustainability; a focal point of contemporary green technology [11]. 

While cassava has been promoted for renewable energies generation, such as first–generation 
bioethanol, as realized in China [12], it has also been suggested that in Brazil, cassava bagasse could 
substitute up to 24% of sugarcane ethanol [13]. However, not only cassava bagasse but also stems, 
rhizomes, leaves, and peel can be utilized for this purpose. Moreover, they can be employed in the 
production of various other bioenergy sources, including biobutanol, biodiesel, bio–oil, biohydrogen, 
and biochar [14–19]. The utilization of lignocellulosic co–products has gained traction in the energy 
sector [20] due to rising fossil fuel prices and environmental concerns related to emissions of pollutant 
gases, biodiversity loss, monocultures, and land–use changes. Consequently, bioconversion could 
yield not only economic benefits but also social and environmental advantages. 

Furthermore, agroindustrial co–products from cassava have been proposed for synthesizing 
various food and non–food bioproducts, particularly in the health sector [21]. For instance, they could 
be utilized in the development of prebiotics such as xylooligosaccharides [22], exopolymeric 
substances [23], and the identification of active components with antioxidant, anti–inflammatory, and 
immune–enhancing properties [21,24,25]. Additionally, there is potential for producing biomaterials 
for heavy metal removal, dye absorption in contaminated waters [26–28], and even bioplastics 
production [29,30], while also offering a wide range of biochemicals. Interestingly, considering a 
cassava biorefinery approach could increase the economic value of co–products, strengthen the value 
chain, and, most importantly, contribute to sustainable production by addressing environmental and 
social challenges. 

2. Results 

2.1. Origin and distribution 
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Cassava (Figure 1) is among the 100 species of trees, shrubs, and perennial herbs within the genus 
Manihot, originating from the Americas [31], with distribution primarily in tropical and subtropical 
regions worldwide, particularly in developing countries [1]. The southern Brazilian Amazon has been 
identified as the center of origin of cassava, supported by geographic, molecular, and DNA studies 
indicating Manihot esculenta ssp. Flabellifolia (Pohl) is the wild progenitor species [32–35]. 
Domestication likely occurred in this same area, estimated to have taken place between 6 500 to 5 500 
BC [36], as well as in the Cerrado savanna ecoregion [37–39], and the region known as 
Mesoamerica [40,41].  

Reportedly, at the time of European contact in the 16th century, cassava constituted part of the 
diet in the lowlands of the Neotropics [42,43]. During this historical event, Portuguese colonizers 
transported it across the Atlantic Ocean from Brazil to the Congo in Africa. Two hundred years later, 
it was cultivated in the west and center of the continent and then spread eastward to Mozambique, 
Kenya, Madagascar, and Zanzibar [44–46]. By the 18th and 19th centuries, the species had become 
established in the south and southeast regions of Asia [47]. Consequently, it is known by a great variety 
of names: In English–speaking countries, it is called cassava, caxamote, farinha, guacamote, 
huacamote, mañoco; in Brazil, it is known as aipim, macaxeira, mandioca, and mandiya; in Africa, it 
is referred to as maniok; and in China, it can be called mu shu, shu ge, and shu shu [48]. 

 

Figure 1. Cassava plant (Manihot esculenta Crantz). 

2.2. World production 

Cassava is produced in 103 countries (Figure 2), distributed across Africa (60.9%), Asia (29.4%), 
and the Americas (9.6%). In 2021, a production of 319 million tons of fresh roots was reported, mostly 
concentrated in Nigeria, the Democratic Republic of Congo, Thailand, Ghana, Brazil, and Indonesia. 
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Although the world average is 13.02 t ha-1, there is wide variation (ranging from 0.99 to 43.07 t ha-1), 
among which stand out Guyana (43.07 t ha-1), India (37.93 t ha-1), Zambia (35.54 t ha-1), Laos    
(32.10 t ha-1), Niger (29.02 t ha-1), St. Vincent and the Grenadines (28.30 t ha-1), Cambodia (27.41 t 
ha-1), and Indonesia (26.6 t ha-1) [6]. An upward trend in production has been observed compared to 
the initial reports of commercialization in the 1960s until 2021 (Figure 3), which is explained by the 
increase in planted area, yield, versatility of use in bioproducts, and government policies promoting 
cultivation and integrated processing [49].  

 

Figure 2. Cassava world production. Data of FAOStat [6]. 

In this regard, there has been an upward trend in production when comparing the initial marketing 
reports from the 1960s to the year 2022 (Figure 3). This trend can be attributed to the expansion of 
cultivated areas, improvements in yield, and government policies aimed at promoting cultivation. For 
example, Nigeria, the leading global producer of cassava, has experienced a 4.3% annual production 
increase since the 1990s, largely due to government agricultural programs [50,51]. Similarly, countries 
like Thailand, Cambodia, Vietnam [52], and Laos have expanded cassava cultivation to meet the 
demand of the Chinese market, which imports 80% of international cassava trade in various forms 
including fresh, chilled, frozen, chopped, pellets, or starch [2,53]. Vietnam, for instance, witnessed a 
238% increase in planted area (from 237 600 ha in 2000 to 547 883 ha in 2017), accompanied by a 
yield intensification from 8.4 to 18.83 t ha-1 [54]. However, a slowdown in cassava growth in 2016 
was possibly due to the reserve use and technological advancements in maize cultivation in China, 
leading to reduced utilization of cassava for bioethanol production [12], and other derived products 
like animal feed and processed food. Consequently, this resulted in the abandonment of cassava 
cultivation in major exporting countries [2]. Moreover, its commercialization declined during the 
COVID–19 pandemic, as regions dependent on cassava redirected it for household consumption, with 
the remaining produce directed towards local sales to generate economic resources [55]. 
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Figure 3. Behavior of cassava production and harvested area worldwide (1960–2021). 
Source: FAOStat [6]. 

2.3. Cassava for human consumption 

Cassava is typically harvested between 10 to 12 months after planting (MAP) to be available as 
food [56]. This timeframe coincides with a higher yield of tuber roots, dry matter, and starch [57], as 
well as lower fiber content [58]. However, it can be harvested between 8 to 24 MAP [59]. Additionally, 
in the areas of cultivation, cassava production generates employment [4], and the sale of tubers (Figure 
4) serves as an income source [3]. 

Worldwide, approximately 800 million people rely on cassava to meet their food needs [60], with 
reported average intakes of up to 19.8 kg per year. Consequently, it is considered the fifth most 
important energy crop after maize, rice, wheat, and potato [2]. This is due to its richness in 
carbohydrates, primarily starch, although it also contains vitamins and minerals (Table 1). Despite its 
low protein content, it contains 2.79% mainly unsaturated fatty acids and is a rich source of potassium. 
Notably, it contains polyphenols and flavonoids (31.95 and 0.85 g per 100 g-1, respectively), as well 
as superoxide dismutase and DPPH radical scavenger activity. Additionally, it can inhibit α-
glucosidase and α-amylase, with values of 69.02% and 36.30%, respectively, which, coupled with its 
antioxidant capacity, may positively affect its anti–diabetic activity [61]. 

However, the presence of anti–nutrients such as nitrates, phytates, tannins, oxalates, 
saponins [62], and HCN (ranging from 16 to 1212 ppm on a dry basis), which differs by variety and 
growing region [63], requires various preparation techniques to ensure safety before consumption. 
According to the Codex Alimentarius, levels of HCN should not exceed 50 and 10 mg kg-1 [64]. 
Notably, there are biofortified varieties of cassava with yellow pulp (a vitamin A precursor) that could 
enhance the vitamin and protein intake of consumers due to their nutritional quality [65]. 
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Figure 4. Local cassava trade in the states of: a) y b) Tabasco; c) Yucatán; y d) Veracruz, 
México. 

Additionally, cassava leaves play a significant role in human nutrition, particularly in certain 
regions of the African continent and in Brazil in the Americas, where they are incorporated into various 
traditional dishes [66,67]. Moreover, the processing and sale of cassava leaves represent a rapidly 
growing emerging sector [68]. Despite containing cyanogenic glycosides with values ranging from 
346 to 7484 ppm on a dry basis [63], the levels can be reduced through techniques such as oven drying, 
squeezing, boiling, and crushing, resulting in reductions to 55.99%, 50.79%, 32.01%, and 25.15%, 
respectively, and also decreasing the tannins presence [69]. Compared to the root, the leaves provide 
a higher protein contribution [70], containing 18 of the 20 amino acids, including all nine essential 
amino acids [63,71]. Additionally, the leaves are rich in minerals and vitamins, including thiamine, 
riboflavin, niacin, vitamin A, and vitamin C (Table 1). When processed into flour, the proportions of 
these nutrients are higher compared to other leafy vegetables, legumes, cereals, eggs, milk, and 
cheese [72]. Furthermore, cassava leaves contain carotenoids in significant amounts, ranging from 174 
to 547 µg per gram on a dry basis [63]. The consumption of these compounds is crucial for nutrition 
and health [73], making cassava leaves a viable option to address issues of human malnutrition and 
contribute to food security. 

2.4. Cassava cultivation and generation of agricultural co–products   

Cassava production varies from complex systems with extensive plantations and mechanized 
tillage to low–input survival agriculture practices and intercropping [31,74]. Regardless of the system 
type, there is an imperative to enhance productivity to meet the escalating food demand [75]. Presently, 
cassava yields, as a carbohydrate source, outperform other roots, tubers, and cereals under tropical 
conditions due to its drought tolerance and adaptability to marginal soils [76]. This is why cassava 
cultivation proves more dependable than other species susceptible to such conditions, such as corn [60].  
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Table 1. Nutritional profile of cassava root tubers and leaves. 

Item % 
Tuberous root Leaves 
Fresh Dried Fresh Sundried whole Dried milled 

Protein 0.01–1.45 1.89–2.21 2.92–15.96 22.3 19.9–20.4 
Fat 0.28–0.88 - 0.59 - - 
Crude fiber 1.01–2.11 - 5.8–16.36 20.6 - 
Ash 0.62–1.89 - 1.7–2.3 7.1 8.4 
Carbohydrates  23.14–38.06 65.9–71.50 56.3–80.2 - 18.4–21.8 
Insoluble dietary fiber  3.7–6.4 - - - 
Soluble dietary fiber 1.8 0.7–1.3 - - - 
 Indispensable AA 
Histidine 0.02 0.02–0.03 0.68 0.5 0.5 
Isoleucine 0.027 0.06–0.07 1.44 1 0.9 
Leucine 0.039 0.08–0.1 2.72 1.8 1.79–3.03 
Lysine 0.044 0.07–0.09 1.77 1.2 1.2–2.33 
Methionine 0.011 0.01–0.02 0.58 0.4 0.37–0.67 
Phenylalanine 0.026 0.05–0.06 1.8 1.3 1.1 
Threonine 0.028 0.05–0.07 1.41 1 0.9 
Tryptophan 0.019 0.03 0.55 0.8 0.6 
Valine 0.035 0.06–0.08 1.71 1.7 1.1 
 Dispensable AA 
Arginine 0.137 0.05–0.08 1.7 1.3 1.1 
Alanine 0.038 0.11 1.74 1.3 1.2–2.4 
Aspartic acid 0.079 0.13–0.14 2.57 3.2 1.98–3.32 
Cysteine 0.028 0.01 0.47 0.3 0.23–0.34 
Glutamic acid 0.206 0.25–0.3 3.05 3 2.39–4.21 
Glycine 0.028 0.06–0.07 1.59 1 1 
Proline 0.033 0.07–0.08 1.35 1.1 1.1 
Serine 0.033 0.05–0.06 1.35 1.2 1 
Tyrosine 0.017 0.02–0.03 1.24 0.9 0.8 
 Minerals 
Ca 0.016 0.12–0.18 0.50 0.57 0.39 
P 0.027 0.12–0.15    
Mg 0.021 0.06–0.10 0.15 0.16 0.08 
K 0.271 0.74–0.90 0.78 0.96 0.01 
Na 0.014 0.01    
S 0.021 0.04–0.05    
Cooper (mg kg-1) 1 1.9–4.31 401 509 243 
Iron (mg kg-1) 2.7 114.38–146.69    
Manganese (mg kg-1) 3.84 6.80–9.89 203 392 59 
Zinc (mg kg-1) 3.4 8.11–17.4 50 71.8 32.8 

Dah–Sol & Fumiko [61]: Boakye et al. [65]; da Silva et al. [67]; Boundy–Mills et al. [77]; USDA [78]; Mardina et al. [79]; 
Chaiareekitwat et al., [80]; Gurdensen et al. [81]; Fanelli et al. [82].  
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Approximately 1696.28 million hectares of marginal lands worldwide have been identified as 
potential areas for establishing cassava crops and achieving profitable yields [1]. However, realizing 
the optimal productivity of the species requires adherence to suitable edaphoclimatic conditions, 
proper crop management practices [83], and utilization of highly productive varieties developed 
through biotechnological techniques [84]. It is estimated that yields of between 80 and 100 t ha-1 of 
tuberous roots could be attained [85,86], highlighting those current yields are only about 10% of its 
potential productivity. 

Following cassava harvesting, stems and leaves are produced, with proportions typically around 
44% and 6%, respectively [7], which may vary by genotype and harvesting time [87]. While a portion 
of the stems is allocated for agronomic seed, the majority is underutilized, akin to the leaves, 
constituting the initial batch of co–products subject to waste [88]. Consequently, approximately 200 
kg of dry matter per ton of harvested tuber is disposed of in situ, facilitating nutrient recycling [74]. 
However, this biomass could be immediately repurposed; for instance, the stems could serve as a 
substrate for mushroom cultivation [89], provide thermal energy in households due to its calorific 
value [90], or be used in the production of briquettes, recognized as environmentally friendly and 
renewable non–fossil fuels [91]. Therefore, these alternatives represent viable options for adoption by 
rural dwellers and low–income cassava producers. 

2.5. Starch extraction 

Given the post–harvest deterioration issues of cassava roots, processing them to extend their shelf 
life is a common practice [92]. Among the processed products, starch holds the greatest economic 
impact [93]. The extraction of starch involves several stages (Figure 5), at an industrial scale, typically 
conducted in facilities equipped with mechanized systems for each step [94,95]. Such facilities utilize 
equipment that requires mechanical, heat, and electrical energy, averaging about 2 208 MJ per ton of 
processed root [96], and 0.20 to 0.50 kWh per kilogram of extracted starch [10]. Nevertheless, less 
advanced manufacturing processes, equipment, and even artisanal methods are prevalent. The resulting 
product is typically native starch with a moisture content ranging from 10% to 14%, suitable for 
marketing [97]. Various factors, including agricultural practices [98], variety, environmental 
conditions [99,100], and the applied technologies in the extraction process [101], influence the yield, 
quality, and physicochemical properties of the starch. 

 

Figure 5. Diagram of the cassava starch extraction process from the wet pulp. 
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2.6. Industrial use of starch 

Numerous plants store carbohydrates as reserve sources in the form of starch across various plant 
organs such as roots, tubers, seeds, and grains [102]. The industrial sector derives starch from several 
crops, including maize, cassava, potato, and wheat, each differing in their field productivity and starch 
yield (Table 2) [103,104]. Carbohydrates, owing to their physical and chemical properties, are utilized 
in various high–value food and non–food industrial applications, either in native or modified starch 
form. These applications span a wide range including paper production, textiles (predominating the 
food market), pharmaceuticals, cosmetics, adhesives, sweeteners (fructose, glucose, sucrose, and 
sorbitol), food additives (monosodium glutamate, and maltodextrin), dextrins, dextrose, lactose, 
animal feed, biofuels, manufacturing of bioplastics and packaging, as well as applications in 
nanotechnology, regenerative medicine, and 3D printing materials [105–107]. Commercial prospects 
for starch–based products are anticipated to grow annually, driven particularly by the production of 
bioplastics and packaging [108]. 

2.7. Generation of industrial co–products from cassava 

Similarly, to other industrial crops, cassava–based starch production generates significant 
amounts of lignocellulosic biomass, including bagasse, peel, and liquid wastewater (Figure 5). 
Bagasse, accounting for 60% of the total tuberous root, is produced during the filtration stage [109]. 
To produce one ton of starch, 2.5 tons of this co–product are generated [110]. Peel production ranges 
between 100 to 300 kg per ton of cassava [9,50], along with more than 17.4 m3 of liquid wastewater. 
The emission of greenhouse gases is also evident, with values reaching 2.21 kg CO2 eq. per ton of 
starch [111]. 

It is highlighted that during the starch extraction process, 75 to 90% of the solid co–products are 
disposed of in the open air or burned near the processing sites, while liquid wastewater is 
indiscriminately discharged into drainage or natural water sources [9]. These practices pose potential 
public health problems [23], damage to riparian flora and fauna caused by turbidity, toxicity, and high 
chemical oxygen demand has been documented [112]. Thus, the lack of management of co–products 
poses a threat to water consumption by the population and constitutes an ecocide of aquatic fauna. 
Urgent solutions are necessary to promote a reduction in the problems associated with the disposal of 
solid and liquid waste. 

2.8. Potential use of agroindustrial co–products 

The recurring challenge in the agroindustrial sector is the disposal of co–products, partly due to 
the inherent characteristics of these materials. Although cassava agroindustry residues contain toxic 
substances, they also encompass structural non–toxic components (Table 2). Bagasse primarily 
comprises starch [30], alongside structural elements such as holocellulose (cellulose and 
hemicellulose) and lignin, whereas the peel is characterized by a higher protein and lipids content 
(Table 2). As for the liquid waste effluent (Table 3), this is an acid or weakly acid liquid composed of 
organic elements in suspension, thus, starch can be present at a rate of 9.6 to 37.5 g L-1, fibers, 
minerals [97], cyanogenic compounds, nitrates, nitrites, sulfates, heavy metals [46,113], as well as 
macronutrients, such as nitrogen and phosphorus, with amounts ranging from 780 to 1 300 mg L-1, in 
addition to micronutrients [114]. 
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In this sense, it is possible to obtain similar or higher yields of cassava starch per hectare due to 
its high yield of fresh roots per hectare and starch percentage compared to other tubers and cereals. 
This is not to mention its socioeconomic and environmental advantages, which include sugarcane 
bagasse, the latter being one of the most abundant and widely used agroindustrial co–products 
worldwide [115]. Although many of the crops currently used for industrial purposes are staple foods 
in developing countries in the tropics [116], expanding the secondary sector could jeopardize food 
security. Therefore, it is necessary to explore other non–conventional sources of starch that are not 
used for food purposes in specific geographical areas.  

Table 2. Production characteristics of the most important crops for industrial 
starch/sucrose processing and chemical composition. 

Crop Cassava Sugarcane Corn Potato Wheat Rice 
 Biomass (t ha-1 of product marketed) 
 12.65 78.53 4.81 21.72 2–4.8 4.1 
 Yield of starch (%) 

 20.94–43.43 8.4–16.26a 
66.6–
74.4 

17.26–22.49 57 76.06–81.66 

 Bagasse (%) 
Proportion in root 30–40 26–29 67–74e - 67–72d - 
Fiber 19 37.71 86–88e - - - 
Starch  10.3–47  - - - - 
Lipids 0.47 2 - - - - 
Protein 1.03–2.37 1.79 - - - - 
Ash 0.16–1.8 1.35–8 - - - - 
Cellulose 19.4–31.47 32–48 24–40 - 39–45d - 
Hemicellulose 0.53–31.3 23–32 44–55 - 25.6–37d - 
Lignin 0.4–22 13–24 9.5–23 - 23–28.3d - 
 Peel (%) 
Proportion in root 19.41–24.52 -  - -  
Fiber 10.15 -  - -  
Starch  30.17 - - 16.6–39.7 -  
Lipids 0.67 - - 7.33 - 0.3b 
Protein 1.86–4.8 - - 9.46–25.4 - 1.96b 
Ash 7.78–9.5 - 3–4c 5.82–11.1 - 0.36b 
Cellulose 25.8–38.2 - 34–36c 7.8 - 38.6b 
Hemicellulose 11.6–31.4 - 36c 14.7 - 24.9b 
Lignin 4.29–13.9 - 19.2c 21.6 - 18.6b 

a Sucrose,b Husk,c Cob,d Straw ande Stover. 
FAOstat [6]; de Souza et al. [57]; Boakye et al., [65]; Gundersen et al. [81]; Del Rosario–Arellano et al. [109]; Benesi et 
al. [117]; Liang et al. [118]; Mangla et al. [119]; Vargas & Pérez et al. [120]; Cao et al. [121]; Park et al. [122]; Awoyale et 
al. [123]; Biel et al., [124]: Pineda–Gómez et al. [125]; Singh et al. [126]; Ghaffar et al. [127]; Martínez et al. [128]; Yossa 
et al. [129]; Liu et al., [130]; Thuppahige, et al. [131]; Kovač et al. [132]. 
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Table 3. Composition of liquid wastewater effluents. 

Parameter Value Parameter Value 

pH 4.20–5.98 Potassium (mg mL-1) 894–1247.92 
Free cyanide (mg L-1) 3 Zinc (mg mL-1) 1.4–1.83 
DOC (g O2 L-1) 61.27 Iron (mg mL-1) 4.2–15.37 
Reducing sugars (g L-1) 13.9–40.60 Copper (mg mL-1) 0.3–1.51 
Non-reducing sugars (g L-1) 17.51 Sulfur (mg mL-1) 150 
Total carbohydrates (g L-1) 36.20–58.11 Aluminum (mg mL-1) 148 
Total nitrogen (g L-1) 1.92–1.99 Boron 4 
Dry material (g 10 mL-1) 9.51 Cadmium <0.01 
Calcium (mg mL-1) 212–241.62 Chromium <0.01 
Magnesium (mg mL-1) 288–370.59 Nickel <0.01 
Manganese (mg mL-1) 1.6 Ammonia [NH4+] (mg L-1) 131 
Phosphorus (mg mL-1) 83–246 Nitrate [NO3

- ] (mg L-1) 16.2 
Sodium (mg mL-1) 147.55   

Source: Barros et al. [133]; Fleck et al. [134]; Santos et al. [135]. 

Hence, it is possible to demonstrate the broad potential of cassava and its co–products due to their 
complex chemical composition, which makes them low–cost and highly available raw materials for a 
range of high–value–added applications. This would bring about an increase in their economic value 
while also representing a sustainable alternative to mitigate environmental problems [110]. This 
approach is oriented towards a circular economy, biorefinery [7,10], and the fulfillment of current 
green technology objectives aimed at finding sustainable and ecological solutions at social, economic, 
and environmental levels [11]. In this regard, one strategy for sustainable management of ALR 
involves making certain adjustments to settling ponds to decrease organic sediments and turbidity [97], 
coupled with the cultivation of microalgae such as Chlorella, Spirulina, and wild strains. These aspects 
could reduce BOD levels (89–99%), the presence of phosphates, nitrates, and cyanide [112,136]. 
Additionally, treated waters could be circulated in the starch extraction process, reducing freshwater 
needs by up to 66% [137]. Thus, to optimize resources, mitigate pollution issues, and enhance 
economic benefits, the implementation of new techniques and facilities within the industrial process is 
necessary. 

2.8.1. Animal feed 

Traditionally, cassava root is often utilized for animal feed in the form of chips, pellets, or 
silage [31,60]. Even whole plant silage is possible [138], and leaves are often offered in fresh or 
dehydrated form [139,140]; however, solid and liquid co–products from the starch industry can also 
fulfill this function. In Brazil, in artisanal farina production, peels are donated to livestock farmers for 
incorporation into animal feed [141]. In Nigeria, 10 to 25% of the peel and bagasse are disposed of as 
pig feed [142], representing a viable use option. Furthermore, disposing of bagasse in a fermented state 
economically achieves a higher net present value, lower investment cost and environmental impact, 
and a shorter payback period compared to other uses, such as the production of edible 
mushrooms [110]. The potential of wastewater has also been demonstrated for inclusion in the diets of 
fattening lambs [143]. 
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However, to enhance the nutritional profile and safety, it is necessary to maximize the protein 
content and consider additional treatments to decrease HCN presence and antinutrients such as tannins 
and polyphenols [21,81,144]. Additionally, improving digestibility is essential since protein and fiber 
are the limiting factors for forage use in the tropics [138]. Techniques such as soaking, boiling, sun 
drying, or microbial fermentation can be useful to ameliorate these limiting factors [145]. Okike et 
al. [146] proposed a technique to obtain high–quality peel for animal nutrition, reducing sun drying 
time from 2 to 3 days to just 6 to 8 hours during the dry season through shredding, mechanical 
dehydration, fermentation, pulverization, and sieving, followed by subsequent solar drying. 
Additionally, Marin et al. [147] reported that subjecting a mixture of cassava leaves and bagasse (3:7) 
to solid–state fermentation (SSF) with the fungus Lentinula edodes decreased cyanide content by 
64.8% while increasing protein content by 36.19% and lipid content by 2.36 times.  

Similarly, de Sousa et al. [148] observed that cultivating Pleurotus ostreatus on cassava peel for 
35 days led to increases in protein (from 3.93% to 8.87%), lipid (from 1.49% to 3.52%), and fiber 
(from 9.96% to 35.18%) content, along with a slight increase in digestibility (5.2%). Boundy–Mills et 
al. [77] utilized cassava leaves supplemented with glucose as a substrate for yeasts to convert 
solubilized structural protein into digestible protein. On the other hand, alternatives such as adding 
soybean meal, fish meal [139], methionine [145], or mixing cassava root with young leaves, sprouts, 
peep residues, and bagasse [15], or even silaging cassava pulp with fresh leaves [149], can improve 
the nutrient profile. Furthermore, a saving of 0.23 and 2.24 tons of soybean and corn, respectively, is 
possible when using a feed based on cassava and sorghum meal as an energy source and soybean and 
mulberry meal as protein in diets for pigs [150]. Furthermore, Williams et al. [151] found that dietary 
cassava peels and leaves in a 5:1 ratio do not affect performance in pigs fed corn and soybean. 

Finally, methods such as heat and acid precipitation and spontaneous fermentation have been 
proposed to produce cassava leaf protein concentrate for feed and animal feed. However, although the 
protein content and amino acid profile are comparable with soybean, the cyanogenic potential needs 
to be decreased to ensure its use [81]. Thus, if properly managed, cassava co–products can be used as 
a substitute for corn or other cereals in diets for the livestock sector, which would undoubtedly improve 
the income of small and medium–scale livestock producers. 

2.8.2. Biofertilizer production  

In the area surrounding cassava processing sites, the generation of biofertilizers is one of the main 
uses of solid co–products [9]. The low moisture content, bulk density, high porosity, and good water 
absorption capacity of biofertilizers made from this raw material are parameters that positively affect 
plant growth [152,153], especially when combined with synthetic sources of nutrients. Thus, it has 
been observed that the combined application of 2.5 tons of cassava peel compost with 25 kg of N ha-1 

improved dry matter and nutrient content in Amaranthus cruentus L [154]. However, Nguefack et 
al. [155] reported an increase in nutritional and antioxidant parameters, as well as a yield enhancement 
of up to 187% compared to synthetic fertilizers. Additionally, the addition of compost and 
vermicompost from solid co–products increased fertility, structure, and even lowered soil salinity 
levels [156]. Moreover, the amount of nutrients contained in liquid waste effluents (Table 2) makes it 
promising for use as a biofertilizer [135]. Thus, the application of 120 m³ per hectare of this wastewater 
has the capacity to increase the concentration of available phosphorus and exchangeable potassium in 
the soil, making it an ideal input for adoption by small–scale farmers [157].  
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In summary, recycling waste not only serves as a disposal mechanism but also aligns with 
resource management practices, considering that these materials are highly available in processing 
areas and are practically inexpensive raw materials. 

2.8.3. Bioenergy  

Lignocellulosic biomass is an alternative renewable energy resource with the potential to replace fossil 
fuels and GHG emissions. Agroindustrial co–products from cassava cultivation can be combusted for 
cogeneration of heat and electricity [158] due to their high calorific value since 15.27 to          
18.86 MJ kg-1 are generated [159,160].  

However, extensive research has focused on the study of stems, rhizomes, leaves, peel, and 
bagasse for the cogeneration of second–generation biofuels [17,161–164] such as bioethanol, 
biobutanol, biodiesel, bio–oil, biochar, and biohydrogen [15,18,123,165], these through biomass 
disintegration processes, such as biochemical (hydrolysis and fermentation) and thermochemical 
(direct combustion, gasification, slow pyrolysis, fast pyrolysis, and oxy–combustion) [166,167], 
although to improve sustainability it is necessary to implement novel strategies such as green 
technology within biosynthesis processes and circular economy principles [168]. 

In general, bagasse is considered a co–product with extensive research in bioethanol 
production [169,170] given its high content of starch, cellulose, hemicellulose, and low concentration 
of protein and lipids [171]. Moreover, the production yield depends on the chemical composition of 
the co–product and the process conditions [13,172]. Thus, Huang et al. [173] reported >0.30 g g-1 and 
a productivity of ~0.3 g L h-1 of n–butanol in ABE (acetone–butanol–ethanol) fermentation from 
cassava bagasse. 

Economically, it has been shown that it is possible to produce at $0.91 kg-1 or $2.73 gal-1 for 50 
000 metric tons of cassava bagasse, compared to $7.41 gal-1 when using dextrose and $5.0 gal-1 if corn 
starch is used. Biobutanol is an interesting fuel due to its higher–octane rating and lower volatility, 
which is similar in air–to–fuel ratio to gasoline, compared to ethanol [114]. Thus, cassava bagasse is 
shown to be an economically attractive feedstock due to its low cost and abundance for biofuel 
cogeneration. 

However, for the peels subjected to enzymatic saccharification, it is also possible to generate 
bioethanol, with a yield of 0.53 g g-1 [17], a yield that could be maximized using green technology. In 
this respect, it has been reported that using mild and green chemical pretreatments on lignocellulosic 
biomass, the latter using green proteins from Amaranthus retroflexus leaves as a biosurfactant in the 
saccharification process, it is possible to generate an additional 6 400 to 12 400 tons of bioethanol, ten 
times higher than using soybean seed proteins and chemical surfactants [174], as well as using 
subcritical hot liquid water and the addition of organic acids (acetic, lactic, and formic), which 
increases the yield of fermentable sugars [175]. 

On the other hand, the peel and bagasse are raw materials to produce biogas, a fuel useful to 
generate heat or achieve electricity cogeneration, representing savings of 4 to 11% in the production 
costs of the cassava industry [10,176]. Techniques utilizing the principles of green chemistry, such as 
pretreatment with hot liquid water, can enhance the removal of hemicellulose and starch, increasing 
methane production rate and yield by 1.6 times and 35%, respectively, compared to untreated 
bagasse [177]. Moreover, the utilization of pyrolyzed cassava stems and peels combined with cow 
manure in anaerobic digestion can be implemented in factories to yield multiple benefits, including 
wastewater treatment, electricity cogeneration, as well as biogas and biofertilizer production [19]. 
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Similarly, it is possible to capture the wastewater effluents in biodigesters [15,167], and cogenerate 
357.8 m3 for every 17.6 m3 of wastewater. This approach of circular economy and green technology 
undoubtedly would enhance the economic and environmental profitability of industrial 
operations [10]. 

Now, bagasse, being a waste composed of lignocellulose and carbohydrates, is a perfect substrate 
for fermentative hydrogen production, in this regard, Chatellard et al. [14] found a yield            
of < 1 ml H2 g-1 of dry matter for lignocellulosic residues, compared to 240 ml H2 g-1 of dry matter for 
purified starch, therefore, it is possible to increase the potential of the residues by choosing a good 
microbial consortium, subjecting the substrates to pretreatments and achieving the optimization of the 
technical production parameters.  

It is also possible to cogenerate bio–oil, which is a precursor of renewable fuels and high–grade 
petrochemicals, the production of which could minimize dependence on fossil fuels and toxic 
chemicals [178]. In line with this, Rueangsan et al. [179], extracted bio–oil by fast pyrolysis with a 
yield of 65 % by weight of dry biomass from stems and rhizomes, the latter being of better quality due 
to lower oxygen content, higher calorific value and storage stability. 

However, other by–products can be derived, such as syngas (CH4, H2, CO, and CO2) [15], and 
biochar, which, in addition to being directed as a solid biofuel, has the potential as a soil 
improvement [16], and biosorbent for wastewater dyes [180]. 

Specifically, although cassava is oriented as a first–generation energy crop with a 2% share, 
especially in China and Thailand [181], its use is controversial due to the increase in food prices caused 
by the rising demand for biofuels, a demand that enhances food conversion by planting bioenergy 
crops [104]. Thus, bioenergy production through its residual biomass is proposed as a promising 
alternative to minimize land use and safeguard food security [88]. Therefore, it is important to manage 
co–products from the cassava agroindustry, where biofuel production offers an economically and 
technologically attractive solution [14] that is capable of significantly reducing energy demand and 
decreasing greenhouse gas emissions [164], bringing environmental, economic, and social 
benefits [182], as population growth continues to rise inversely to the production of fossil fuels. It is 
also necessary for co–products to undergo pretreatment to break down the structure of the structural 
components and increase extraction efficiency [183]. Thus, co–products constitute an optional source 
to generate bioenergy in countries that are economically dependent on cassava cultivation [88]; 
however, barriers such as the lack of technological maturity and the high cost of production hinder 
significant growth in the energy market [104]. 

2.8.4. Bioproducts  

The co–products generated during cassava processing possess enormous potential for 
synthesizing bioactive compounds such as carotenoids, phenols, and organic acids (including gallic 
acid, catechin, rutin, chlorogenic acid, caffeic acid, citric acid, acetic acid, lactic acid, and poly–γ–
glutamic acid (γ–PGA)), as well as flavonoids. These secondary metabolites offer specific health 
benefits, including the prevention of certain chronic non–communicable diseases, along with anti–
inflammatory, anticarcinogenic, cardiovascular, and antioxidant properties, among 
others [21,24,25,184]. Regarding the peel, when subjected to physical, chemical, and biological 
processes, the lignin structure is modified, releasing the hemicellulosic base, a raw material for 
obtaining xylooligosaccharides (XOS). XOS serves as a useful prebiotic, promoting beneficial 
microbial activity in the organism [185]. Additionally, bacterial structures can be isolated from the 
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residue to synthesize exopolymeric substances (EPS), particularly from the genus Bacillus [23]. 
Furthermore, leaves and stems contain various phytochemicals conferring antioxidant, anti–

inflammatory, anthelmintic, and antidiabetic properties, offering an alternative to improving various 
health conditions [72,186]. This makes them suitable for use in the food industry; however, further 
safety and bioavailability studies of these active compounds are required [22]. Residual liquid effluents 
also serve as an optimal substrate for the growth of microorganisms that synthesize highly demanded 
bioproducts in both food and non–food industrial sectors [135]. 

Additionally, these co–products can be utilized in synthesizing bioplastics such as the copolymer 
poly (3–hydroxybutyrate–co–3–hydroxyvalerate) [29]. They can also serve as filler materials in 
polyurethane foams, reducing polyethylene glycol usage by 24% [30]. Furthermore, due to their 
morphological, physical, chemical, mechanical, and thermal properties, they can act as reinforcing 
agents in the polymeric matrix of biocomposites [187]. Thus, these co–products represent inexpensive 
raw materials that, if utilized in the biopolymer industry, could ensure sustainable and profitable 
production with positive environmental effects. 

2.8.5. Other uses  

The peel can remove heavy metals (chromium VI) [26], and can also absorb dyes like methylene 
blue, making it useful for primary treatments of industrial liquid co–products [27], suggesting its 
potential in the field of bioremediation. Furthermore, bagasse can be used as an adsorbent material for 
food dyes, offering a promising application to replace commercial products such as activated carbon. 
For instance, Santos et al. [28] reported the biosorption of up to 74.4% of the dye tartrazine in effluents 
from the juice industry using 7.5 g L-1, attributed to its unique characteristics such as an irregular, 
heterogeneous surface, and the presence of pores. Other alternatives are also depicted in Table 4. 
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Table 4. Potential use of cassava agroindustrial co–products. 

Co–product Application Result Author 
Stems  Chipboard Agromertified boards were produced with cassava stems and 

urea–formaldehyde adhesive at a 3:1 ratio, with properties 
of low water absorption (20 %), swelling thickness (6.26 %) 
in addition to high values of modulus of rupture (4×106 N 
m2), and elasticity (2366.74×106 N m2). 

Aisien et al. [188]. 

Stems  Carbon quantum 
dots  

Carbon quantum dots were produced by acid/alkali 
treatments and hydrothermal carbonization, with potential 
application for drug delivery. 

Qiu et al. [189]. 

Stalk Roofing sheets Stable roofing sheets were produced by combining the co–
products of cassava stems with corn cobs plus glues of 
animal origin and the use of PVC as a binder. 

Aisien et al., [190]. 

Leaves Medicinal use Medicinal use through leaf extract (100, 250, and 500 mg 
kg-1) with anti–inflammatory, antipyretic, and analgesic 
activity. 

Bokanisereme & 
Okechukwu [191]. 

Peel  Wax With the soxhlet extraction method with benzene and 
ethanol, it is possible to produce 8.51 % of crude wax, with 
potential application in the pharmaceutical, cosmetic, paint, 
and food industries. 

Abiaziem & 
Ojelade [192]. 

Peel Biopesticides  The peel as a substrate for the production of Trichoderma 
Brev T069, with a yield of 250 kg (2.89×109 spores/g) in a 
bioreactor, with control activity on the Fusarium wilt of 
banana. 

Zhang et al. [193]. 

Peel  Sodium cyanide  Sodium cyanide was obtained from direct hydrolysis with 
better purity compared to its analytical grade counterpart, a 
green chemistry technique that promotes environmentally 
friendly, simple, and cost–effective synthesis. 

Attahdaniel et al. 
[194]. 

Peel ZnO nanorods 
decorated with 
carbon nanodots to 
degrade methylene 
blue 

ZnO nanowires decorated with carbon nanodots were 
manufactured as a photocatalyst for the degradation of 
methyl blue, through the green chemistry technique which 
consisted of simple carbonization of cassava peel at low 
temperatures followed by an aging process for 6 days in 
absolute ethanol.  

Roza et al. [195]. 

Tuberous root 
peridermis 

Silicon  A silicon content of 6.10 % was reported in the ashes of 
cassava peridermis, a useful raw material for the 
pharmaceutical sector, archeology, biomedicine, and 
electronics (semiconductors). 

Adebisi et al. 
[196]. 

Bagasse and 
rhizomes 

Glass  The addition of bagasse ash and cassava rhizomes (0–10 %) 
are useful materials in the production of glass bottles. 

Sopapan et al. 
[197]. 

Bagasse  Tissue engineering 
scaffold 

Cassava fibers exhibit considerable strength and stiffness 
that can be oriented as a filler and reinforcing agent in the 
mechanical integrity of tissue–engineered polymer 
scaffolds.  

Diabor (2017) 
[198]. 
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3. Conclusions 

The availability of a considerable volume of co–products from the cassava agroindustry leads to 
exploring their potential use for the development of bioenergy and bioproducts with high added value, 
especially in those places where cassava represents a fundamental pillar of the rural economy. Energy 
generation is one of the most studied aspects, which, if implemented within the factories, these methods 
could lead to a true circular economy, and with the principles of green technology, they would promote 
energy security, adequate land use, thus increasing the efficiency of low–value resources, and 
addressing environmental problems associated with cassava co–products, such as the discharge of 
liquid effluents into water sources, the production of unpleasant odors, and the emission of greenhouse 
gases. Finally, the potential high–value products that can be derived from these bio–waste products 
could bring benefits to the agroindustrial chain. 
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