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Abstract: This study aimed to develop an artificial neural network (ANN) capable of predicting the 
molar concentration of diisobutylene (DIB), 3,4,4-trimethyl-1-pentene (DIM), and tert-butyl alcohol 
(TBA) in the distillate and residue streams within three specific columns: reactive (CDC), high 
pressure (ADC), and low pressure (TDC). The process simulation was conducted using DWSIM, an 
open-source platform. Following its validation, a sensitivity analysis was performed to identify the 
operational variables that influenced the molar fraction of DIB, DIM, and TBA in the outputs of the 
three columns. The input variables included the molar fraction of isobutylene (IB) and 2-butene (2-Bu) 
in the butane (C4) feed, the temperature of the C4 and TBA feeds, and the operating pressure of the 
CDC, ADC, and TDC columns. The network's design, training, validation, and testing were performed 
in MATLAB using the Neural FittinG app. The network structure was based on the Bayesian 
regularization (BR) algorithm, that consisted of 7 inputs and seven outputs with 30 neurons in the 
hidden layer. The designed, trained, and validated ANN demonstrated a high performance, with a mean 
squared error (MSE) of 0.0008 and a linear regression coefficient (R) of 0.9946. The statistical 
validation using an analysis of variance (ANOVA) (p-value > 0.05) supported the ANN's capability to 
reliably predict molar fractions. Future research will focus on the in-situ validation of the predictions 
and explore hybrid technologies for energy and environmental optimization in the process. 
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1. Introduction  

Since its discovery in 1857, the widespread use of gasoline, primarily as a source of energy for 
internal combustion engines, has raised significant environmental concerns. The gases produced 
during gasoline combustion are known to contribute to the greenhouse effect due to their composition. 
Additionally, certain additives, such as methyl tert-butyl ether (MTBE), which is used to enhance the 
octane rating of gasoline, have proven to be equally contaminating, with their current prohibition being 
considered due to negative impacts on rechargeable water sources [1]. The need for more sustainable 
alternatives becomes apparent; in this context, isooctane (IO) emerges as a less polluting and versatile 
option. Beyond its traditional use as a fuel, IO stands out as a raw material in manufacturing essential 
chemicals, such as octophenol and synthetic rubber [2]. In this context, it is urgent to explore 
technically viable and economically sustainable methods for IO production to address the 
environmental challenges associated with the conventional use of gasoline and its additives. 

1.1. Isobutene dimerization process 

The choice of extractant in the isobutene dimerization process significantly impacts the yield and 
selectivity of the reaction. The most used extractants include polar solvents such as water, alcohols 
(methanol, ethanol), and ketones (acetone). Water has proven to be a good extractant to remove the 
isobutene dimer; however, its use may be limited by the solubility of isobutene in water and the 
possible formation of unwanted byproducts. Alcohols such as methanol and ethanol are attractive 
alternatives due to their greater affinity for the dimer; however, care must be taken with possible 
alkylation reactions that could occur between alcohol and isobutene, while acetone is an extractant due 
to its good selectivity and extraction capacity. However, due to its flammability, its use involves 
additional costs and safety considerations. According to Liu et al. [3], obtaining MTBE requires two 
technical routes. The first route involves the alkylation of isobutane with butene. However, this process 
requires using an alkylation unit with catalysts such as HF or H2SO4, which are highly corrosive and 
toxic compounds, making it technically unfeasible. The second route entails the dimerization of 
isobutene, followed by hydrogenation. This latter route has been extensively studied in various 
scientific publications. A significant advantage of this route is that MTBE plants can be easily and 
economically adapted for IO production [4]. However, the challenge lies in exclusively obtaining 
diisobutenes (DIB), as mentioned by Honkela & Krause [1]. In addition to diisobutenes, other 
oligomers such as triisobutenes and tetraisobutenes are produced, which are not helpful as gasoline 
additives due to their high molecular weights. 

Liu et al. [3] investigated the dimerization process using a butane (C4) mixture of 1-butene and 
isobutene. To enhance the selectivity of high research octane number (RON) dimers, such as 2,4,4-
trimethyl pentene-1 and 2,4,4-trimethyl pentene-2, the temperature in the product stream was varied 
within a range of 30 to 50 ºC. Ethanol was introduced in a molar ratio of 0.1 to 0.5 ethanol/isobutene 
(EtOH/IB), and an acid ion exchange resin (DH-2) was employed. The results indicated that adding 
ethanol inhibits the conversion of 1-butene, enhances the selectivity of dimers, and diminishes the 
temperature's influence on the reaction.  
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In contrast, Honkela & Krause [1] investigated the impact of methanol and tert-butyl alcohol 
(TBA) on the conversion of isobutene, the selectivity of dimers, and the deactivation level of the 
employed ion exchange resin. The reaction occurred in a 50 cm3 continuous stirred tank reactor (CSTR) 
at a pressure of 1.5 MPa, thereby utilizing 1 g of catalyst. Two 2 dm feed tanks at 1.8 MPa were 
employed, one for the liquid isobutene and the other for the polar component and the distillate. The 
experiments were conducted at 60, 80, and 100 °C temperatures. Their findings revealed that both 
polar additives enhanced the selectivity of dimers. Notably, TBA did not form MTBE, unlike methanol, 
which produced substantial quantities of MTBE. Moreover, an inversely proportional relationship was 
identified between the isobutene conversion and the dimer selectivity. 

Although the use of polar components to improve selectivity turns out to be quite an attractive 
idea, it does not take into account that the additive has to be separated from the product; in the case of 
TBA, it forms an azeotrope with DIB, which is very difficult to separate by significantly increasing 
the costs. Talwalkar et al. [4] proposed an alternative that consisted of using reactive distillation 
columns (RD) to dimerize IB, taking advantage of the difference in volatilities of the IB and the dimers 
formed to avoid the simultaneous reactions that give rise to the oligomers from the DIBs. 

Kamath et al. [5] conducted a comprehensive analysis of the IB dimerization process through 
simulation, examining the impact of catalyst loading, the position of the C4 feed, and the feed of the 
polar component on a 30-stage reactive distillation (RD) system. The results revealed that, beyond a 
Da (Damkohler number) value of 0.5, there was negligible improvement in the selectivity. The optimal 
placement for the C4 feed was determined to be in the last reactive stage (Stage 26), as descending 
through the reactive zone increased the selectivity and the conversion. In contrast, the feed of the polar 
component exhibited an inversely proportional relationship: the higher the position above the reactive 
zone, the greater the selectivity achieved, though this also corresponded to an increased catalyst 
quantity, and vice versa. 

Despite the advantages of the DR, the design of the columns and the extraction and regeneration 
of the catalyst constitute essential challenges at the start-up time. In this sense, Kamath et al. [6] 
proposed two alternatives focused on the cost analysis when choosing the optimal conversion of IB 
and the desired selectivity for DIBs. The first alternative involved using 8 CSTR reactors in series at 
90 ºC, a pressure greater than 15 atm to work in the liquid phase, and a 10-stage distillation column at 
6 atm. This conventional configuration directly introduced the C4 feed to a reactor system and 
subsequently entered the distillation column with recirculation from the top to the reactor feed. The 
second configuration directs the C4 feed to the column. It sends the product from the top to the reactor 
system and the polar component, thus reintroducing the output stream into the RD. The results indicate 
that the second configuration reduces its selectivity below 60% for high conversions (>90% IB), 
compared to the conventional process that shows a selectivity more significant than 85%. The 
conventional system is highly competitive in high conversion situations regarding the annual costs [6]. 

Talwalkar et al. [4] investigated the RD process without polar components using a 3 m pilot RD 
column. The column consisted of a 1 m reactive zone packed with KATAPAL-S loaded with the T-36 
catalyst, and a 2 m non-reactive zone filled with EVERGREEN HYFLUX and covered with glass wool 
to minimize heat losses to the surroundings. Three experiments were carried out in a continuous regime, 
varying the operation of the reboiler and the reaction temperature. The results showed conversions of 
49.54%, 55.56%, and 59.69%, with selectivities of 90%, 92%, and 93%, respectively. These findings 
highlight the influence of operating conditions on the efficiency of the RD process without polar 
components. 
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1.2. Simulation of distillation processes for n-hexane and ethyl acetate system 

Goortani et al. [7] proposed an innovative strategy to enhance the dimerization process using a 
reactive column. The employed column was 7 meters in height, with two reaction zones and three 
separation zones, and utilized a feedstream from the NexOCTANE process. The process simulation 
was conducted using gPROMS, thus allowing for adjusting reaction rates and interfacial areas. The 
triphasic mass transfer model employed to represent the distillation column revealed a significant 
savings of 7–11% in cooling and heating services compared to the conventional NexOCTANE process. 

Chalakova et al. [8] developed innovative RD techniques for the IB dimerization process. Two 
distinct concepts of RD were examined, where IB dimerization and IO hydrogenation were carried out 
either simultaneously (fully integrated) or sequentially (partially integrated). The process and operating 
conditions were designed using DIVA and ASPEN PLUS, and an economic and performance 
comparison was conducted against a conventional process design. The first technique involved using 
a reactive column and a packed-bed reactor for DIB hydrogenation. The second process intensified the 
operation by integrating the dimerization zone (upper part) and the hydrogenation zone (lower part) in 
the same RD setup. For both processes, a high IO selectivity of 93.08% and an IB conversion of 98.34% 
were achieved in the case of partial integration. In contrast, the IB conversion reached 98.24% for the 
fully integrated process, and the IO selectivity was 93.36%. 

1.3. ANN as a prediction tool in chemical industries 

The application of artificial neural networks (ANN) in chemical processes arises in response to 
the limitations inherent to first principles models (FPM). Due to constant changes in operating 
conditions and the difficulty in establishing fundamental models, the complexity of understanding 
reaction kinetics in most industrial processes motivates the use of ANNs. These allow the development 
of non-linear models of physical phenomena based on historical data from industrial plants. However, 
the advantage of ANNs is that they do not obey the fundamental laws of conservation of mass, energy, 
and momentum, nor the laws of thermodynamics. Their accuracy depends on the range of data with 
which they were trained [7,9–11]. 

The application of ANNs in the chemical industry has facilitated the development of novel 
methodologies to address operational and process optimization challenges by predicting outcomes 
derived from process simulation databases. Various networks with different structures have been 
employed for machine learning and can be classified into supervised and unsupervised categories [12]. 

For example, Chouai et al. [13] used ANNs to model and control chemical processes, fit the 
reaction rate data of complex reactions, and determine the pressure-volume-temperature data in 
refrigerant fluids. This numerical approach seems to be a convenient tool for modeling, except when 
we are near the critical point, especially for calculating the heat capacity. 

Manssouri et al. [14] used an ANN-extreme learning machine model to predict the temperature at 
the height of a continuous distillation column, thus demonstrating its accuracy through an accurate 
forecast with a value of root-mean-square-error (RMSE) = 0.0168 using a database of 1000 samples. 

On the other hand, Alhajree et al. [15] modeled and optimized a hydrocracking plant using a 
multilayer feed-forward ANN with a BACK PROPAGATION (BP) training algorithm, computing on 
2/3 of a real plant data bank. They determined that temperature was the most influential input parameter 
in the process and found optimal values of the operating parameters to maximize the production of 
diesel, kerosene, heavy naphtha (HN), and light naphtha (LN). These optimal values were as follows: 
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feed, 113.2 m3/h; reactor temperature, 413 ºC; and H2 feed, 111.1 MSCM/h. 
This study is motivated by the notable absence of prior research utilizing ANNs for predictive 

purposes in extractive distillation for separating n-hexane and ethyl acetate. The lack of previous 
investigations underscores the novelty and importance of applying ANN methodologies to this 
industrial process. Harnessing the predictive capabilities of neural networks in extractive distillation 
can enhance the efficiency, optimize the operational parameters, and provide valuable insights into 
separating n-hexane and ethyl acetate. 

This study represents an essential advancement in the field due to the current absence of work on 
using ANNs applied to IB dimerization. The novelty of this topic lies in its unique focus on using an 
ANN to predict IB dimerization. Furthermore, its importance goes beyond prediction, as it lays the 
foundation for future studies that involve hybrid optimization methodologies, thus combining genetic 
algorithms and neural networks. 

2. Materials and methods 

2.1. Process description 

Figure 1 illustrates the dimerization process of isobutylene by catalytic distillation, adapted 
from [2]. The process consists of three columns: a catalytic distillation column (CDC),  an ADC – 
TBA recovery column, and a TDC – vacuum distillation column to separate the isomers. 

The CDC column receives a feed stream of FCC-C4 and a feed stream of recirculated TBA from 
the ADC column. In CDC, three reactions are carried out as follows: IB + IB, IB+2-Bu, and IB+DIB 
for the production of DIB, DIM, and TIB, respectively. The reactive zone begins at stage 9 and 
concludes at stage 78. The operating conditions allow us to obtain a conversion of 99.08% of the IB 
and a selectivity of 96.03% in DIB because separating the volatile components from the heavy 
components prevents the oligomerization of the DIB to produce TIB. 

Table 1 summarizes the composition of the feed stream entering the CDC catalytic distillation 
column. Tables 2–4 detail the catalytic, TBA recovery (ADC) operating conditions and isomer 
separation (TDC) columns. Unlike the conventional process, the ADC column distillate allows TBA 
recovery, which is recirculated to the CDC column as an inhibitor of IB polymerization. They increase 
the selectivity of dimers of high economic interest (DIB-DIM). The TDC column allows for the 
separation of the dimers due to the vacuum conditions they present, thus obtaining a purity of 99.9%wt 
DIB in the distillate and 98%wt DIM in the residue. 
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Figure 1. Simulation of the isobutylene dimerization.
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Table 1. Feed Conditions to CDC. 

Parameter Quantity Unit 
Pressure 12 atm 
Temperature Feed C4 -TBA 25 oC 
Feed C4 (mass flow) 6000 kg/h 
Initial composition of isobutane 0.4945 -  
The initial composition of isobutene 0.1949 - 
Initial composition of 1-butene 0.1648 - 
Initial composition of 2-butene 0.0778 - 
Initial composition of n-butane 0.068 - 
Feed TBA (mass flow) 100.38 kg/h 
The initial composition of TBA 0.9427 -  
Initial composition of diisobutene 0.0.0458 - 

Notes: The compositions are given in mass fraction (X); Source: [2] 

Table 2. CDC – Catalytic distillation column. 

Parameter Quantity Unit 
Pressure 12 atm 
# Column stages* 89 - 
# Feed stage TBA* 35 - 
# Feed stage C4* 78 - 
Reflux ratio (RR) 10 - 
Fresh TBA molar flow  1.32 kmol/h 
Feed molar flow (C4) 104.85 kmol/h 
Condenser duty 834.00 kW 
Reboiler duty 1090.00 kW 

Notes: *Numbered from the top of the distillation tower; Source: [2] 

Table 3. ADC – TBA recovery column. 

Parameter Quantity Unit 
Pressure 8 atm 
# Column stages* 88 - 
# Feed stage* 69 - 
Reflux ratio (RR) 5.35 - 
TBA molar flow (recycle stream 
from ADC) 

1.28 kmol/h 

Feed molar flow 13.60 kmol/h 
Condenser duty 65.24 kW 
Reboiler duty 53.00 kW 

Notes: * Numbered from the top of the distillation tower; Source: [2] 
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Table 4. TDC – Vacuum distillation. 

Parameter Quantity Unit 
Pressure 0.18 atm 
# Column stages* 122 - 
# Feed stage* 61 - 
Reflux ratio (RR) 5.71 - 
Condenser duty 534.887 MW 
Reboiler duty 395.130 MW 

Notes: * Numbered from the top of the distillation tower; Source: [2] 

The pressure drop was not considered in the simulation of the distillation columns to validate our 
work with the study carried out by Chen et al. [2], in which the pressure drop in the system was also 
not considered. Furthermore, the pressure drop is not a parameter that directly affects the catalytic 
dimerization of IB. 

2.2. Methodology 

Figure 2 presents the methodological scheme adopted for the development of the ANN. In the first 
stage, the simulation and validation process described in Figure 1 was developed, thereby considering 
the operating parameters established in Tables 1–4. Next, a sensitivity analysis of the process was 
carried out to identify the input variables of the ANNs. Subsequently, the neural network was trained, 
validated, and tested using a simulation-based database. Finally, the effectiveness of the network was 
evaluated through statistical analyses and graphical representations, thus ensuring a deep and rigorous 
understanding of its performance. This methodological approach provides a solid foundation for the 
successful implementation of ANNs in predicting the studied process.         

2.3.  DWSIM simulation 

DWSIM, an open-source chemical process simulator, can be utilized on various operating systems, 
including Windows, Linux, Android, macOS, and iOS. This software enables engineers to effectively 
construct process plants by leveraging rigorous thermodynamic principles and utilizing unit 
operations [16,17].  

The distillation towers utilized for the simulation depicted in Figure 1 are by the "Chem-Sep 
Column" model. All flow streams are operated using the modified UNIFAC property package. 
Simultaneously, the DECHEMA/Modified UNIFAC/Antonie/Ideal thermodynamic models are 
adjusted for the distillation towers. These models enable the accurate depiction of the non-ideality of 
the liquid system through the calculation of activity coefficients of the liquid and the modeling of the 
vapor phase [2,18–21]. The conditions in Tables 2–4 align with the operating conditions employed 
during the process simulation. 

Newton's method was the mathematical technique employed to ascertain the convergence of the 
simulation process, with an established maximum of 100 iterations. 
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Figure 2. Methodological scheme of the designed ANN. 

2.4. Sensitivity analysis 

A sensitivity analysis is performed to ascertain the selection of the input and output variables in 
an ANN to assess the relative significance of these variables. It assists in identifying the most pertinent 
characteristics while eliminating irrelevant ones, optimizing the architecture, and diagnosing potential 
complications. To conduct this analysis, the possible manipulated variables were defined, thus 
establishing ranges of variation by the physical-chemical rationale of the actual process.  

2.5. Design and training of the ANN 

The training of the ANN involves adjusting the weights of the connections between neurons to 
enable the ANN to make accurate predictions about the targeted output data. The validation process is 
used to measure the prediction errors of the ANN, thereby assessing its performance. On the other 
hand, the testing phase involves evaluating the predictions made by the ANN using pairs of data that 
were not utilized during the training process [17]. 

The literature surrounding ANNs that useda minimum of 50 data points for predictive regression 
algorithms can be found in [22–24]. With this guidance, 306 data pairs were generated by introducing 
random variations to the operational parameters and by selecting performance indicators for this 
investigation. 

Following the recommendations provided by Chen et al. [25], 70% of the complete dataset 
(consisting of 214 data sets) was utilized to train and learn the ANN. In comparison, the remaining 30% 
(comprising 92 data sets) were allocated for testing to evaluate the ANN's proficiency in learning. 

1. Setting the 
operating parameters 2. DWSIM simulation 3. Simulation 

validation

4. Sensitivity  analysis 5. Data processing

6. ANN design

7 inputs

and 7 outputs

7. Data training and 
Testing 

(Coef. Pearson, MSE)

306 data pairs

8. Verification and 
Statistical Analysis 

(ANOVA)

25 data pairs
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2.6. ANN validation 

To validate the ANN, we utilized a variety of performance metrics. These metrics included the 
mean square error (MSE), which measures the average squared difference between the predicted and 
actual values, and the regression coefficient (R), which quantifies the strength and direction of the 
linear relationship between the predicted and actual values. These metrics were defined by Eqs 1 and 
2, respectively [26–28]. Additionally, we utilized an ANOVA to assess the ANN's performance further. 

Moreover, we implemented an iterative process to fine-tune the ANN's performance. This 
iterative process aimed to minimize the MSE and enhance the correlation coefficients during the 
training, validation, and testing phases. By continuously adjusting the parameters of the ANN based 
on the performance evaluation, we aimed to optimize the network's ability to accurately predict the 
desired outcomes. Thus, this iterative process improved the ANN's effectiveness and reliability: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
��𝑦𝑦 − 𝑦𝑦′�

2
n
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𝑛𝑛
𝑖𝑖=1

      (2) 

Where n is the number of observations, y are the actual results (simulation outputs), and y’ are the 
predicted targets (ANN outputs). 

3. Results and discussion 
 

This section presents the analysis and discussion of the process simulation and the ANN's design, 
training, and validation. 

3.1. Simulation validation 

The validation process of the simulation in DWSIM involved comparing it with the study carried 
out in ASPEN PLUS by Chen et al. [29]. Table 5 was used to summarize the errors in the mass fractions 
of interest in their respective distillation columns. It is important to note that these errors do not exceed 
5%. This particular error percentage can be justified by the presence of minute traces of other 
components in both the distillate stream and the background stream, which are considered to have a 
negligible impact. 
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Table 5. Simulation validation (mass fraction). 

Column Parameter Aspen Plus 
Chen et al. [29] 

DWSIM Error (%) 

CDC DIB (bottom) 0.61 0.61 1.16 
DIM (bottom) 0.29 0.30 4.57 

ADC DIB (bottom) 0.65 0.66 1.71 

DIM (bottom) 0.31 0.32 3.19 

TBA (distillate) 0.94 0.92 1.93 

TDC DIB (distillate) 0.99 0.99 0.72 

DIM (bottom) 0.90 0.93 4.35 

3.2. Sensitivity analysis 

Critical variables affecting the products of interest were selected when modified in the reactive 
distillation, TBA recovery, and dimer separation steps. The sensitivity analyses to determine the 
variables that significantly impacted the target compounds are detailed in Appendix A. Table 6 shows 
the parameters that directly influenced obtaining high-purity components. 

Table 6. ANN inputs and outputs.  

ANN Column Nomenclature  Parameter Units 
Inputs CDC XIB  Mass fraction of isobutylene in feed C4 - - 

X2-Bu  Mass fraction of 2-butene in feed C4 - - 

TC4 Feed temperature C4 ºC 

TTBA Feed temperature TBA ºC 

PCDC CDC column operating pressure  atm 

ADC PADC ADC column operating pressure  atm 

TDC PTDC Column operating pressure TDC  atm 

Outputs CDC XDIB Mass fraction of DIB in the Bottom-CDC  - 

XDIM Mass fraction of DIM in the Bottom-CDC  - 

ADC XDIB Mass fraction of DIB in the Bottom-ADC  - 

XDIM Mass fraction of DIM in Bottom-ADC  - 

XTBA Mass fraction of TBA in Distillate-ADC  - 

TDC XDIB-TOP Mass fraction of DIB in the Distillate-TDC  - 

XDIM-BOTTOM Mass fraction of DIM in Bottom-TDC  - 

Table 7 shows the variation of the inputs chosen based on typical and extreme operation ranges.  
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Table 7. ANN input's restrictions.  

Column Parameter Nomenclature Range Units 
CDC Mass fraction of isobutylene in feed C4 - XIB  0.07–0.86 - 

Mass fraction of 2-butene in feed C4 - X2-Bu  0.02–0.81 - 
Feed temperature C4 TC4 10–40 ºC 
Feed temperature TBA TTBA 10–35 ºC 
CDC column operating pressure  PCDC 8–15 atm 

ADC ADC column operating pressure  PADC 5–10 atm 
TDC Column operating pressure TDC  PTDC 0.01–0.99 atm 

3.3. Design and training of the ANN 

The design of the ANN (Figure 3) is based on seven input parameters: IB mass fraction in C4, 2-
butene mass fraction in C4, feed temperature C4, feed temperature TBA, CDC column pressure, ADC 
column pressure, and TDC column pressure. These input variables were chosen due to their importance 
in the final products' quality and optimization processes. Seven output parameters were considered: 
mass fraction of DIB and DIM in the residue of the CDC column, mass fraction of DIB and DIM in 
the residue and mass fraction TBA in the distillate of the ADC column, mass fraction DIB in the 
distillate, and molar fraction of DIM in the residue of the TDC column.  

 

Figure 3. Schematic of the designed ANN. 

7
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3.4. ANN topology 

This section describes the design and structuring of the ANN by analyzing the correlation 
coefficient (R) and the MSE. 

3.4.1. Selection of ANN training algorithm 

The ANN architecture employed in this study used three training algorithms that have been 
previously demonstrated to be effective in minimizing the MSE loss function: the Levenberg-
Marquardt (LM), Bayesian regularization (BR), and scaled conjugate gradient back-propagation (SCG) 
algorithms. These training techniques surpass many other commonly utilized algorithms by more 
effectively converging towards solutions with lower MSE values, as the literature on optimization 
approaches for neural networks indicates [30–32]. 

The performance of the three training algorithms was assessed through R and MSE metrics, as 
observed in Table 8, which is similar to other studies in predictive modeling [33,34]. The number of 
neurons was systematically altered to determine the impact of the architectural choice of the hidden 
layer. This variation allowed us to evaluate the model's accuracy across different optimization 
approaches. Consequently, a comparison of the robustness and sensitivity of the algorithms to tuning 
parameters was made possible. 

Table 8. Pearson’s correlation coefficient (R) and mean square error (MSE) values for trial 
and error using Levenberg–Marquardt (LM), Bayesian regularization (BR), and scaled 
conjugate gradient back-propagation (SCG) algorithms. 

# hidden 
neurons 

LM BR SCG 
R Global MSE R Global MSE R Global MSE 

10 0.902 0.024 0.907 0.023 0.890 0.026 
20 0.917 0.020 0.917 0.021 0.867 0.031 
30 0.930 0.006 0.986 0.011 0.486 0.033 
35 0.897 0.023 0.944 0.013 0.853 0.027 
40 0.898 0.025 0.943 0.039 0.880 0.029 
50 0.921 0.020 0.939 0.028 0.893 0.025 
60 0.956 0.008 0.924 0.020 0.894 0.027 
70 0.919 0.028 0.901 0.030 0.952 0.008 
80 0.904 0.024 0.815 0.007 0.870 2.049 
90 0.919 0.020 0.915 0.024 0.888 0.025 
100 0.913 0.022 0.893 0.032 0.890 0.027 

The results of the training procedure elucidated in Table 8 illustrate that the BR algorithm 
generated the most precise and dependable model for foretelling the target outputs, with an MSE of 
0.011 and the maximum R-value of 0.986. As pointed out in preceding research [30,35,36], the BR's 
pivotal advantage is its ability to unveil intricate associations within data to produce less prejudiced 
decisions. 

Although computationally more expensive than other techniques, BR has demonstrated its ability 
to produce robust generalizations from small, noisy, or complex datasets, thus surpassing the 
performance of methods such as Levenberg-Marquardt. This particular strength in modeling potential 
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nonlinear effects, even in limited data samples, renders BR as highly suitable for quantitative analyses 
that necessitate an accurate and reliable predictive performance [30]. By harnessing the capabilities of 
BR, the constructed model establishes a solid basis to extract insights from the empirical data gathered. 

3.4.2. Selection of the number of neurons in the hidden layer 

Determining the optimal neuron’s number helps conduct trials to determine the required local 
minimum in the error surface and oscillations in R. 

The analysis presented in Table 9 demonstrates that 30 neurons yield the most significant R-values 
during the testing phase. Specifically, the R-value obtained during testing reached an impressive 0.934, 
while the MSE values were recorded at 0.011. Upon observing the maximum R-value and minimum 
MSE, these findings strongly imply that this hidden layer's optimal number of neurons is 30. 
Furthermore, the combination of higher R-values and lower error rates observed with 30 neurons 
indicates that it provided the best model performance. 

Table 9. R and MSE values for determining the optimal number of neurons in the hidden 
layer using BR. 

# hidden neurons R 
Training 

R 
Testing 

R 
Global 

MSE 

10 0.925 0.888 0.907 0.023 
20 0.949 0.885 0.917 0.021 
30 0.995 0.934 0.986 0.011 
35 0.978 0.910 0.944 0.013 
40 0.978 0.908 0.943 0.039 

The present study involved the construction of an ANN model that employed MATLAB NNTOOL 
R2018a. After careful examination, the ANN architecture was determined to be comprised of seven 
input neurons a singular hidden layer of 30 neurons. It was determined to be the optimal choice with 
seven output neurons. Previous investigations into predictive modeling have consistently indicated that 
including one hidden layer is often adequate to facilitate precise forecasts across various ANN 
applications. [17,37]. 

3.4.3. ANN training and testing 

Table 10 presents the MSE values for the ANN training and testing phases. However, there are no 
results available for the validation phase. This absence of results can be justified using the BR 
algorithm in the ANNs. This algorithm increases the robustness of the models and diminishes or even 
eliminates the necessity of validation. Consequently, the data collected during training is effectively 
exploited. The MSE values for the training and testing phases exhibit values of 0.0008 and 0.0212, 
respectively, thus indicating the satisfactory functionality of the ANN and its ability to generate 
predictions with a desirable level of accuracy. In Figure 4, the progressive behavior of the MSE is 
exhibited throughout the training phase, thus culminating in a final value of 0.0008251. The 
performance of the MSE function for the training data (train) is almost zero, which indicates the 
network's exceptional predictive capability. 
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Figure 4. ANN training performance (MSE). 

Table 10. The mean square error of ANN designed. 

PHASE MSE 
Train performance (training) 0.0008 
Test performance (testing) 0.0212 

 
Figure 5 illustrates the R values obtained during the training and testing phases. Specifically, the 

R-values obtained for training and testing were 0.995 and 0.934, respectively. Additionally, the overall 
R-value was determined to be 0.983. These noteworthy R-values satisfactorily correlate between the 
predicted outputs and the desired targets. In general, R-values that approached 1 indicated the enhanced 
performance of the ANN. Specific benchmarks were established to confirm the ANN's effectiveness, 
including R-values ranging from 0.95 to 1 and an MSE below 0.025. Meeting these criteria 
substantiates that the developed ANN is a dependable and precise predictive model for the given 
application. 
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Figure 5. Regression coefficient R for the ANN.  

3.5. Model prediction of DIB, DIM, and TBA in CDC – Catalytic distillation column, ADC – TBA 
recovery column, and TDC – Vacuum distillation column for separating isomers. 

Figures 6–12 show the overlap between experimental values (obtained by simulation) and 
predictions (obtained by ANN) in the reactive, recovery, and vacuum columns, respectively. The 
comparisons obtained in the three columns are relatively equal. The developed model is close to the 
experimental data, thus demonstrating that ANNs constitute a robust and suitable model to predict the 
DIB, DIM, and TBA concentrations, and that it can be applied in IB dimerization processes in crude 
oil distillation processes to obtain and concentrate DIB. 

Based on the analysis of Figures 6–12, the average percentage error (%E) of the predictions is as 
follows: 6.05% (DIB in the residue) and 7.27% (DIM in the residue) in the reactive column (CDC); 
5.68 (DIB in the residue), 9.55% (DIM in the residue), and 6.4% (TBA in the distillate) in the recovery 
column (ADC); and 4.4% (DIB in the distillate) and 5% (DIM in the residue) in the vacuum column 
(TDC). 
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Figure 6. DWSIM (Experimental) and ANN (prediction) results at the bottom of the EDC 
(XDIB). 

 

Figure 7. DWSIM (Experimental) and ANN (prediction) results at the bottom of the EDC 
(XDIM). 
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Figure 8. DWSIM (Experimental) and ANN (prediction) results at the bottom of the ADC 
distillate (XDIB). 

 

Figure 9. DWSIM (Experimental) and ANN (prediction) results at the bottom of the ADC 
(XDIM). 
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Figure 10. DWSIM (Experimental) and ANN (prediction) results at the distillate of the 
ADC (XTBA). 

 

Figure 11. DWSIM (Experimental) and ANN (prediction) results at the distillate of the 
TDC (XDIB). 
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Figure 12. DWSIM (Experimental) and ANN (prediction) results at the bottom of the TDC 
(XDIM). 

3.6. ANN model verification 

The predictive ability of the ANN of the concentration of DIB, DIM, and TBA in the reagent, 
recovery, and vacuum column was tested with a set of 25 random input data ([IB],[2-Bu], PCDC, TC4, 
TTBA, PADC and PTDC) unknown to the ANN. The results show an overlap between the experimental 
data and the predictions. This indicates that the ANN has an excellent predictive capacity for the mass 
fractions of distillates and residues from distillation columns (Figure 13). 

This research uses the ANOVA functions [32] using SPSS 22.0 to statistically validate the ANN. 
Table 11 shows the results of the ANOVA, and for all cases, the P values (probability value in statistical 
significance tests) are more significant than 0.05, thus indicating no statistically significant difference 
between the means of the observations and the predictions. These statistical tests reveal that the 
constructed ANN is statistically valid to predict the mass fractions of DIB, DIM, and TBA in EDC, 
ADC, and TDC columns, with a confidence level of 95%. 
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Figure 13. Comparison between experimental and predictions data - EDC: a) XDIB 
(bottom-EDC), b) XDIM (bottoms-EDC), c) XDIB (bottoms-ADC), d) XDIM (bottoms-ADC), 
e) XTBA (distillate-ADC), f) XDIB (bottom- TDC), g) XDIM (bottom-TDC).   
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Table 11. ANOVA. 

Source Sum of squares DOF Mean square F-Value P-value 
XDIB in EDC bottoms 
Inter groups 0.0000 1 0.0000 0.01 0.943 
Intra groups 0.8930 48 0.0186   
Total (Corr.) 0.8931 49    
XDIM in EDC bottoms 
Inter groups 0.0002 1 0.0002 0.01 0.903  
Intra groups 0.7839 48 0.0163   
Total (Corr.) 0.7842 49    
XDIB in ADC bottoms 
Inter groups 0.0001 1 0.0001 0.01 0.936  
Intra groups 0.9629 48 0.0200   
Total (Corr.) 0.9630 49    
XDIM in ADC bottoms 
Inter groups 0.0001 1 0.0001 0.01 0.923 
Intra groups 0.9616 48 0.0200   
Total (Corr.) 0.9618 49    
XTBA in ADC distillate 
Inter groups 0.0019 1 0.0019 0.09 0.767  
Intra groups 1.0542 48 0.0219   
Total (Corr.) 1.0562 49    
XDIB in TDC bottoms 
Inter groups 0.0029 1 0.0029 0.17  0.682 
Intra groups 0.8490 48 0.0176   
Total (Corr.) 0.8520 49    
XDIM in TDC bottoms 
Inter groups 0.1015 1 0.1015 3.53  0.066  
Intra groups 1.3806 48 0.0287   
Total (Corr.) 1.4821 49    

3.7. Benefits of using ANNs for process optimization and energy environment assessment 

ANNs can optimize parameters such as temperature, pressure, flow rates, and reactant 
concentrations to maximize the industrial processes' performance and efficiency. In addition, it allows 
you to minimize resources and increase the system productivity. 

On the other hand, ANNs allow you to analyze the energy consumption through a historical 
analysis of consumption data and subsequently predict the energy consumption patterns, thus allowing 
you to efficiently manage the energy consumption and minimize expenses. 

In addition, ANNs can be designed and/or reprogrammed to evaluate and minimize the 
environmental impacts generated in the industry by predicting the emissions and dispersion of 
pollutants to reduce the carbon footprints. This becomes important when complying with 
environmental regulation standards and ensuring the sustainability of an industry in the short and long 
term. 
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Finally, ANNs can be coupled to a plant process through a SCADA system to make quick and 
effective real-time decisions. 

Figure 14 presents a generalized diagram of the steps and actions necessary to implement the 
ANN in the industrial process. The following recommendations are suggested to implement the ANN 
in real-time: define the objectives of the ANN (quality control or process optimization); define the 
historical database for re-training the ANN; preprocess the database; train the ANN; implement the 
ANN in hardware integrated into the automatic process control system; implement the real-time ANN 
performance monitoring mechanisms; periodically update the ANN through feedback loops for the 
continuous improvement of the ANN; implement security measures based on the predictions made by 
the ANN; and document the entire process. 

 

Figure 14. Generalized diagram to implement the ANN. 

4. Conclusions  

In this study, the mass fractions of an IB dimerization system with DIB-DIM-TBA azeotrope 
separation were predicted using an ANN based on the process simulation in DWSIM. The developed 
ANN had 30 hidden neurons and was trained with a base of 306 data pairs with seven input variables 
(neurons): IB mass fraction, 2-butene mass fraction, CDC column pressure, C4 feed temperature, TBA 
feed temperature, pressure ADC column, and TDC column pressure. It can predict seven output 
variables (neurons): the mass fraction of DIB and DIM in the residue of the CDC column, the mass 
fraction of DIB and DIM in the residue, the mass fraction of TBA in the distillate of the ADC column, 
the mass fraction of DIB in the distillate and the mass fraction of DIM in the residue of the TDC 
column. 
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The Bayesian regularization approach was used to train the ANN, which had an MSE of 0.011 
and a total R of 0.986. Additionally, an ANOVA between the data (DWSIM) and the values predicted 
by the neural network was used to validate the ANN. Statistical tests showed that the ANN accurately 
predicted the mass fractions in the outputs with a 95% significance level. 

According to the findings, the ANN developed in this work can be used as a prediction tool to 
improve IB dimerization processes in the FCC-C4 waste stream from the crude oil distillation process. 
For example, accurate operating parameters of the described process must be used as the input, applied 
in situ, and the predictions should be verified at the control points (ANN outputs). Subsequently, when 
validated in the plant and coupled to the existing control process, the energy and environmental 
optimization of the process can be promoted by connecting genetic optimization algorithms to the 
network (hybrid technologies). Optimization studies in an actual plant will be the subject of future 
research. 
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