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Abstract: A composite analysis is used to evaluate the teleconnections between the long term (June- 

August) rainfall anomalies with east and west phases of quasi-biennial oscillation (QBO) in the 

stratospheric zonal winds from 1979–2017. Applying the lower equatorial stratospheric zonal wind 

index in JJA rainfall prediction is based on its tendency to persist for several months after the phase 

change from easterly to westerly and vice versa. Below normal condition rainfall used to coin 

drought. This study is important because, the Upper Blue Nile region is one of the most inviting 

areas for different activities like agriculture and hydroelectric power; therefore, timely prediction of 

June-August rainfall serves farmers and other concerned sectors. The aim of this analysis is to 

establish the global signal quasi-biennial oscillation contribution alone at different time lags and its 

association among Southern Oscillation Index (SOI) for estimation June-August rainfall of the Upper 

Blue Nile. The rainfall used as predictand while quasi-biennial oscillation & SOI datasets are used as 

predictors in regression model after testing collinearity of these two independent variables. 

Performance of regression model and actual value is tested by using statistical techniques: Root 

Mean Square Error, Mean Absolute Error and bias. The performance is seen reasonably high between 

actual and estimated values show strong agreement. 
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1. Introduction 

The wave means flow interactions in the upper troposphere lower stratosphere region so 

that a quasi-biennial oscillation (QBO) with proper downward extension can be generated [1]. 

The downward propagation of the QBO phases occurs evidently, but it does not penetrate to 

sufficiently low altitudes. This is due to the strength of easterly Jets seldom extend downward. This 

quasi-biennial oscillation driven by equatorially trapped gravity waves propagate from the 

troposphere to the stratosphere [2]. It propagates downward alternatively westerly and easterly zonal 

wind shears in the tropical stratosphere with a period of ∼ 28 months [2]. Due to the QBO there is a 

modulation water vapor mixing ratios in the air entering the stratosphere through the cold, tropical 

tropopause region [3,4], and tropical deep convection [5–7]. By using five decades of radiosonde 

data near equatorial stations indicated that the ENSO influence on the QBO is zonally symmetric [8]. 

The warmer temperature during QBO westerly shear conditions and colder temperatures 

during QBO easterly shear conditions are larger during La-Ninã than during El-Ninõ for all 

stations for the entire period [9]. This strengthens earlier findings that the greatest dehydration of 

air entering the stratosphere from the troposphere occurs during the winter under La Niña and 

easterly QBO conditions [8]. The seasonal rainfall anomalies: short and long rain over East Africa 

was estimated using QBO by considering a number of stations [10,11]. According to the study of 

Seleshi Y and Zanke U [12] determine June-September rainfall in the Ethiopian highlands is 

positively correlated to the Southern Oscillation Index (SOI) and negatively correlated equatorial 

Eastern Pacific sea surface temperature (SST). 

The central and northern parts of Ethiopia experiences two main rainy seasons: short rain 

(February-May) and long rains (June-September) [13]. Giving an emphasis for the long season rainfall 

is potentially important for agriculture, hydropower and other socio-economic activities in countries 

like Ethiopia [14] the mass of peoples’ economy relay up on agricultural activities. Recent studies 

over the Upper Blue Nile have largely focused on the ENSO [15], so that other important long-term 

source of climate variability overlook is an essential issue for climate prediction. 

The shortage of rainfall over the Upper Blue Nile affects the socio-economic life of 

Ethiopia and the territory countries [16]. Such natural extreme is associated with significant 

anomalies in the Pacific (SST) [17]. Both El-Niño and La-Niña are the phenomenon in the 

equatorial Pacific Ocean characterized by anomaly of SST [18]. Negative values indicate El Niño 

conditions as lower pressure in the eastern Pacific and associated with warmer water and weakened 

easterly trade winds. On the other condition the positive Southern Oscillation index (SOI) 

corresponds to negative SST index leads to La-Niña [16]. 

The natural oscillations in regions of the Pacific Ocean have a significant impact on the patterns 

of weather and climate around the globe including the Upper Blue Nile basin of Ethiopia [19]; 

however, among these oscillations the dominant one is El Niño Southern Oscillation (ENSO) with 

return period of about four years, varying from two to seven years [20]. Abtew W et al. [21] used 

monthly rainfall a number of rain gauge monitoring network in the Upper Blue Nile Basin found that 

high/low rainfall is likely to occur during La Niña/ El Niño years and extremely dry wet are highly 

likely to occur during El Niño/ La Niña year’s respectively. 

Rainfall is a crucial variable to climate and issues related to weather. Lack or heavy rainfall 

leads to climate extremes like drought and flood which have negative impacts on socio-
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economic and environment. These climatic extremes are due to global signals which deviate from 

the average value. Based on this commonly known climate signal, SOI plays a key role in detecting 

climate change and forecasting the rainfall variable in different regions of the world. The QBO for 

detecting climate change variables is important for seeing how the middle atmosphere interacts with 

the lower atmosphere mechanically and chemically [22]. Therefore, using like Oceans oscillation 

studying further about QBO and its influence on climate change currently an emerging climate science. 

This study relies upon temporally correlation patterns statistically to evaluate the climate 

condition relationships among the equatorial stratospheric zonal wind at 30hpa and rainfall over the 

Upper Blue Nile. The main objective of this study is to get a physical sound as a predictor variable in 

the long-range forecast rainfall from the QBO of Upper Blue Nile of Ethiopia. 

2. Study area 

The Upper Blue Nile is found in the northwestern region of the Ethiopia (Figure 1). The 

elevation varies from 480 m near the Sudanese/Ethiopian border to over 4200 m near the central part of 

the basin [23]. 

 

Figure 1. The location of Upper Blue Nile basin in Ethiopia. 

The spatial and temporal variation of climate in the basin is affected by the movement of 

air masses associated with Inter Tropical Convergence Zone (ITCZ) [24]. During the winter dry 

season (known in Ethiopia as Bega) the ITCZ lies south of Ethiopia and the Blue Nile region is 

affected by a dry northeast continental air-mass [24]. From March, the ITCZ returns bringing 

small rains (Belg) particularly to the southern and south western parts of the Basin [24]. In May, 

the northward movement of the ITCZ produces a short intermission before the main wet season 

(known in Ethiopia as the Kremt). Around June, the ITCZ moves further north and the southwest air-
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stream extends over the entire Ethiopian highlands to produce the main rainy season [24]. 

The average annual rainfall varies between 1400 and 1800 mm/year, ranging from an average 

of about 1000 mm/year near the Ethiopia Sudan border to 1400 mm/year in the upper part of the 

basin, and in excess of 2000 mm/year in the parts Didessa and Beles sub basins [14]. The 

rainfall trend was studied in the Upper Blue Nile basin, most of the results showed that there was 

no significant trend in the seasonal and annual basin-wide average rainfall [25–27]. The annual 

mean potential evapotranspiration decreases with increasing elevation from 1845 mm to                   

924 mm [23]. In the Sudan, potential evaporation increases, this produces a significant loss of Blue 

Nile water. For instance, the Sennar region has a potential evaporation rate of 2,500 mm/year, but 

receives only 500 mm/year of rain [15]. The temperature in the basin varies with elevation. The 

climate is generally temperate at higher elevations and tropical at lower elevations. According to the 

study of Conway D [23] depending on elevation and mean annual temperature he classified the climate 

of the Upper Blue Nile basin. 

3. Data description and methodology 

The QBO index is a type of oscillation in the atmosphere high above the equator, in the 

stratosphere, strong zonal winds blow in a continuous circuit around the Earth. Over an altitude, the 

winds begin westerlies, however, after sometime the westerlies propagation weaken and eventually 

reverse direction and become strong easterlies. The whole cycle progresses at a fairly uniform rate, 

taking on average 26 months to return to the initial state. The downward propagation easterlies 

amplitude is approximately twice as strong as westelies phase and strong at the top of the vertical 

QBO region, but westerlies domination is found at the bottom region of QBO. 

Rainfall measurement through observation, model and satellite-based techniques are 

important to assess and rainfall spatially and temporally. The conventional rain gauge observations 

are found sparsely and unevenly distributed in Ethiopia and across Upper Blue Nile basin. 

Therefore, applying high resolution satellite data is important to capture rainfall in any region 

of the world after it validated. The Climate Hazards Group Infrared Precipitation with Stations 

(CHIRPS) rain fall product was evaluated in comparison to rain gauge data, Tropical Applications of 

Meteorology using Satellite and ground-based observations (TAMSAT 3) and the African Rainfall 

Climatology(ARC 2) products [28]. 

The Southern Oscillation Index (SOI) data from https://www.crudata.uea.ac.uk/cru/ 

data/soi/ and globally averaged equatorial stratospheric at 30-hpa zonal wind index (QBO) from 

http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html are selected as potentially 

predictors rainfall of Upper Blue Nile basin. The data used as the predictant variable summer 

(JJA) rainfall which is supplied by CHIRPS: http://www.chg.geog.ucsb.edu/data. Before 

implementing this research, the CHIRPS data were validated by different locations over the study 

area. After validation of CHIRPS data then we implemented from the period 1981–2017. The 

correlation between QBO with monthly and seasonal rainfall are evaluated. 

The composite analysis was used to examine the teleconnections between the seasonal 

rainfall anomalies of June-August (summer season) over Upper Blue Nile and the west and east 

phases of QBO in the stratospheric zonal winds, and also explore the predictive potential of the 

summer season using information about the phases of the QBO for the period 1981–2017. We used 

http://www.crudata.uea.ac.uk/cru/
http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html
http://www.chg.geog.ucsb.edu/data
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CHIRPS grid data with a resolution of 0.05 degrees instead of using a large amount of station data 

that is used by PCA to reduce predictive dimension. 

3.1. Correlation analysis 

The Pearson correlation analysis is made between summer season (JJA) with different seasons 

of QBO which has westerly and easterly phases. In this study CHIRPS grid data is used with 

high resolution in order to reduce dimensionality. The zero and non-zero lag is also implemented 

with different time steps to determine the relationships of rainfall and QBO signals. We also 

visualized monthly and seasonal linear correlation among SOI and QBO with rainfall over Upper 

Blue Nile as previously studied by [29]. In Eq 1 below, the value of R is between -1 and 1. These 

positive and negative values are indicative of the positive or negative relationships, respectively. 

𝑅 =
𝛴𝑖

𝑁(𝑋 − 𝑋̅)(𝑌 − 𝑌̅)

√𝛴𝑖
𝑁(𝑋 − 𝑋̅)2(𝑌 − 𝑌̅)2

(1) 

Where N is the total number of records, X and Y are a long term mean of observed and 

predicted, respectively. 

3.2. Multiple linear regression model 

Regression method Multiple regression models implemented to determine how dependent 

variable Y (rainfall) responses among linearly on a number of predictor variables [30]. This 

situation leads to the multiple regressions for models with two or more predictors with one 

response. There are also regression models with two or more response variables. The independent 

value Xi is associated with dependent variable Y. Considering a multiple linear regression model 

with predictor variables X1, X2, . . . , Xk and relationship with Y, can be defined as follows: 

Y = β0 + β1 X1 + β2 X2 + . . . βk XK + ε (2) 

Where, β0, β1, β2,…, βK regression coefficients Y is the dependent (response) variable, Xi 

is independent (predictors) variable and ε is the error term. 

X1 = S OIS ON, X2 = QBOJJA are the two predictors of SOI and QBO indices with time lags 

of data which are categorized into four seasons. The coefficients are a linear trend β0, SOISON 

season with amplitude β1 and QBOJJA with amplitudes β2 respectively. By selecting predictors 

(QBOSON and SOISON) for the Upper Blue Nile region of Ethiopia there is detection of the 

colliarity issue among these two independent variables. In the multicollinear analysis, the variance 

inflation factor (VIF) is used. Multicollinearity diagnosis is the VIF [31] defined as: (3) 

𝑉𝐼𝐹 =
1

1 − 𝑅𝑗
2 (3) 

Where, R2 is the coefficient of determination when variable j is regressed on j-1 remaining 

independent variables. A variable is considered to be problematic if its VIF is larger than 10.0 [31]. 
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3.3. Root mean squared error, bias and mean absolute error 

The independent variable QBO is evaluated by using different methods to visualize its 

accuracy with the observational JJA rain fall for different year intervals. The root mean squared error 

(RMSE), bias and the mean absolute error (MAE) are implemented statistics for evaluating the 

overall quality of the rainfall estimation by using QBO phases and its contribution with SOI during 

regression model. The MAE is the average of the absolute value of the residuals (error) which is 

very similar to RMSE but it is less sensitive to large errors. The RMSE is the square root of the 

average squared distance of a data point from the fitted line. 

𝑅𝑀𝑆𝐸 = (
𝛴𝑖

𝑁(𝑌    −
𝑃   𝑦0)2

𝑁
)

1
2

 (4) 

𝐵𝑖𝑎𝑠 =
𝛴𝑖

𝑁(𝑌     −
0    𝑦𝑃)

𝑁
 (5) 

𝑀𝐴𝐸 =
|𝛴𝑖

𝑁(𝑌    −
0  𝑌𝑃)|

𝑁
 (6) 

Where, P refers predicted value, O is observed rain fall and N is the number of observed values 

3.4. Composite analysis 

The dryness and wetness are analyzed coinciding with the time lag phases of QBO from 1979–

2017. Using composite analysis, we used the year intervals with above normal (AN) rainfall and 

coinciding with west phases of the QBO and with below normal (BN) rainfall coinciding with the 

east phase of the QBO. During composite analysis we categorize wetness and dryness from the 

normal condition which are visualized positive and negative values respectively. 

4. Result and discussion 

Applying the lower equatorial stratospheric zonal wind index in seasonal prediction based on its 

tendency to persist for several months after the phase change from easterly to westerly and vice 

versa. Figure 2 shows westerly and easterly QBO phases (color shades) for the period 1979–2017 or 

468 months. The disruption of the western phase of the QBO started at 15 hPa in 2015 and was fully 

observed at 30 hPa pressure levels. This disruption continued at 40 hpa throughout 2015, there was 

also a drought on the Upper Blue Nile during this year [32]. Under normal conditions, rainfall is used 

to determine the state of drought, but the duration, severity and intensity vary depending on the time 

series. The drought of 1983, 2002 and 2009 is associated with the eastern phase, but the 2015 

drought associated with the western drought may be due to disruption of the QBO is the main cause. 
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Figure 2. The west and east phases of QBO from 1979–2017. 

The table below (two-year lags) indicates that the total study period is divided into equal 

intervals. We evaluate months of QBO phases which indicate relationships between JJA rainfall. In 

our data set, there are no outliers and every variable is continuous, so we used the Pearson 

correlation factor. The months of January and February are highly correlated with JJA precipitation 

for different time intervals. The maximum association was observed in the years 1989–1993, 1994–

1988, 1999–2003 and 2004–2008 across each month of the QBO. The maximum correlation between 

QBO phases and JJA rainfall was investigated before five to six months as shown in Table 1. 

However, in the years 1984–1988 and 2009–2015 we observed a low association of QBO phases and 

JJA rainfall. This might be others oscillation like SOI more influential for JJA rainfall than QBO 

during these years  

Table 1. The correlation between JJA precipitation since 1981–2017 by five intervals and 

the last by six years with QBO 30mb with time lags from months January-May. 

Years Jan Feb Mar Apr May 

1979–1983 0.53 0.56 0.21 0.03 −0.19 

1984–1988 0.05 0.09 −0.04 −0.11 −0.45 

1989–1993 −0.81 −0.80 −0.90 −0.85 −0.94 

1994–1998 −0.99 −0.91 −0.85 −0.76 −0.80 

1999–2003 −0.87 −0.87 −0.90 −0.87 −0.68 

2004–2008 −0.78 −0.78 0.28 0.40 0.48 

2009–2015 −0.02 −0.15 −0.23 −0.20 −0.06 

We do the evaluation by using the time lag QBO index at 30hPa to predict JJA rainfall over 

Upper Blue Nile. The correlation is done between SOI and QBO at different time lags with JJA 

rainfall of Upper Blue Nile. The evaluation of the QBO-index phases and SOI are done for 

different period over the study area. As shown in Figure 3, we have standardized the data by 
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subtracting the mean and dividing by the standard deviation for each value the data. we have 

observed that annual mean time series for rainfall versus QBO-index with westerly and easterly 

phases of the QBO index and standardized SOI. The west phases of the QBO-indices were observed 

during 1982, 1985, 1987, 1990, 1992, 1995, 1997, 1999, 2001, 2004, 2006, 2008, 2010, 2013, 2015 

and 2017 while east phases of QBO-index occurred in 1981, 1983, 1984, 1986, 1988, 1989, 1991, 

1993, 1994, 1996, 1998, 2000, 2002, 2003,2005, 2007, 2009,2011, 2012 and 2014 and 2016. 

These two phases of QBO since 1981–2017 the west and east phases with probability occurrence 

0.43 and 0.57 respectively. 

During analysis the frequency of east and west phases of QBO index almost similar close 

positive and negative SOI for the analysis period. During the years: 1983, 1986, 1991, 1994, 1997, 

2002, 2003, 2005 and 20014, the east phases of the QBO-index coincided with the negative phases of 

the SOI. The results’ of these years associated with ENSO [19]. This observation is consisted with 

ENSO tends to be associated directly with east phases of the QBO. 

 

Figure 3. Annual mean time series for rain fall versus QBO-index and rainfall versus 

SOI index top and bottom panel. 

Table 2 depicts a significant correlation with the QBO-index with time lag and JJA rainfall 

of Upper Blue Nile from the year 1981–2003. The June, July and August (JJA) rainfall which is 

evaluated depending on reference mean value zero and near to zero values were taken to be normal 

(NN), but results the phases of QBO clearly indicates each phase taken to be easterly /westerly 

above normal (AN) and below normal (BN) consequently. Over the region of Upper Blue Nile 

rainfall, stratospheric westerly wind phases corresponding to above normal rainfall, were observed 9 

out of 12 and easterly wind phases BN 8 out of 11 with conditional probabilities of about 0.75 and 0.72 

for the associations of above and below normal during the long term of rainfall over Upper Blue Nile. 
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The results clearly show above/below normal rainfall is associated with the stratospheric 

west- erly/easterly zonal wind phases. Such association between phases of QBO and seasonal (JJA) 

rainfall indicate encouraging potential for rainfall predictability using the information about the 

QBO phases over Upper Blue Nile. 

Table 2. For zonal wind phases at 30 hpa level and the June to August seasonal 

anomalies over Upper Blue Nile region of Ethiopia. 

QBO phases Above normal (AN) Near normal (NN) Blow normal (BN) Total 

West 9 0 3 12 

East 1 2 8 11 

Total 10 2 11 23 

The predicted time series showed small variability than observed and it reflected low RMSE, 

bias and MAE for each season. Such statistical measures were used to determine the error between 

ob- served and estimated (predicted) values therefore, these errors tends to zero otherwise less than 

the standard deviation of the observed data for a capability performance of the June - August QBO 

results. The QBO index performs well if the MAE and RMSE are found less than or equal to the 

standard deviation of the observed data. Depending on these statistical techniques QBO indices have a 

potential for estimating (predicting) rainfall over the region of Upper Blue Nile. 

Four seasons (December-February (DJF), March-April (MAM), June-August (JJA) and 

September- November (SON)) of QBO phases relationship were evaluated with zero and nonzero 

time lag. 

From four seasons the JJA and MAM QBO phases have potential for prediction JJA rainfall, 

Figure 4 indicates great values for predicting the rainfall, the most useful index appears to be the 

trend for QBO-index before the JJA rainfall season as depicted upper right panel of Figure 4. We 

visualized lag of QBO for different seasons in order to evaluate the relationships among annual, 

seasonal and monthly QBO and rainfall over the study area. We found that two years lags have 

higher correlation of 0.7 in MAM season of QBO from years 1989–2000 as shown in Figure 4. 

However, top left, bottom right and left panels shows a lag time and JJA QBO phases indicates good 

association than other seasons. 
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Figure 4. Time series of summer (JJA) precipitation over Upper Blue Nile and 

predicted precipitation from QBO-index with lag time. 

The lagged relationships between the two variables indicate high prospects for using them in 

the development of prediction methodology. It was observed that one-year time lag QBO seasonal 

indices (QBOJJA) shows a correlation of 0.56 from the year 1981–2003. In Figure 5, from the QBO 

indices which were hypothesized from four seasons two seasonal time lags indicate a high 

significant corre- lation with the summer (JJA) seasonal rainfall over Upper Blue Nile of Ethiopia. 

In this study about 91.3 % of the positive/negative anomalies and 8.7% normal condition was 

observed during the period anomaly of QBO-index. This highly significant correlation indicates some 

robust associations between the seasonal rainfall (long term rainfall) and the QBO. The relationship 

among the long-rains and the QBO-index shows predictive potential. 

 

Figure 5. The predicted rainfall by using June, July and August (JJA) QBO indices with 

time lags in the region of Upper Blue Nile. 
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The regression coefficients along with the respective predictors (SONSOI and JJAQBO) of 

the regression model are shown in Table 3. These predictors are derived from QBO indices at 

30 hpa from the lower parts of stratosphere layers of atmosphere and southern oscillation index 

(SOI). Both of the coefficients indicate that as the values of SONSOI and JJAQBO increases, the 

mean of JJARF also tends to increase. The regression output also shows that SONSOI and JJAQBO 

are statistically significant because their P-values are not greater than the usual significance level of 

0.05. 

Table 3. Final predictors QBO and SOI months of September- November of the 

regression model for rainfall Upper Blue Nile. 

Predictors Months Coefficients P-value Lower 95% Upper 95% 

Constant - −0.0354 0.001 −0.04 −0.03 

SOISON SON (Sep, Oct & Nov) 0.3755 0.034 0.23 0.52 

QBOJJA JJA (Jun, Jul & Aug) 0.4686 0.0014 0.22 0.71 

The computed values of model performance measures: Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE) and bias confirm the models forecast capability. The confidence 

interval, outliers and normality of this model was evaluated in order to increase the capability of 

handling the actual value. This estimated value derived from QBO 30hPa and SOI was validated 

with the values of their respective observational as depicted on table 4 the results of the validation 

for the regression models. 

The predicted period showed small variability than observed, which is reflected in the low 

RMSE and MAE. Such statistical measures were used to determine the error between observed and 

estimated values therefore, these errors tend to zero otherwise less than the standard deviation of the 

observed data for a capability performance of the models results. The model performs well because 

the MAE and RMSE are found less than or equal to the standard deviation of the observed data. 

Depending on these statistical techniques, the regression model well estimated the June-August 

rainfall over Upper Blue Nile. 

Table 4. Validation results of regression models. 

Statistics  SD RMSE Bias MAV 

Values 0.6043 2.09 × 10−5 4.3 × 10−6 0.0152 

The multiple linear regression model was implemented to test long term rainfall over the study 

area for evaluating the efficiency of the model. We obtained the estimated rainfall amount which is 

closer to the actual JJA rainfall. Before applying the regression model, we evaluated the two 

independent variables (QBO and SOI) by using collinearity methods. When these independent 

variables in the same regression model are correlated, they cannot independently predict the value 

of the dependent variable because some of the same variance in the dependent variable (JJA 

rainfall), which in turn reduces their statistical significance. For this reason, high correlation 

between QBO and SOI, as this period there is a dramatic increase in the P-value and reduction of 

significance level of one predictor variable when another predictor is included in the regression 

model, or when a high variance inflation factor is determined. For selected predictors (QBOJJA and 

SOISON) for Upper Blue Nile region of Ethiopia there is not collinearity problems. 
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Therefore, selected predictors QBO at 30hPa and SOI were used to build up the multiple 

linear regression model, according to the collinearity analysis for September-November and June-

August months to estimate the rainfall Upper Blue Nile of Ethiopia. Multiple correlation 

coefficients indi- cated a strong correlation between estimated and actual long-term rainfall 

amount for June-August (JJA) which means that the predictors selected for estimation of rainfall 

amount capture strongly the mechanisms that control the rainfall dynamics. 

 

Figure 6. The estimated and observed rainfall. 

5. Conclusion 

Using atmospheric variable prediction of summer rainfall is crucial for agricultural, 

hydropower and other sectors for the management of water. The annual rainfall in 1983, 1984, 

2002, 2009 and 2015 showed negative deviation from normal condition consequently drought years 

over Upper Blue Nile. The drought 1983, 2002 and 2009 are associated with easterly phase but 

the 2015 drought associated with westerly. In the region of Upper Blue Nile basin, stratospheric 

westerly wind phases corresponding to above normal (AN) rainfall and easterly wind phases 

below normal (BN) with conditional probabilities of about 0.75 and 0.72 for the associations of 

above and below normal during the long term of rainfall (JJA). This study shows about 91.3 % of the 

positive and negative anomalies and 8.7 % normal condition are observed during the period anomaly 

of QBO-index for 23 years. 

By using statistical value of collinearity method, we evaluated the independent variable (QBO 

and SOI) in order to investigate the significance level of predictors and capability of JJA rainfall 

estimation. For the selected predictors (QBOJJA with time lags and SOISON), the relationships 

among predicted and actual rainfall was calculated by averaging value of the two. From this 

model, we determined that there is strong correlation that exists prior to six months of June-August 

(JJA) rainfall from SOI. We also investigated that JJA and SON seasons have strong potential to 

estimate the precipitation over Upper Blue Nile. 
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