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Abstract: The Great Miami (GM) and Little Miami (LM) watersheds in Ohio are included in the 51 
major river systems in the United States for long-term assessment of conditions of water quality under 
the USGS National Water-Quality Assessment (NAWQA) Program. Nitrogen (N) and phosphorus (P) 
loadings have decreased over the years in the GM and LM basins, however, they still remain among 
the highest concentrations detected in the nation. The latest nutrient loading analysis from Ohio 
Environmental Protection Agency (OEPA) showed slightly above period of record averages for N and 
P. Significant amounts of mobilized agricultural N and P from fertilizers in watersheds are transported 
to the Ohio River and other coastal marine systems such as the Gulf of Mexico, leading to increased 
growth of harmful algal blooms. In the GM and LM watersheds, changes in flood frequency and 
intensity are projected to occur in the future as heavy precipitation events are likely to increase as a 
result of climate change. As climate plays a role for nutrient transformation and transport, studies have 
shown that N and P inputs to surface waters from agriculture and other sources are projected to 
continue to increase over the next several decades. This paper reviewed the means of how the GM and 
LM watersheds are ecologically affected by the N and P nutrient pollution and how climate change 
impacts the quantity of N and P loadings that go into the river systems. Without better understanding 
of the nutrient loading processes and their association with various agricultural practices and 
interactions with climate, there could be additional threats to water quality in both the GM and LM 
watersheds in decades to come. This literature review has made references to many pertinent new 
publications that have become available in recent years, as well as to the classic literature. 
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watersheds 
 

1. Introduction  

The Great Miami (GM) and Little Miami (LM) basins (Figure 1) in southwestern Ohio are among 
the major river systems that were chosen by the National Water-Quality Assessment (NAWQA) 
Program to signify the varied geography, water resources, landuse and water use in the U.S. Over the 
years since the watersheds were included in the NAWQA program in 1991, various anthropogenic 
activities have amplified in the area. Ohio, being the seventh most populous state in the U.S. [1], has 
experienced substantial land-use changes through much of the watersheds in recent decades [2]. 
According to Ohio Environmental Protection Agency (OEPA), these changes in land use is reflected 
in both point (e.g., municipal wastewater treatment plants) and nonpoint (e.g., runoff from agricultural 
land use and urban areas) source impacts to the watersheds. Changes in agricultural land use, such as 
channel modification for flood control and ditching and tiling of farmland [3], have resulted in 
denudation of riparian vegetation, low instream dissolved oxygen, altered watercourses, high 
proportion of fine sediment, and have exacerbated nutrient enrichment from cropland runoff [4]. 
Evidence has shown that watershed urbanization has been increasing for both GM and LM watersheds 
over the years (Tables 1 and 2) and has not only caused increased volumes of wastewater and 
pollution [5] but reduced the infiltration capacity [6], and accelerated rates of erosion especially when 
control measures are inadequate. From 2006 to 2011, the urban area has increased 0.23% and 0.29% 
for the GM and LM watersheds, respectively (Figure 2). It is worse when the base map is from the 
land cover in 2001--an increase of 0.49% and 0.94% for the GM and LM watersheds, respectively. 
This increased impervious surface area typically could result in more surface runoffs. Since water is 
the carrier of agricultural pollutants, an increase of surface runoffs could mean more variety of 
nonpoint pollutants including nitrogen (N) and phosphorus (P) nutrients and pesticides go into streams. 
Although the percentage of total P contributed by agricultural land use is dominant in small streams 
and lakes [7], urban runoff contribution in GM and LM basins is still high at about 25% of the total 
detected P concentrations [8]. A study in Maryland involving urban watersheds has linked the 
intensified concentrations of N and P measured in surface runoff with the increased expanse of 
impervious surfaces [9]. In fact, watersheds that are highly urbanized exhibited higher proportions of 
total N and P loadings [10]. 

Table 1. Comparison of percentages of land cover between 2001, 2006, and 2011 derived from 
the National Land Cover Database (http://www.mrlc.gov) for the Great Miami (GM) Watershed. 

Land cover 2001 2006 2011 
Water body 0.98% 0.99% 1.01% 
Urban area 17.32% 17.58% 17.81% 
Forested 11.55% 11.59% 11.54% 
Agricultural (crops, pasture, and hay) 68.57% 68.25% 68.06% 
Other 1.58% 1.58% 1.59% 

Surface runoffs primarily deliver nutrients from terrestrial surroundings to adjacent streams and 
rivers that could lead to deterioration of water quality and cause harm to aquatic ecosystems [11]. 
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Agriculture runoff is the nation's primary cause of impaired water quality on surveyed surface water 
systems [12]. In addition, polluted runoff from agricultural system is ranked second in terms of the 
largest sources of damages towards wetlands. In the GM watershed alone, nutrient loading from 
agricultural land use runoffs is considered among the highest nutrient flux in the Ohio watersheds [13]. 

 

Figure 1. Map of the locations of the Great Miami (GM) Watershed composed of Upper 
Great Miami (UG) (HU8 = 05080001) and Lower Great Miami (LG) (HU8 = 05080002), 
and Little Miami (LM) Watershed (HU8 = 05090202). HU8 is the assigned hydrological unit. 

Table 2. Comparison of percentages of land cover between 2001, 2006, and 2011 derived from 
the National Land Cover Database (http://www.mrlc.gov) for the Little Miami (LM) Watershed. 

Land cover 2001 2006 2011 
Water body 1.0% 0.97% 0.98% 
Urban area 17.8% 18.45% 18.74% 
Forested 23.7% 23.64% 23.49% 
Agricultural (crops, pasture, and hay) 56.2% 55.60% 55.41% 
Other 1.4% 1.35% 1.37% 

A number of negative human health and environmental impacts due to excessive concentrations 
of N and P nutrients have already been previously studied. Some of the impacts include: declination 
of stream quality and impairment of biological communities and aquatic life such eutrophication, fish 
anomalies, and fish kills [14]; degradation of drinking water quality [15,16]; increased severity of 
harmful algal blooms (HAB, associated with cyanobacteria or blue-green algae) [17] and macrophyte 
production [18–20]; and decreased dissolved oxygen (DO) concentrations, and increasing fluctuations 
in diel DO and pH [21]. Algal blooms in the GM river were detected in summers of 1995 [22] and 
2011 [23]. These negative impacts are not only felt in river networks inside the GM and LM watersheds 
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but including the larger connecting river systems where these watersheds eventually drain. More 
information about the N and P nutrients in the GM and LM river watersheds is discussed in a 
subsequent section of this paper.  

 

Figure 2. Land cover maps for 2006 and 2011 for the Great Miami (GM) and Little Miami 
(LM) watersheds (http://www.mrlc.gov). The Great Miami watershed is further divided 
into Upper Great Miami (UGM) and Lower Great Miami (LGM) watersheds. 

The most current version of Ohio’s Non-Point Source Management Plan [24] and Water Quality 
Monitoring and Assessment Report [25] echoed the sources of the recent algal blooms in the Ohio 
River. Apart from the excessive nutrients coming from Ohio River basins, algal growth has been 
exacerbated by changing weather patterns, specifically, warmer temperatures and more intense storm 
events. The OEPA [25] recommended to reduce sources of nutrient pollutants while holistically 
restoring stream health and improving the waterway’s ability to integrate and utilize nutrients. By 
doing so, streams could build resilience to climate change impacts. 

One of the biggest concerns of OEPA listed in the Integrated Report Comments section [25] is the 
lack of information that address the intricate issues of climate change in their draft report, although the 
impact of climate change on watersheds is already studied locally and globally [26–30]. A quick 
literature review would reveal that studies on the effects of climate change on hydrologic processes 
have not been fully explored in the GM and LM regions [30]. Climate change, as represented by 
temperature increase and changes in timing and geographical patterns of precipitation, is expected to 
directly influence the hydrologic cycle, affecting plant-available moisture, production of water 
discharge, snowpack and snowmelt, streamflow, flood hazard, and water quality [31–35]. Precipitation 
and temperature changes not only modify the timing of runoff, soil moisture [36,37], and nutrient 
cycles [38,39], but their magnitude as well. Butterbach-Bahl and Dannenmann [40] showed that N 
mineralization, nitrification, and denitrification, are directly related to soil temperature and soil 
moisture – factors that are controlled by climate change.  

For the Lake Erie Protection and Restoration Plan [41], climate change has already been included 
as one of the strategic priorities towards the protection of the watershed. As temperature is expected to 
continue to rise in the next decades, climate change could play a role in the growth of harmful algal 
blooms as more intensive rain events could mobilize nutrient runoff. It could alter many environmental 
conditions, such as habitat changes that marine HABs could invade and occur in freshwater. The six 
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impacts of climate change on the occurrence of HABs include warmer water temperatures, increases 
in atmospheric carbon dioxide concentration, changes in rainfall patterns and salinity, intensification 
of coastal upwelling, and sea level rise [17]. In addition, climate change could pose an additional threat 
to the watersheds as urbanization increases, reducing water availability and degrading water 
quality [42]. It is, therefore, vital to be able to monitor and study the possible consequences of present 
and future climate on the hydrologic and water quality in the watersheds for management actions to 
be effectively implemented.  

There is a continuing effort to find optimum and adopt new strategies to address the above 
stressors related to changes in climate that are affecting the GM and LM watersheds. In line with these 
efforts, we present in this review paper the current investigation and modeling of the N and P nutrients 
in the GM and LM watersheds – two important watersheds that, undoubtedly, continue to increase in 
urbanization size, and increase in wastewater and combined sewer overflows [43]. With the present 
strains in the watersheds, climate change could pose an additional threat to the water quality. Therefore, 
we look into the effects of climate changes and how future climate scenarios could impact the efforts 
in reducing the nutrient pollutants in the watersheds. Reference is made to many pertinent new 
publications that have become available in recent years as well as to the classic works. Further, this 
review paper is broken down into three main parts:  

(1) an introduction that provides the background of the Great Miami and Little Miami basins: 
section 2 on study area, section 3 on agricultural land use and tillage system, section 4 on nitrogen and 
phosphorus nutrient loadings 

(2) a discussion on the impacts of climate change: section 5 on specific climate change impacts 
on biodiversity and watersheds  

(3) an overview of past and current methods applied to model N and P nutrient pollutants: section 
6 on tools for modeling climate change impacts on nutrient loadings. 

2. Study area 

The GM and LM watersheds drain about 7087 m2 in southwestern Ohio and southeastern Indiana. 
Since 1997, both have been part of the 51 major river basins in the nation that are called “study units” 
for long-term assessment of water-quality conditions under the USGS NAWQA Program. Major rivers 
are the Great Miami River and Little Miami River in Ohio and the Whitewater River in Indiana. All 
major streams drain directly south-southwest into the Ohio River. The estimated population of the 
watersheds was approximately 2.8 million in 1995, mostly concentrated in the largest cities of 
Cincinnati, Dayton, and Hamilton within the study area [44]. High altitudes of 1550 ft above sea level 
are near the headwaters of the Mad River, while low altitudes of 450 ft are near the Ohio River at 
Cincinnati. The study area is temperate continental with mean annual temperature ranges from 49°F 
to 55°F and average annual precipitation in the study area ranges from 35 inches to 43 inches and 
increases towards the south; about one-third of the precipitation becomes surface runoff [44]. In terms 
of average snowfall, it is 20 to 30 inches annually.  

2.1. Little Miami watershed 

The headwaters of the LM watershed (drainage area of 1757 m2) are located in the southeastern 
portion of Clark County, Ohio. Major rivers and streams of the Little Miami River include the Caesar 
Creek (242 m2), Todd Fork (261 m2), and East Fork Little Miami River (499 m2) [45] (Figure 3). The 
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headwaters of these three major tributaries are located along the far eastern section of the study area; 
the convergence of the Little Miami River and the Ohio River is east of Cincinnati. Five dams affect 
the streamflow. One dam is located at the East Fork Whitewater River, and the other four are on the 
East Fork Little Miami River and main stem of the Little Miami River [46]. 

 

Figure 3. The Little Miami (LM) watershed (HU8 = 05090202) and its major rivers, 
tributaries, and flow lines. Red dots are Ohio cities with population over 40,000. Other 
basins surrounding the LM include Paint, Lower Great, Upper Great, and Ohio Brush-
Whiteoak. Base image is the 10-meter resolution National Elevation Database (NED) 
digital elevation model (DEM) (https://nationalmap.gov/elevation.html). 

2.2. Great Miami watershed 

There are about 2360 m of rivers and streams in the GM river system. The headwater is located 
in Indian Lake in Logan County, Ohio. Draining three large cities—Dayton, Hamilton, and Springfield, 
Ohio—GM has a total drainage area of 5330 m2. Major tributaries in the UGM include the Stillwater 
River (676 m2) and the Mad River (657 m2) [45] (Figure 4). Mad River’s massive amount of 
groundwater discharge has met OEPA’s criteria for a cold-water habitat [47]. Major tributaries in the 
LGM include Twin Creek (316 m2) and Four Mile Creek (315 m2). The Great Miami River flows 170 
m southwest to its confluence with the Ohio River west of Cincinnati. Streamflow in the Great Miami 
River Basin is affected by 13 dams [48]. 
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Figure 4. The Great Miami (GM) Watershed composed of Upper Great Miami (UGM) 
(HU8 = 05080001) and Lower Great Miami (LGM) (HU8 = 05080002) and its major rivers, 
tributaries, and flow lines. Other basins surrounding the GM include St. Marys, Auglaize, 
and Upper Scioto. Red dots are Ohio cities with population over 40,000. Base image is the 
10-meter resolution National Elevation Database (NED) digital elevation model (DEM) 
(https://nationalmap.gov/elevation.html). 

3. Agricultural land use and tillage system  

Despite the increase of urbanization in the GM and LM watersheds (Tables 1 and 2), agricultural 
land use still covers 68.06% for GM and 55.41% for LM in the latest land use map. Corn and soybeans 
dominate the cropland; grown on approximately 1.77 million acres that surround the heavily urbanized 
Dayton-Cincinnati corridor in 2017 (Figure 5). Spring and early summer are the seasons for corn and 
soybeans are planting and fall is harvesting season. For winter wheat crops, they are planted in the fall 
and harvested in the summer. The usage of fertilizers and chemical pesticides is often associated with 
agricultural practices and the reduction of surface water quality [47]. Rankin et al. [47] found that 

https://nationalmap.gov/elevation.html
https://nationalmap.gov/elevation.html
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surface water quality degradation in the watersheds was caused by poor agricultural practices that 
resulted in habitat modification such as reduction of riparian buffers and filter strips allowing nutrients 
from commercial fertilizers to reach streams. Commercial fertilizers N, P2O5 (phosphate), and K2O 
(potash) are used widely in the GM and LM watersheds of predominantly cropland [42]. These 
commercial fertilizers from row-crop farming in addition to manure from livestock production are the 
major sources of nutrients in surface and ground waters [25]. 

 

Figure 5. Land use in the Great Miami (Upper Great and Lower Great) and Little Miami 
watersheds in 2017 is dominated by production of corn and soybean under the heavily 
urbanized Dayton-Cincinnati corridor. Commercial fertilizers are used widely in the GM 
and LM watersheds of predominantly cropland. Red dots are Ohio cities with population 
over 40,000.  

In order to reduce runoff and nutrient exports and control soil loss, the National Research 
Council [49] suggested the use of conservation tillage (CT) – a planting scheme that guarantees cover 
crop residue of 30 percent or more. CT systems decrease erosion rates by at least 50 to 60 percent [50]. 
Broad classes of conservation tillage include: no-till or strip-till (NT), ridge-till (RT), and mulch-till 
(MT). Complete details of each class is provided by Walters and Jasa [51], which also discussed tillage 
practices such as reduced-till (RDT) and conventional-till (CVT). 

Substantial effects of CT consist of increased soil organic matter content in the upper part of the 
soil profile to improve soil structural stability, and reduced soil erosion by covering soil with crop 
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residue [52,53]. Tillage system impacts soil characteristics such as pH, N, and P levels and the 
distribution of nutrients and pesticides [54,55].  

Conservation tillage plays a substantial share in minimizing emissions of greenhouse gas (GHG) 
from agriculture and helps in the endeavors to mitigate against climate change [56]. A study by 
Mangalassery et al. [57] demonstrated that NT practice has 26–31% lower net global warming 
potential compared with CVT systems. The reason was that NT reduced soil porosity by 33%, reducing 
the potential CO2 efflux in the end. Mangalassery et al. [57] concluded that under CT, more respiration 
of aerobic organisms has caused increased soil porosity, thus improving movement of water and air 
through the soils with important implications for CO2 emissions.  

Many farmers practice CT to limit soil loss and decrease the amount of runoff. In fact, about 40% 
of all U.S. cropland utilizes CT. In the Midwest, for example, NT soybeans remain to be more popular 
than NT corn. In 2004, Ohio planted 2.9 million acres of NT soybeans, while only 0.8 million acres of 
corn were planted using NT practice (Table 3) [58] . The low NT percentage for corn is due to the soil 
temperature and available soil water that are affected by tillage system. Cox et al. [59] determined how 
the extent CVT, NT, and RT systems could influence the soil temperature and conditions of soil water, 
thus manipulating the exchange rates of CO2 and growth of corn. The results showed that with the NT 
system corn kernel phytomass at physiological maturity has lowered compared to CVT. Further, NT 
and RT systems decreased the soil water uptake, CO2 exchange rates and growth of corn [59].  

Table 3. Tillage practices in Ohio for soybean and corn production ([58]). NT = No−Till; 
MT = Mulch−Till; RDT = Reduced−Till; CVT = Conventional−Till 

Crop Acres NT MT 
(30% residue) 

RDT 
(15–30% residue) 

CVT 
(0–15% residue) 

Soybean 4,630,915 63.7% 9.0% 8.3% 19.0% 
Corn 3,527,939 23.5% 9.9% 13.1% 53.4% 

Cover crops (CC) (e.g., grasses, legumes, brassicas) are also used for conservation tillage systems 
as nutrient management tools [60]. Apart from covering the soil to guard against soil erosion, the 
benefits of cover crops have been well documented in the literature: from building healthier soils, to 
suppressing weed growth, providing habitat for pollinators, keeping nutrients from leaving the field, 
reducing the loss of phosphorus with runoff, and slowing down runoff allowing improved moisture 
infiltration [61–64]. In long-term no-till systems with cover crops uninterrupted, P is efficiently 
salvaged by the soil, which could lead to a lesser need for P fertilizer [65]. The number of farmers and 
crop consultants that acknowledge the benefits of planting cover crops is growing, indicating that it is 
becoming an important farming strategy. Dabney et al. [66] in a review of winter CC and Singh et 
al. [66] in a study of rice-wheat rotation highlighted that leguminous crops provide N to succeeding 
crops. There are also other cover crops, particularly grasses and brassicas, that are known to be better 
at rummaging remaining N.  

In 2014, the Sustainable Agriculture Research and Education (SARE) program and the 
Conservation Technology Information Center (CTIC) did a national survey about CC use involving 2903 
farmers [67]. The data that were collected from almost all states (except Utah, Nevada, Arizona and New 
Jersey) indicated that 75% of the farmers surveyed grow cover crops. Most of the responses from farmers 
using CC were from the states of Minnesota, Iowa, Missouri, Illinois, Indiana and Ohio. The area with 
CC has increased tremendously by an average of about 30% per year, according to the survey [67].  
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While CC have benefits, they also come with some disadvantages namely: extra costs on 
purchasing cover crop seeds; more time and labor needed for planting and managing; possible increase 
of pest populations that could be damaging to succeeding crops; challenging to incorporate with tillage 
system; and selection of the proper variety of cover crops as they function in diverse 
purposes [64,66,68]. However, these impediments could be addressed through proper training and 
education. In the SARE-CTIC [67] report, many farmers get their information from agricultural 
retailers. These information range from helping farmers in their nutrient management plans to adjust 
for CC types, assess and recognize soil changes resulting from planting cover crops, and to encourage 
them to use cover crops. University extension educators also impacts farmers’ decision on CC 
purchases. Farmers who use CC are greatly attracted to academic sources [69]. Moving forward, one 
of the crucial results of the survey was the path on research priorities that farmers preferred. Nearly 
1160 farmers surveyed identified “developing cover crops that fit my cash crop timing” and 
“developing cover crops that fit the climate in my area” as the two most important research 
subjects [69]. The rest of the top five research priorities that the farmers rated high in terms of 
importance, according to the SARE-CTIC 2015 report, were: “developing cover crops that help 
scavenge nitrogen”, “developing cover crops that enhance cash crop disease resistance”, and 
“developing cover crops that fit common soil types.”  

4. Nitrogen and phosphorus nutrient loadings  

In small amounts, nitrogen and phosphorus are vital nutrients to vigorous aquatic ecosystem 
operations. However, N and P could exert negative effects in the environment when they are excessive, 
causing water degradation and aquatic-ecosystem impairment in the watersheds. Commercial 
fertilizers and animal manure are the principal sources of nutrient pollution from agriculture. Nutrients 
that are applied in surplus quantities and beyond the amount needed by crops could run off from fields 
during storms, resulting in high concentrations of nutrients and pesticides entering into surface 
waters [8] or be carried to subsurface tile drainage systems and eventually infiltrated to the ground 
water [70]. N and P are primary nutrients for algal and macrophyte production [22]. When algal growth 
is excessive, it could reduce the dissolved oxygen content of surface waters through plant respiration. 
Worse, during hot weather, this situation is augmented as water reduces its capacity to hold dissolved 
oxygen. One of the effects of low dissolved oxygen content in waters is fish kills, because fish and 
other aquatic insects need oxygen to survive [25]. A graphic depiction of the harmful effects of 
increasing amount of nutrients in a coastal ecosystem is shown in Figure 6.  

Significant amounts of mobilized agricultural N and P from fertilizers in watersheds are 
transported to the Ohio River and other coastal marine systems such as the Gulf of Mexico. A recent 
study by Gorham et al. [71] showed the Ohio River with the highest phycocyanin levels. Phycocyanin 
is a photosynthetic pigment produced by (and more specific to) cyanobacteria. A study on the nutrient 
fluxes into the Gulf of Mexico showed the GM watershed to be a major contributor of N and P loadings 
in the entire Mississippi-Atchafalaya River Watershed [72]. A National Center for Water Quality 
Research (NCWQR) study [73] found the GM River to have the highest soluble reactive phosphorus 
concentrations and the highest time weighted average total P concentration amongst 10 streams studied 
in Ohio. Also, the increased growth of HABs in the Gulf is believed to have been caused by transport 
of N and P nutrients during spring runoff [74]. The USGS SPARROW model on nutrient flux [75] 
calculated the N and P contributions of various Ohio watersheds to the Gulf of Mexico. Ohio’s 
contribution to the total fluxes of total N and total P to the Gulf is 5.4% and 4.1%, respectively. Table 
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4 provides a summary of the watersheds within or partially within Ohio that contribute the highest 
nutrient flux. UG and LM all have high N fluxes, while the LG has high N and P fluxes. Battaglin and 
Goolsby [76] estimated the N and P fertilizer-application rates from county-level data in the GM and 
LM watersheds (Figure 7). The rates of fertilizer application for N were highest in these five counties: 
Mercer, Randolph, Fayette, Union, and Darke. While for P, the top five counties were Randolph, Union, 
Mercer, Fayette, and Wayne. 

 

Figure 6. Illustrative flow of how coastal ecosystem is impacted by increasing nutrient pollution. 
Shaded boxes depict the harmful effects of nutrient over-enrichment. Nitrogen and phosphorus 
loadings to lakes, rivers, and streams are the causes of eutrophication and low-oxygen conditions 
that threaten fisheries. Note: This is a reconstructed figure. Rabalais et al. [77] has more of the 
details of the harmful effects of increasing amount of nutrients in a coastal ecosystem. 

The quality of water in the watersheds’ river systems has been improving in the last two decades [78]. 
When the Clean Water Act (CWA), also known as Federal Water Pollution Control Act Amendments, 
was passed in 1972, substantial improvements have been made to clean up the nation’s surface waters 
from contaminants, especially those that discharged directly into streams by point sources. With the 
shutdown of point-source dischargers, substantial reductions in contaminant loadings were achieved. 
Lake Erie was one of the leading recipients of the CWA in Ohio, when it reduced the amount of runoff 
pollution into the lake, specifically P, thereby improving sewage treatments around the lake [79]. The 
GM and LM watersheds have also benefited by the CWA. In fact, there have been significant progress 
in the efforts to improve water quality in the watersheds through enhancing the treatment of 
wastewaters. Furthermore, by implementing the CWA, other scopes of surface water quality services 
have expanded such as community-based and voluntary pollution control projects. The collection of 
scientific data such as the location of pollution sources increased. With the CWA, it becomes easy to 
monitor agricultural management practices, ensuring that the desired outcomes are met. 
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Table 4. Ohio watersheds in the Ohio River Basin with the highest nutrient flux based 
from the USGS SPARROW model results [75]. The mark * signifies a priority nutrient 
reduction area. 

High nutrient flux Watershed (HUC 8#) N Flux (kg/km2) P Flux (kg/km2) 
N & P Upper Wabash (05120101)* 2159 254 
N Upper Great Miami (05080001)* 1790 50 
N Upper Scioto (05060001)* 1786 88 
N & P Lower Great Miami (05080002)* 1735 127 
N Little Miami (05090202) 1653 99 
N Paint (05060003) 1405 65 
N & P Mill Creek (05090203) 1345 174 
P Ohio Brush-Whiteoak (05090201) 1218 126 

Table 5. Recommended nutrient target concentrations for rivers and streams in Ohio [17]. 
EWH = rivers and streams selected as exceptional warm-water habitat; WWH = rivers and 
streams selected as warm-water habitat; TP = total phosphorous. 

Stream  
category 

Drainage area 
(m2) 

EWH 
TP (mg/L) 

WWH 
TP (mg/L) 

EWH 
Nitrate + Nitrite (mg/L) 

WWH 
Nitrate + Nitrite (mg/L) 

Headwater <20 0.05 0.08 0.50 1.0 
Wadable 20 to <200 0.05 0.10 0.50 1.0 
Small river 200 to <1000 0.10 0.17 1.0 1.5 
Large river > 1000 0.15 0.30 1.5 2.0 

The improved biological performance of the GM and LM river systems in the last decade or so 
could be a cause for optimism. However, publicly-available OEPA reports (1995, 1997, 2001, 2011, 
2012, 2013) indicated that surplus of N and P nutrients in the GM watershed still occur. In fact, elevated 
concentrations of nutrients detected in streams were occasionally at levels that surpassed the 
recommended statewide nutrient target concentration standards. Rowe et al. [8] found that the N and 
P measurements have decreased by 50% and 40% respectively since 1974 in the NAWQA study area, 
yet, still continue to be among the highest concentrations detected in the nation. The phosphorus 
concentration remains higher than the EPA guideline of 0.1 mg/l, at 0.3 mg/l. In a recent biological 
and water quality study, nutrient surplus is listed as one of the most persistent sources of impairment 
in the UGM watershed system [4]. There are really no state-wide standards for in-stream nutrient 
concentrations in Ohio. However, the Administrative Code 3745-1-04 Part E sets the level of P needed 
to prevent algal blooms and weeds. The Nutrient Reduction Strategy report [17] lists the recommended 
statewide nutrient target concentrations (Table 5). 
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Figure 7. County level rate of nitrogen-fertilizer use (tonne/m2) in the Great Miami and 
Little Miami watersheds in Ohio and partly in Indiana in 1991. The data used for mapping 
was based from Battaglin and Goolsby [76] and the OEPA Nutrient Strategy [41]. 

The current edition of the nutrient balance report [10] computed the total loadings of N and P on 
a water-year basis for 2013 and 2014 – the only years with the most recent and complete data sets that 
included daily water quality monitoring by NCWQR at Heidelberg University in Ohio and the U.S. 
Geological Survey (USGS). The GM watershed was one of the seven major watersheds included for 
the biannual analysis of loading sources because it is a major contributor of nutrient load to the Ohio 
River systems. The total N loadings (by water year) in metric tonnes per annum (mta), were 18,638 
mta and 20,805 mta for 2013 and 2014, respectively. That was equivalent to 12% positive difference. 
For P, the increase was 42% from 1266 mta in 2013 to 1798 mta in 2014. OEPA [10] noted that the 
nonpoint source is the largest share of the total P (56%) and total N (80%) loads in the GM watershed. 
The NCWQR monitors water quality station at a USGS gaging station in Miamisburg, Ohio that serves 
as a pour point for nutrient mass balance calculations. A pour point is a location on a river or stream 
where the total load is known.  

A 2015 Miami Conservancy District (MCD) annual nutrient loading analysis report also showed 
slightly above record averages for N and P [80]. We provided supplementary figures (Figures A1 and 
A2) that showed the yearly trends of nutrient loadings and yields from 2006 to 2016. Also, in an OEPA 
report that nutrient concentrations in the water column of the GM river and its tributaries frequently 
indicated enrichment. The analysis indicated the direct relationships between total N and total P 
concentrations, and river discharge for the GM watershed at the pour point in Miamisburg, Ohio. The 
report illustrated the trends of how total N and total P concentrations rose at the events of runoff. As 
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the events ended, N and P concentrations decreased back to normal levels. Spring and early summer 
runoff events in 2015 recorded the highest concentrations of N. For phosphorous, an increasing trend 
was observed at extended periods of lower flows during the summer and early fall. This increase was 
likely due to the discharges from wastewater treatment plants [80]. In the 2018 OEPA [25] report that 
analyzed data collected from 2015 to 2017, it highlighted that nutrient enrichment still remains a major 
contributing factor in impairment of aquatic life and the recent widespread HABs that have been 
detected in Lake Erie, the Ohio River and other water bodies in Ohio.  

5. Climate change impacts  

Simulations using climate models provide a quantitative basis for estimating the many phases of 
future climate change and the impacts of changing climate to nutrient loadings in the watersheds. These 
climate models or popularly known as General Climate Models (GCMs) evaluate properties of the 
atmosphere and ocean (e.g., temperature and precipitation) to project a range of different emissions 
scenarios for the future. These scenarios depend mainly on cumulative emissions of GHG and aerosols 
from potential resource use patterns, technological innovations, and demographics [81]. The outcomes 
from climate models based on these emissions scenarios provide a scope of plausible Representative 
Concentration Pathways (RCP), contingent on the assumptions that are measured by each scenario. 
The Intergovernmental Panel on Climate Change (IPCC) has the sole obligation for assessing and 
summarizing information pertinent to climate change and reporting this information to the policy 
makers and the public. IPCC was jointly established by the World Meteorological Organization (WMO) 
and the United Nations Environment Program (UNEP) in 1988. The panel has published major 
assessment reports, the most recent one is in 2014. The fifth IPCC assessment report [82] underlined 
that the global temperature is projected to rise over the 21st century under all assessed emission 
scenarios. Changes of projected temperature range from 4.7 °F–8.6 °F (2.6 °C–4.8 °C) under the 
extreme scenario (RCP8.5) to 0.5 °F–1.3 °F (0.3 °C–1.7 °C) under the conservative scenario (RCP2.6), 
for 2081–2100 relative to 1986–2005.  

5.1. On watershed biodiversity and ecosystem 

Global effects of climate change could be seen in the drop in snow cover and melting of glaciers 
that have led to a northward shift in plant and animal distributions, and alterations in algal and fish 
communities and food webs [83]. As climate change persists, it is expected that heat waves could occur 
frequently and last much longer in many regions [84–86], causing threats to human water security and 
surface water diversity [87,88]. Changes in atmospheric conditions such as precipitation amount, type, 
timing and even temperature could intensify the water cycle [89], alter runoff and flood frequency, 
change the timing of the peaks of streamflow [90–94] and have consequent effects on water quality 
and stream biomes [95]. These atmospheric changes could occur in tandem with water management 
and land use changes – further worsening climate-induced river flooding [96]. Flooding could lead to 
further concerns when stream banks erode and stream channels widen [30,97].  
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Figure 8. This flowchart illustrates the probable hydrologic changes that could result when 
climate change interacts with current and future human activities. First level changes 
include the increase in temperature and rise of sea level. Observable hydrological changes 
in the second level include the increase growth of harmful algal blooms and nutrient pools. 
The dashed lines represent negative feedback to the system. Note: This is a reconstructed 
and modified figure adapted from Rabalais et al. [77]. 

In the plant community, a wealth of literature focused on the observed movement of distributions 
of plant species as a response to climate change [98]. The latest IPCC report has supported this 
observation through a statement that many terrestrial species would shift their geographic ranges and 
change migration patterns due to the current climate change [82]. The impact of this shift to the plant 
distributions would rest on the ability and mobility of the species to migrate and remain on balance 
with climate [99] as geographic range contracts or expands [100,101]. However, the shift of 
distribution pattern is not an immediate alarm in the agricultural systems. The long-term alarm is how 
crop growers would be able to classify and procure plant species that are adjusted to the changing 
climates [102–104]. Another major alarm in conventional agricultural settings is how the current 
management of accustomed domesticated plant species could still work when local atmospheric 
conditions vary too fast [105]. So a question remains of whether populations of wild crop relatives 
would be invaded by other species that are swift to migrate to track the changing climate. A current 
study by Duku et al. [106] in a tropical, sub-humid watershed in sub-Saharan Africa found that between 
50% and 95% of cultivated areas that currently maintain consecutive cropping would have to return to 
single cropping by 2090 as climate change impacts agricultural systems, particularly rainfed sequential 
cropping, rainfed cropland expansion, and irrigation expansion. In the end, if climate change causes 
significant shifts related to agricultural species, this could result in considerable changes in the quantity 
of transported N and P nutrients to the river systems. That change could include increase detection of 
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nutrient loadings in surface waters that previously recorded minimal amount of contaminant, as climate 
continues its role to transport and transform nutrients [107–109]. Figure 8 provides an overview of the 
potential hydrological changes to rivers, streams, and coastal areas as a result of the climate changing, 
and how they interact with current and future human activities [77]. The dashed lines denote adverse 
response to the system, specifically nutrient-enhanced productivity.  

5.2. On Ohio watersheds 

In Ohio, signs of higher temperature have already been reported, and further increases are 
projected [110]. The average temperature between 2000 and 2007 in Cleveland was 0.45 °C above the 
30-year average prior to this period. In Cincinnati, it recorded 25 days each year with a temperature of 
at least 32.2 °C – that was six days more than the historical average before 2000. Easterling [110] and 
Easterling et al. [111] found that during the 20th century there was a cooling of about 0.6 °C in the 
Ohio watersheds, with warming in the northern Midwest of about 2 °C for the same period. 
Additionally, during the second half of the 20th century, the length of the snow season in the Ohio 
Valley has been decreased by 16 days. Also, northern Ohio has recorded an increasing trend of 
precipitation by 10% since 1900, in contrast to the decreasing trend by 10% in the south [112]. 
Kundzewicz et al. [113] and Milly et al. [114] looked at 24 GCM projections for 2041 to 2060 relative 
to 1901 to 1970 and showed, based on two-thirds of model agreement, that the Midwest region of the 
USA would have 10–25% increase in runoff events. A similar result was found by Wu [115] with 20% 
increase using 14 GCMs. Jha et al. [116], through a simulation, found a 21% increase in future 
precipitation that could cause a 50% net upsurge in surface water output in the Midwest, and this 
increasing trend could continue in the future [117]. Milly and Dunne [118], in a study of evaporation 
and surface cooling that included the Ohio River suggested that internal climate forcing mechanisms 
were the root of the high amounts of precipitation observed in the region. These observed patterns of 
increasing temperature and varying amounts of precipitation could have intense hydrological effects 
in the Midwest region [26].  

Figures 9 and 10 show the susceptible hot spots where climate change impacts the GM and LM 
watersheds in the decades to come. The maps represent the precipitation (Figure 9) and temperature 
(Figure 10) differences between present (averaged for the years 1970–2000) and each of the three 
selected GCMs based on downscaled data provided by WorldClim [119].  
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Figure 9. Maps of precipitation differences (mm) between present and three selected 
GCMs for future climate scenario (RCP8.5) based on WorldClim [119] for the Great and 
Little Miami River watersheds. Positive values mean increase amount of precipitation in 
the future, while negative values mean decrease amount of precipitation. Climate models 
used were (A) CCSM4, (B) MIROC5, and (C) HadGEM2. CCSM4 and MIROC5 
projected a wetter climate throughout the watersheds. HadGEM2 projected a drier climate, 
specifically in the southern region of the watersheds. Figure D is the present and base 
model. 
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Figure 10. Maps of temperature differences in °C between present and three selected 
GCMs for future climate scenario (RCP8.5) based on WorldClim [119] for the Great and 
Little Miami River watersheds. Positive values mean increase of temperature or warmer 
watersheds in the future. Climate models used were (A) CCSM4, (B) MIROC5, and (C) 
HadGEM2. Figure D is the present and base model. 

The GCMs used were Community Climate System Model version 4 (CCSM4; [120]), Model for 
Interdisciplinary Research on Climate version 5 (MIROC5; [121]), and Hadley Centre Global 
Environment Model version 2-Earth System (HadGEM2; [122]). These GCMs were examined 
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according to existing published evaluations and performances [108,123,124] across the continental 
U.S. and regions that intersect the study area. Future climate conditions were downloaded for 
Representative Concentration Pathways (RCP 8.5) available for all selected GCMs for the time period 
year 2070—average for 2061 to 2080. RCP 8.5 is the most severe scenario that demands the highest 
projected increase in multiple greenhouse gas concentrations in the atmosphere [125] and associated 
increases in global surface temperatures [126]. 

In the GM and LM watersheds, changes in flood frequency and intensity are projected as heavy 
precipitation events are likely to increase [80]. All three GCMs projected an increase precipitation 
amounts from 20 mm to 100 mm, especially in the northern part of the watersheds. This is consistent, 
for instance, with the upward trend of annual precipitation observed in a 30-year average for the Great 
Miami watersheds – from 947 mm in 1988 to 1046 mm in 2015 [80]. HadGEM2 projected a drier 
southern tip (Little Miami) in the late-21st century and mostly wetter north (Upper Great Miami), 
exaggerating water resources problems in some sections of the study area and alleviating them in others. 
These changes in intense precipitation caused by global temperature increases have already been 
evident in literature for the last two decades [127–130].  

All three models projected a warmer temperature all throughout the watersheds, showing 
temperature increases between 2 °C to a high of 6 °C. More prominent changes are likely to befall in 
the mid-section as CCSM4 projected it to reach 4 °C, MIROC5 to 5 °C, and HadGEM2 to 6 °C. As 
temperatures climb, a shift from snow to rain in winter precipitation could alter the timing of 
streamflow peaks in many parts of the watersheds. Also, a wetter climate that is categorized by stronger 
storm intensity and longer storm duration, could prompt more flushes of nutrients into freshwater 
environments [131] as surface runoff increases [80]. In the mean annual runoff analysis at Hamilton 
gaging station, a significant increase was recorded from 299 mm in 1960 to 390 mm in 2015, that is 
an increase of 91 mm over 55 years.  

6. Tools for modeling climate change impacts on nutrient loadings  

The impacts of climate change on the watershed ecosystems and hydrologic processes are complex 
due to a range of components involved in the system. Watershed or hydrological models integrate these 
components that represent climate, soil, land use, lakes, rivers and coastal waters to evaluate the 
impacts of catchment change and the interaction among processes. To date, projecting changes in the 
hydrological processes and water resources is generally addressed by a method combining 
hydrological models with GCMs. How this method works is that it utilizes the projections of climate 
models, downscales the results and use them as reasonable input variables to drive hydrologic models 
to simulate of system operations. Many of the recent studies related to watershed and climate change 
showed results of model projections out to year 2100.  

Having a good understanding of the important biogeochemical and hydrologic processes under 
climate change is the key to managing N and P nutrients. A review of literature has indicated that there 
are a number of watershed hydrological and water quality models that are formulated to simulate 
nutrient cycles and determine total maximum daily loads caused by anthropogenic activities and 
current hydrologic conditions. To name a few, they are: Soil and Water Assessment Tool 
(SWAT: [132,133]); Agricultural Nonpoint Source model (AGNPS: [134]); Dynamic Watershed 
Simulation Model (DWSM: [135]); and Hydrologic Simulation Program Fortran (HSPF: [136]). These 
models have the capability to evaluate temporal nutrient fluxes by relying on the spatial variability of 
input variables [137,138]. Without the inclusion of spatial variability (e.g., land use and climate), 
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confidence in model predictions are observed to significantly reduce [139,140]. 
The spatial data availability and advances in fast computing and simulations are being credited for 

the rapid increase of popularity of process-based, distributed, and temporal models [141]. Yet, 
immense data availability could still become a major concern when the degree of intricacy and 
flexibility of some models are taken into consideration. These models (e.g., SWAT) require extensive 
input data and calibration [142]. In addition, there are varying degrees of systematic biases in some of 
the models when compared to actual climate settings [143]. When these biases are identified, they 
could define the strengths and weaknesses of the model simulations. It is, therefore, necessary that 
climate model outputs be validated specifically in the context of their applicability for regional 
hydrological and ecosystem impact analysis [144].  

Research efforts have also been conducted on the application of artificial neural networks (ANNs) 
as predictors of watershed nutrient loadings. ANN is a highly nonlinear approximator that is used as 
an alternative to the commonly used physical-based models in estimating N and P loadings [145–147]. 
So far, ANN has been effective in studies that estimated surface water and groundwater level 
variations [148], examined the correlation between land use/land cover and various water quality 
variables [149], assessed water quality [150,151], and optimized wastewater treatment processes [152]. 
Kim et al. [146] compared ANN against SWAT and GWLF and found that ANN was computationally 
efficient and was capable of accurately mimicking the output estimations of SWAT and GWLF with 
relatively minor errors. One main identified problem about ANN is how to find the best combination 
of input variables, since it does not need assumption and detailed understanding of the physical 
characteristics of input parameters [153]. Other shortcomings of ANN include slow learning speed, 
convergence to local minimum, overfitting, and components of the model’s complex 
structure [154,155], which could lead to poor model performance and high uncertainty of the model 
outputs [156].  

6.1. SWAT model 

SWAT remains to be the most popular watershed-scale hydrological model for many water quality 
studies, locally and globally. SWAT has proven, time and again, that it is a versatile and 
computationally efficient model to simulate the effects of changes in climate, land-use, and 
management practices on the transport of sediment and nutrient pollutants, pesticides, and loss of 
nutrients over time [157–161]. SWAT is part of the software modeling framework of the U.S. EPA 
BASINS (Better Assessment of Science Integrating Point and Nonpoint Sources). The USDA has used 
SWAT within the Conservation Effects Assessment Project. SWAT was also used to investigate 
scenarios of water management in the Hydrologic Modeling of the United States Project 
(HUMUS) [162]. In terms of its diverse applications, SWAT has been an effective tool in numerous 
agricultural watershed studies worldwide and in many disciplines and under different climate 
scenarios [158,160,163–168]. As of September 2018 from the SWAT Literature Database, over 3500 
peer reviewed publications have used SWAT [169]. About 20 and 16 publications were specifically 
associated with modeling nitrogen and phosphorous pollutant loss and transport, respectively. 

In the SWAT modeling approach, N and P inputs are handled separately, categorized in terms of 
nutrient forms and nutrient sources [143, 185]. Table 6 shows the number of N input requirements for 
SWAT against two other commonly-used watershed hydrological models [170]. As a comparison, 
SWAT needs 33 input parameters coming from 11 nutrient sources. GWLF only needs 8 inputs from 7 
sources, while HSPF needs 10 inputs from 4 nutrient sources. The main sources of N are mainly soil, 
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runoff, groundwater, sediment, plant uptake, urban source, point source, fertilizer, septic system, 
surface water bodies, and atmosphere. Table 6 also shows that SWAT requires the highest number of 
P inputs (total of 18 from 10 sources) compared to the two other watershed hydrological models [170]. 
GWLF only needs 8 inputs from 7 nutrient sources, while HSPF needs 5 inputs from 4 sources. The 
main sources of P are mainly soil, runoff, groundwater, sediment, plant uptake, urban source, point 
source, fertilizer, septic system, and surface water bodies. Further, Table 7 shows the important 
differences in the number of N and P outputs, respectively, from the three models – SWAT, GWLF, 
and HSPF. Based on the groupings of N outputs, SWAT has the most comprehensive list with 28 N 
outputs from 8 transport processes in hydrological systems. HSPF gives 23 N outputs from 6 processes. 
For the groupings of P outputs, again, SWAT is the all-inclusive of the three models with 19 from 6 
transport processes, while HSPF has 12 P outputs related to 6 transport processes. 

Table 6. Number of nitrogen and phosphorus input variables and their sources from three 
watershed hydrological models. A complete list of input variables could be found in Tuo 
et al. [170]. 

Nitrogen  SWAT GWLF HSPF 
Number of input requirements  33 8 10 
Number of nutrient sources 11 7 4 
Phosphorus     
Number of input requirements  18 8 5 
Number of nutrient sources 10 7 4 

Table 7. Number of nitrogen and phosphorus outputs and their transport processes in 
hydrological systems from SWAT, GWLF, HSPF, and AGNPS watershed hydrological 
models. A complete list of output variables could be found in Tuo et al. [170]. 

Nitrogen  SWAT GWLF HSPF 
Number of outputs  28 6 23 
Number of transport processes 8 5 6 
Phosphorus     
Number of outputs  19 6 12 
Number of transport processes 6 5 6 

6.2. Simulating nutrients under future climate 

Observed and downscaled climate data of precipitation, maximum and minimum temperature 
obtained from the climate modeling in each subwatersheds for both the current/past and future time 
periods are utilized as climate forcing inputs in the SWAT model. These dataset inputs are used to 
assess the impacts of future climate change on the N and P nutrients in the watershed. Further, these 
datasets are in addition to SWAT’s basic input requirements, such as solar radiation and wind 
speed [171].  

Čerkasova et al. [172] simulated the total N and total P loadings under the scenarios RCP4.5 and 
RCP8.5 using SWAT in a large-scale catchment situated mostly in Belarus. The study found significant 
seasonal increase of P load in December to March, and then a reduction in loads for the rest of the 
studied year. In general, an increase in the N load was observed for scenarios RCP4.5 and RCP8.5, 
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with a more notable change detected in RCP4.5. Čerkasova et al. [172] concluded that if no mitigation 
is taken, climate change could have a substantial bearing on the crop phenology, practice of fertilization 
application, and human activity, with upsurge of N and P nutrient loads to the rivers as a consequence. 
An increase of P and N were also observed by Wagena et al. [35] when projecting to future scenarios 
2045 to 2068 for the subwatershed of Mahantango Creek in east-central Pennsylvania. The increase of 
P loading was found to be related to the increased precipitation intensity and increased in winter/spring 
sediment-bound P. Similarly, the increase in N export annually was caused by the large surges in 
nitrification in the winter/spring seasons and increased runoff/soil moisture. Comparable findings were 
seen by Cho et al. [173] as total P and N loadings were higher during wet season due to increase of 
precipitation amount. Yang et al. [174] utilized 16 GCMs under RCP4.5 and RCP8.5 to project the 
discharge, transport, and transformation of N in the Upper Huai River Basin in China by using 
identified anthropogenic dataset coming from “industries, municipal sewage treatment plants, 
concentrated and scattered feedlot operations, rural households, and crop production”. Yang et al. [174] 
found that RCP4.5 and RCP8.5 could raise the average and extreme total N loadings in the months of 
February, May, and November. The effects of climate change on the August total N loads were more 
uneven. Using five GCMs under RCP8.5, Lee et al. [175] quantified the increase of N and concluded 
that a temperature increase of 5 °C would increase N loads in Chesapeake Bay watershed in Maryland 
and Virginia by 66%. Greater increase of the rate of N was observed in regions of the watershed that 
have larger percent of cropland. In a study of N loads in the Upper Mississippi River Basin using 10 
GCMs under the old A1B scenario, Jha et al. [176] anticipated N loadings to increase through all 
Illinois subwatersheds. In contrast, N loadings were anticipated to decline for over 40% of the Iowa 
sub-basins as a result to the future decrease in runoff [176].  

In the case of the LM watershed, Tong et al. [43] modeled the states of future climate according 
to several scenarios to forecast the potential changes in water flow, total N and P, and sediment loads. 
The study used the climate change scenarios on the predicted results from IPCC and the UK Hadley 
Centre’s climate models. Five theoretical climate change scenarios were used in the analysis. The 
reference case scenario was calculated by averaging the daily temperature values and precipitation 
amounts in the last 50 years (from 1945 to 1995). The scenarios were: “wet” (4oC increase in 
temperature, 20% increase in precipitation); “wettest” (2oC increase in temperature, 20% increase in 
precipitation); “dry” (2oC increase in temperature, 20% decrease in precipitation); and “driest” (4oC 
increase in temperature, 20% decrease in precipitation). The study found that increases in temperature 
did not have much effect on the annual runoff compared to the effect caused by changes in precipitation. 
This trend confirmed the results of Chiew et al. [177] and Gellens and Roulin [178].  

While the strength of the model lies in having numerous physically-based operations that control 
intricate hydrological practices and nutrient processes, it has weaknesses as well. Uncertainties in 
modeling efforts varied from the parameterization and representation of the natural system to channel 
scale such as watershed width, depth, and slope [179]. There were also uncertainties identified from 
inputs in agricultural land management that differed between farmers, and also uncertainties in river 
flow and water quality monitoring strategies [180]. Moreover, the large number of system parameters 
required by the model could lead to over-calibration in some cases [140]. To improve modeling results 
on future climate studies, Glavan et al. [180] suggested integrating improved regional climate models 
with improved strategies in monitoring for P and N loadings. This is in addition to more examinations 
about the how, for instance, soil properties and erosive power of rainfall are interconnected.  
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6.3. Implications 

The importance of this paper lies in the fact that it is one of a very few papers to review the 
interplay between nutrient pollution and climate change in the GM and LM watersheds. The results 
from this review have many potential applications. They are useful to environmental scientists and 
watershed managers to find optimum and adopt new strategies and tools to mitigate the impacts of 
climate change to the water quality in the watersheds. Attempts to conform with the CWA and manage 
all sources of pollution in a watershed is progressing as there have been substantial improvements in 
the water quality in the watersheds through enhancing the treatment of wastewaters. Also, through the 
CWA, other surface water quality services have expanded such as community-based and voluntary 
pollution control projects. However, there are still things to be done as publicly-available OEPA reports 
indicated that surpluses of N and P nutrients in the watershed are still occurring. At some instances, 
the elevated concentrations of nutrients detected in streams surpassed the recommended statewide 
nutrient target concentration standards.  

It remains a hurdle on how to diminish nutrient pollution in the watersheds from agriculture and 
wastewater treatment facilities because of two main reasons: (1) large number of wastewater producers 
and (2) changing nature of the system of nutrient loading. Existing future projections from regional 
and global studies have shown that N and P contributions to surface waters from agriculture and other 
sources would continue to rise in the coming decades [31,172,181–184]. From 1960 to 1995, the use 
of N and P fertilizer has increased sevenfold and threefold, respectively, with another threefold 
projected to occur by year 2050 unless something is done to increase the efficiency of fertilizer-
use [185]. EPA, through its current report for improving nutrient reduction at wastewater treatment 
plants [186], stressed that nutrient pollution is the costliest and most challenging environmental 
problem at present. As nutrient issues continue to persevere, the report proposed further treatment plant 
modifications to specifically target N and P through carefully designed biological and chemical 
processes [186].  

Specific solutions to the problem of nutrient pollution would rest on the awareness and better 
understanding of these five factors: (1) nutrient loading processes, (2) nutrient sources, (3) transport 
pathways of nutrients, (4) nutrient interaction with climate, and (5) nutrient interconnection with 
various agricultural practices and land uses [17]. Scientists and policy makers have underscored the 
significance of targeted measures to moderate nutrient losses from agricultural areas to surface waters 
and to protect these surface waters from excessive nutrient contamination [187,188]. It is crucial to 
identify areas that contribute disproportionately high nutrient loadings in order to competently control 
nutrient losses at the watershed scale [189]. Numerous literatures have identified cost-effective 
approaches to help reduce nutrient pollution. Gitau et al. [190] employed farm-level optimization 
approach where the authors combined a watershed-level nonpoint-source model and best management 
practices (BMPs) to create alternative scenarios for the farm before the implementation of BMP. In 
another approach by Arabi et al. [191], the combination of a watershed model, BMPs, a financial factor, 
and a spatial search technique has shown to reduce the nutrient pollution load by a factor of 2. These 
approaches incorporated a vital component into the analysis: farmers’ adoption of BMPs. A better 
understanding of the farmers’ conservation operations and what affects them could better guide the 
formulation and execution of these approaches [192]. Also, a better understanding of the combined 
effects of changing land cover, climate, and atmospheric deposition is crucial. Model simulation 
scenarios from Gabriel et. al (2018) have shown that the combination of atmospheric N deposition and 
precipitation demonstrated the largest impact on N fate and transport in two watersheds in North 
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Carolina, USA [193]. Furthermore, the Nutrient Reduction Strategy report recommended conducting 
more educational activities that include conferences, meetings, educational materials and newsletters 
on farm demonstration plots and research activities directed at appropriate nutrient utilization and 
water quality concerns [41].  

7. Conclusion  

Climate change could further complicate the nutrient reduction process in the watersheds, as large 
uncertainties are introduced into the approximation of future water resources, quality, and runoff risks. 
This complication is a big wall researchers have to hurdle to obtain information that are reliable and, 
ultimately, could guide them in the protection of watershed resources. Uncertainties that go along with 
future climate change prediction still remain high, although recently, there are improvements in the 
categorization of these uncertainties [82]. Further, the disagreements among current generation of 
climate models indicate how various models characterize future climate differently. Take for example 
Figures 9 and 10 for the GM and LM watersheds when a model does not concur on the sign of future 
changes of precipitation. Hence, the assessment of the influences of climate change on P and N 
nutrients based on one, two, or three GCMs could yield conflicting results. Thus, there is a need to 
develop an optimized climatic approach to watershed nutrient management, because if approaches 
would be based on current and existing studies, it is very hard to evaluate nutrient-related outcomes of 
emission pathways with high reliability and accuracy. It is essential to align adaptation measures in a 
holistic manner because the actual effects of climate change, whether in local or regional scale, would 
be the product of complex interactions of schemes and sectors [194]. The IPCC [82,83] calls it 
integrated assessment (IA); defined as “an interdisciplinary process that combines, interprets, and 
communicates knowledge from diverse scientific disciplines from the natural and social sciences to 
investigate and understand causal relationships within and between complicated systems.” The 
scientific community continues to publish projected climate model simulations that recommend an IA 
to help reduce P and N loadings. This include improvement of facilities [174], increase implementation 
of nutrient monitoring, management of winter cover crops, and restoration of wetlands [175], increase 
management of floodplain landscapes [180], and evaluation of the political, budgetary and technical 
barriers [195].  

As we underscored in the beginning of this review, Ohio EPA has not directed its efforts yet on 
the complex concerns of climate change in the 2018 Draft Integrated Report [25]. By missing to 
address the issue, OEPA emphasized in the report that it may be “prohibited from listing waters of the 
State as impaired without first demonstrating that the failure to meet applicable water quality standards 
is not due to the existence of naturally occurring conditions in the open waters.” Nevertheless, OEPA 
has acknowledged the effects of climate change in the future of Ohio’s open waters, in particular, how 
climate change could bring intensive rain events that could mobilize nutrient runoff, and the role it 
plays in the growth of algae blooms. In its latest MCD report [80], OEPA pointed out recent trends in 
hydrologic data for the GM watershed that indicated a tendency toward wetter than normal conditions, 
with above normal precipitation had occurred in seven out of the 10 years from 2000–2009. Also, 
OEPA mentioned that climate variability and changes in water use were contributory to the increasing 
trends in annual runoff, mean daily flows, and seven-day low flows for the GM watershed. Lastly, as 
climate change could challenge the management of watershed nutrients in the coming decades, we are 
optimistic that it would be addressed by environmental agencies in future reports. 
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