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Abstract: Estimating energy consumption rates is a necessary step when building infrastructure for 
charging and schedule optimization of battery-powered vehicles utilized in public urban driving patterns. 
This study examined several input factors for the prediction of vehicle performance. Input conditions 
were energy management controls, State of Charge (SOC) power train batteries, and ultra-capacitor 
vehicle models; output metrics included consumption rates, battery loads, and trip distances. To 
examine the experimental design, an L9 design was used with four control factors at three different 
levels each. Artificial neural network (ANN) models were developed employing four learning 
algorithms: quick propagation (QuP), batch backpropagation (BBaP), Levenberg-Marquardt 
backpropagation (LMBaP), and incremental backpropagation (IBaP). Post-simulation results were 
summarized and validated using the root mean square error (RMSE), which indicated that the values 
collected experimentally were close to those predicted by the models. This paper built an ANN-based 
prediction model and accurately predicted vehicle performance and potential energy shortfalls in 
public transportation networks. These insights can be applied to interventions like charging stations or 
reshaping bus timings to avoid power loss.  
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1. Introduction  

The advent of electric vehicles (EVs) promises a profound transformation in human existence. 
By 2024 it is predicted that there will be over 40 million electric vehicle owners. The number of EVs 
generated annually is increasing; according to OICA data, approximately 90 million EVs were produced 
in 2015. Still, vehicles using internal combustion engines (ICEs) are at the top of the current social 
hierarchy, being the biggest source of greenhouse gas emissions. Roadways cause approximately 90% 
of carbon monoxide, 40% of nitrogen oxide, and 25% of carbon dioxide emissions [1,2]. Human health 
is significantly harmed by atmospheric air pollution. According to WHO data, air pollution caused 
over 7 million deaths worldwide by the year 2012. Current concerns over the state of the atmosphere, 
specifically greenhouse gas emissions, have driven automobile manufacturers to refocus their efforts 
on electric vehicles. Data on worldwide sales and changes to electric cars from 2014 to 2024 is shown 
in Figure 1 [3]. 

The restricted power and energy storage system capacities of EVs are the main causes of their 
shorter driving ranges and subpar performance. The last few decades have seen an increased interest 
in vehicle electrification due to global environmental concerns and the inefficiency of ICE-based 
transportation. The United States Department of Energy Vehicles (EV) recently launched a funding 
effort to support developing battery technology, new large-scale power semiconductor devices, and 
power electronic technologies. More chances are expected for electrified transportation. Over the past few 
years, those opportunities have contributed to reducing the cost of EV energy storage systems (ESSs) to 
half their original cost [4]. In addition to lowering the price of batteries, other aspects such as their 
capability to handle energy and power and endurance also need to be improved. This could further 
guarantee the global development of EVs [5,6]. 

EVs are superior to traditional ICE vehicles in many ways. First, EVs are considerably more 
energy-efficient than other vehicles. In EVs, approximately 62% of the battery energy can be used to 
drive the vehicle wheel, compared to approximately 21% of gasoline energy that can be turned into 
useful driven power [7,8]. EVs are therefore green, eco-friendly, and clean. There are no greenhouse 
gas emissions from the exhaust of an electric vehicle. EVs use electrical motors; therefore, they are 
supposed to be quiet and smooth while traveling. Finally, compared to ICEs, they require less upkeep 
and repairs [9]. The tricky aspect of hybridization is managing the energy between the sources [10]. 
The mechanism that determines how much energy each ESS will share is called the energy 
management control strategy (EMCS) [11]. The vehicle’s travel range is the primary factor, according 
to customers’ vision [12]. Increasing the battery capacity is necessary for longer trip ranges, which 
raises the system’s cost [13]. An energy management system for hybrid electric buses (HEBs) based 
on battery health awareness was introduced and designed via a twin delayed deep deterministic policy 
gradient (TD3) deep-reinforcement learning algorithm. This work integrates naturalistic driving data 
to design a more realistic energy management strategy that utilizes feedback from real-world traffic 
and driving conditions—an improvement of traditional rule-based approaches. Real-world driving data 
is processed to make the model robust and applicable in dynamic urban transport scenarios. The results 
of this study indicate that advanced reinforcement learning methods hold significant promise for the 
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redesign of sustainable transportation systems, enabling scalable solutions for improving efficiency 
and reliability in hybrid and electric vehicle networks [14,15]. Therefore, researchers must focus on 
the vehicle’s dynamics. For hybridization to be complex, the storage systems’ current state of charge 
is also important. Therefore, designing an effective EMCS is necessary [16].  

 

Figure 1. Global electric car sales and trade. 

Artificial neural network-based control strategies for energy management between hybrid sources 
were developed by Moreno et al., who concluded that the traveling distance of test vehicles can be 
improved from 5.3% to 8.9% when using such strategies compared to other conventional control 
strategies [17,18]. Researchers evaluated unique hybridization based on the hydraulic concept, and the 
operating zone over which vehicles with DC motors and hydraulic motors may achieve maximum 
efficiency was determined using a traditional rule-based control technique [19]. Additionally, dynamic 
programming has been used to identify the best control trajectories between the two sources [20–22]. 
Technology that recognizes driving patterns and uses dynamic programming has been used to create 
drive cycle patterns. Additionally, a fuzzy-based control approach was used to determine the drive 
cycle or present driving conditions. To achieve the best possible energy sharing mode, a hierarchical 
energy management method has been used [23]. Advances in applying reinforcement learning to 
intelligent transportation systems have shown that the SAC algorithm can solve continuous and 
dynamic control. The results have important implications for the adoption of sustainable mobility and 
the improvement of the efficiency of possible future eco-driving systems [24]. 

A sliding mode-based control strategy has been proposed, with results showing that energy 
sources can respond better to fast transient operations. From the literature, no research work has been 
carried out to predict the performances of the vehicles considered [25]. In this context, this work aims 
to develop prediction models for analyzing the effect of controlling factors (EMCS, vehicle model, 
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and ESS’s charge state) on vehicle performance, i.e., energy consumption rates (ECR) and battery 
stress. The prediction model is based on artificial neural networks (ANNs) [26]. ANNs are a promising 
modeling technique with the potential to predict responses with lower amounts of data and higher 
accuracy, inspired by the structural and working aspects of the human brain. The application of ANNs 
in prediction processes has increased recently [27]. 

Current vehicles have limited battery capacities, and efficient operation requires a method for 
scheduling charging stops during daily operations. The task becomes more difficult as the 
transportation network and operating conditions grow in size. The positioning of charging stations, 
charging hours in the transportation network, and vehicle journey itineraries may all be optimized 
using an exact energy consumption estimation tool. In the case of extremely fluctuating traffic 
circumstances or undulating roads, using constant consumption rates is erroneous and leads to 
challenges in accurately estimating energy usage. The models available for energy consumption in 
journey itineraries cover a broad spectrum of driving methodologies. Comprehensive kinematic 
models of automobiles, route-based energy consumption scenarios, and models combining driving 
style traits, environmental variables, and vehicle design-related elements are all available. 

The study proposed here revolve around the design of an ANN prediction model to improve 
energy control and prediction of EVs equipped with HESS. This study aims to propose solutions to 
some challenges like limited battery capacities, EMCS, and energy consumption estimation to enhance 
vehicle performance indicators including ECR and battery stress. From the models developed, this study 
uses the best-performing ANN model that contains four learning algorithms: quick propagation (QuP), 
batch backpropagation (BBaP), Levenberg-Marquardt backpropagation (LMBaP), incremental 
backpropagation (IBaP), and results are validated using their root mean square error (RMSE). This 
study’s outcomes hold key operational and infrastructural implications and can thus contribute to the 
development of sustainable transportation to address challenges in operating and managing EVs. By 
using ANN modeling for its predictive power, this research increases the operational effectiveness of 
EVs in many dimensions. By being able to accurately forecast energy consumption rates (ECR) and 
battery stress, the real-time optimization of energy usage can be achieved to minimize energy 
inefficiency and facilitate vehicle operation. 

By predicting and managing energy demands, strategic interventions can be carried out more 
effectively, including cheaper installation of charging stations and dynamically scheduling charging 
stops. These efforts not only improve the accessibility and reliability of the EV charging networks but 
also improve the total efficiency of the transportation systems in fluctuating traffic and environmental 
conditions. ANN-based predictions can also be applied to tailor route plans according to energy 
availability to minimize unplanned vehicle downtimes. From an environmental angle, the findings of 
this study directly result in decreasing greenhouse gas (GHG) emissions by enhancing energy usage 
efficiency while reducing the need for fossil fuels. In addition, the reduced stress on EV batteries 
increases their lifespan, reducing the need for replacements and lessening the environmental burden of 
production and disposal. 

Moreover, ANN-driven methodologies create a platform for the integration of smart energy 
management systems into upcoming EV infrastructure. Based on these systems, the transportation 
ecosystem can also be made adaptive and resilient through real-time traffic data, weather conditions, 
and energy price fluctuations. The findings of this research further support the role of green mobility 
in combating climate change and creating sustainable urban development by supporting global 
initiatives to reduce carbon footprints. 
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This novelty of the research stands out due to the consideration of real traffic scenarios, driving 
behaviors, and individual vehicle factors when developing the ANN model. It uses single performance 
metrics as one of the prediction targets, demonstrating high accuracy in predicting both ECR and 
battery stress, being implemented using a variety of learning techniques. Moreover, the presented 
LMBaP with optimized parameters is a new approach to minimizing prediction errors and can be 
effectively used in dynamic conditions of urban environments. 

In this paper, section 2 deals with the experimental design and the selection of control factors. 
Section 3 elaborates the control strategy and driving cycle details. Section 4 describes and discusses 
the results of the proposed ANN prediction model. Section 5 concludes the analysis. 

2. Experimental design and procedure 

Figure 2 shows the vehicle configuration considered for the present work. A unidirectional boost 
converter between the DC bus and battery and a bidirectional buck-boost converter between the DC 
bus and UC was utilized. The vehicle has a Permanent Magnet DC (PMDC) motor. The two-way power 
converter is responsible for efficiently capturing power during braking.  

 

Figure 2. Proposed vehicle configuration. 

2.1. Control factors 

The vehicle’s performance is highly influenced by major vehicle specification factors like the 
mass of the automobile, the air-drag coefficient, and the front area of the vehicle. The vehicle’s mass 
relates to the vehicle without load, storage, or travelers. A1, A2, and A3 represent varying levels of 
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electric vehicle specifications. All models were selected to ensure similar battery capacities. The 
vehicle models and their specifications are depicted in Figure 3. 

 

Figure 3. Specifications of the models under study. 

The battery charge (SOCBAT) levels are categorized as low, medium, and high. B1, B3, and B4 
correspond to 40%, 60%, and 80% of SOCBAT, respectively. The levels for the storage systems were 
chosen based on practical knowledge. The cut-off voltage of an ultra-capacitor is considered to be half 
its voltage. Hence, 50% (C1) is low, 75% (C2) is medium, and 100% (C3) is high. Table 1 denotes 
the levels of each controlling input factor selected for the study. For the 3 factors, each with 3 
levels, either 9 or 27 experiments can be done. Here, 9 experiments were considered, since they allow 
the same effects of 27 experiments while reducing experimental time. 

Table 1. Hybrid Electric Vehicle (HEV) controlling input factors with levels. 

Control factors Level 1 Level 2 Level 3 
Vehicle model A1 A2 A3 
SOCBAT B1 B2 B3 
SOCUC C1 C2 C3 

2.2. Vehicle dynamics 

According to the mechanics of the vehicle, the force (Frequired) needed for it to run must be higher 
than the rolling resistance force (Frollin), climbing force (Fclb), and aerodynamic dragging force (Fdragin), 
as stated in Eq (1). 

 required rollin clb draginF F F F+= +    (1) 

 * *rolling vehicle acceleration rollinF m g C=    (2) 

1.47 1.51
1.72

2.27 2.19 2.18

0.29 0.27 0.28

Nissan Leaf’15, A1 Volkswagen e’golf, A2 Volvo C30 Electric, A3

Vehicle Models

Curb Weight (tonne) Front Area (m2) Air Drag Co-efficient
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 l * *c b vehicle acceleration rollinF m g C=   (3) 

 
2( * * * )

2
front dragin vehicle

dragin

A C v
F

ρ
=   (4) 

The force (Frollin) needed to overcome the friction losses from tires and the road is indicated in Eq (2). 
The vehicle’s need to overcome topographical impacts (Fclb) is shown in Eq (3). The EV’s (Fdragin) 
power to overcome air resistance on its back, front, and boundary sections is as shown in Eq (4). 

Vehicle mass is given in kg, and gacceleration is the acceleration (m/s2) caused by gravity. Crollin 

represents the rolling resistance coefficient. The drag coefficient is given by Cdragin (kg/m3) represented 
by the air density, and ρ Afront is the frontal area of the car (m2). The vehicle’s velocity is given in km/h. 

2.3. Performance characteristics 

Here, X1 represents the energy consumption rate (ECR), and X2 is the stress occurring in the 
battery. The respective mathematical equations are given in Eqs (5) and (6).  

 
1

consumed

travelled

PowerX
Range

=
  (5) 

 
2

2
batteryi

X dt
time

=    (6) 

3. Selection of driving cycle and control strategy 

The roadway, traffic patterns, and driving habits of the users in a given location are all reflected 
in the driving cycle of that location. Each region will have its driving cycle, which will reflect the 
conditions of that region. Here, the experimental setup generated a driving cycle in real-world 
circumstances along a chosen route. All four driving modes were recorded as micro-trips for a given time, 
and the average of those micro-trips was used to create the most realistic driving cycle. The real-time 
driving pattern considered was a moderate urban driving pattern. Figure 4(a) and (b) illustrate the road 
map and the developed driving cycle. The total duration of the driving pattern is 600 seconds, at an 
average speed of 54.6 km/h, covering a distance of 6.9 km. 
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Figure 4(a). Road map. 

 

Figure 4(b). Real-time drive cycle. 
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Here, three control factors, each with three levels, were considered. As per the experimental 
design, the Taguchi L9 (33) orthogonal array (OA) was implemented. The rule-based control (RBC) 
strategy was found to be an optimum control strategy for the multi-objective optimization explained 
in the literature. The flowchart for the RBC algorithm is given in Figure 5. 

In RBC, the drive power required by the vehicle, found using vehicle dynamics, is divided into 
three categories: (i) Whenever the power demand is lower than or equal to the average power, the 
battery supplies the demand if SOCbat is higher than its low level. Otherwise, the ultracapacitor supplies 
the demand if SOCUC is higher than its low level. ii) Whenever the power demand is higher than the 
average power demand, both battery and UC share to meet the demand. iii) Whenever the required 
drive power demand is negative, which indicates braking, the ultracapacitor obtains that regenerative 
braking energy. 

A 24 kWh battery was chosen for investigation. After scaling down by 10, a 2400 Wh battery was 
engaged. For the EUDC driving cycle, the peak power was estimated to be 16 kWh, so a 2 kW PMDC 
motor was selected. In addition, a 2000 Wh ultracapacitor was chosen, as its higher capacity can act 
as an energy buffer. Figure 6 shows the experimental setup. 

 

Figure 5. Rule-based control strategy. 
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Figure 6. Experimental setup. 

4. Results and discussion 

The ANN model was first inspired by neuro-physics research that showed that the brain is made 
up of distinct cells called neurons that are connected to form networks. Every neuron has several 
dendrites (inputs), a soma (body), and an axon (output) that connect to the inputs of other neurons. 
Neurons function electrically, and we refer to such connections as synapses. Neurotransmitter fluid 
controls how synapses connect. The strengths and excitatory/inhibitory properties of the 
interconnections are determined by this fluid [28–30]. A neuron begins to fire an electrical signal to 
other neurons by axons when the total weighted inputs surpass a certain threshold value. When the 
weighted total of the neuron’s inputs exceeds a certain threshold, the neuron is seen to fire. Frequent 
stimulation by incoming electrical pulses from linked axons of other neurons strengthens the weight 
of the synaptic connection. The following assumptions are made: 
1. There must be synchronization among all neurons. This means that the time taken by each neuron 

to send an electrical signal to another neuron must be the same. Also, there must be 
synchronization in processing the signals for all neurons. 

2. Each neuron owns a function called the activation function that decides the output electrical signal 
based on the strength of the input signal. That activation function must be independent of time.  

3. As the electrical signals pass the synapse, the signals are reformed into a linear form, i.e., the 
electrical signal is a product of some controlling factor, the so-called synaptic weight.  

A synaptic weight change concerning time is considered to be the most significant characteristic. 
This property ensures the possibility of the brain responding differently to the same input signal at 
different moments. The assumptions listed above simplify biological neural networks (NN). The 
distance between the neurons determines the time taken for the brain to transmit the signal naturally. 
Despite those assumptions, ANNs still offer the most significant properties of biological NN: flexibility 
and ability to learn.  



135 

AIMS Energy  Volume 13, Issue 1, 125–146. 

ANNs comprise a single input layer (IL), some hidden layers (HL), and a single output layer (OL). 
Neurons are the building blocks of ANN. Synapses are the links between the neurons, and a weighting 
factor is allotted to each link. Thus, the weighting factor can be adjusted to obtain an optimized output. 
Several functions are generally utilized as activation functions, and it is not mandatory to apply the 
same activation function for all neurons present in a network. In many applications, activation 
functions are not linear. Some common activation functions are given in Table 2. This study focuses 
on the prediction of parameters in electric vehicles, which are highly nonlinear. Hence, the hyperbolic 
tangent type of activation function was selected. 

Table 2. Activation functions. 

S. No. Equation Range of values Activation function 
1. F(S)  =  kS, kϵR (−∞, ∞) Linear 
2. 𝐹(𝑆) = ൜𝑘𝑆, 𝑆 > 0, 𝑘 ∈ 𝑅0, 𝑆 ≤ 0  

(0, ∞) Semi-linear 

3. 𝐹(𝑆) =  11 + 𝑒ି௔ௌ 
(0, 1) Sigmoid 

4. 𝐹(𝑆) =  21 + 𝑒ି௔ௌ − 1 
(−1, 1) Bipolar sigmoid 

5. 𝐹(𝑆) =  𝑒௔ௌ − 𝑒ି௔ௌ𝑒௔ௌ + 𝑒ି௔ௌ 
(−1, 1) Hyperbolic tangent 

6. 𝐹(𝑆) =  𝑒ି௔ௌ (0, ∞) Exponential 
7. F(S)  =  sin (S) (−1, 1) Sinusoidal 
8. 𝐹(𝑆) =  𝑆𝑎 + |𝑆| (−1, 1) Fractional 

9. 𝐹(𝑆) =  ቄ1, 𝑆 ≥ 00, 𝑆 < 0 
(0, 1) Step 

10. 𝐹(𝑆) =  ቄ 1, 𝑆 ≥ 0−1, 𝑆 < 0 
(−1, 1) Signature 

11. 𝐹(𝑆) =  ൝ −1, 𝑆 ≤ −1𝑆, −1 < 𝑆 < 11, 𝑆 ≥ 1  
(−1, 1) Binary step 

Multi-layer perceptron ANNs are feed-forward ANNs comprising several commonly interlinked 
layers of neurons. Those interlinked layers are fixed one after the other. Each neuron in each layer must be 
connected with all other neurons in other networks. The objective behind the design of multi-layer ANN is 
to solve more tedious issues. The unit step activation function is typically not appropriate for a multi-layer 
ANN. Instead, the sigmoidal transfer function is continuous and flexible. The most appropriate function 
must be nonlinear and differentiable at any point in time. Nonlinearity in the activation function is essential 
since the output required must be nonlinear. K ≥ 2 is the number of layers arranged as the perceptron. M 
denotes the number of networks. C is the group of neurons that divide into mutually equal subsets such as 
L1, L2 … LK. The ANN layers are arranged layer by layer, IL is represented as L1, HLs are represented as 
L2, L3, L4,…LK-1, and OL is denoted as LK. The links are initially connected from IL neurons to all other 
neurons in HL1 through the weights. Similarly, each of the neurons in Li is linked with all other neurons 
in Li+1.  
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The ANN output of ANN is obtained in a sequential way, i.e., layer by layer. The activation 
functions and weights must be set by the ANN; hence, the output from each layer relies on the previous 
layer output. ANN training is referred to as tuning the ANN parameter, which is accomplished with a 
learning procedure. An adjustment is made in the weighting factor or bias of the ANN to obtain the 
desired system performance. In general, there are two types of learning models available for ANN: 
supervised learning ANN and unsupervised learning ANN. In supervised learning, the target that is 
expected to be attained for each of the input samples is well-known in advance, i.e., priority. A teacher is 
assumed to be present for providing the information. Therefore, it is termed as supervised. The training 
procedure continues until the error found between the expected and obtained values is minimal. On the 
other hand, in unsupervised learning, the target that is expected to be attained for each input sample is 
not known in advance. The weights are adjusted to obtain appropriate outputs. Both learning methods 
require some parts of the data to be used to train the model and others for testing. Throughout this work, 
a supervised method of learning is utilized. The training process of the ANN is further differentiated into 
offline and online learning. A complete dataset is employed to update the ANN weights in an offline 
learning scheme. Training occurs through a series of steps called epochs. The complete dataset is offered 
to the network during each epoch. Later, the error is found as the result of the epoch.  

Each new sample is sensed, and weights are updated, in the case of online training. As weights 
are changed, the error is evaluated by calculating the differences between the present and past time 
values. Subsequently, the updates for the weights must be computed. This approximation is progressed 
iteratively. The incremental back propagation (IBaP) network updates its weights after presenting 
every pattern from the learning data set, as opposed to just after every iteration. The batch 
backpropagation (BBaP) network processes all learning data patterns, with weight updates occurring 
once every iteration. A heuristic adaptation of the backpropagation technique is called quick 
propagation (QuP), which is substantially quicker than conventional backpropagation. The step size of 
the Levenberg-Marquardt method is determined by a parameter that takes large values in the initial 
iterations and small values in subsequent stages. A number that lies between 0 and 1 is denoted as the 
learning rate. It decides the speed of the ANN to adjust itself toward the values given during the training 
period. This number may vary (increase or decrease) dynamically over time. A careful selection of this 
factor is required since values too small may lead to a slow learning process, while values too high 
may lead to divergence. The learning rate was set to 0.6, 0.3, 0.7, and 0.2 for BBaP, QuP, IBaP, and 
LMBaP, respectively. 

The momentum indicates how the previous weights have affected the present one. It prevents the 
ANN from getting stuck with local minima. This factor must be carefully chosen from experimental 
knowledge. The momentum can be neglected; however, considering it may lead to a better performance. 
The momentum constant was set to 0.5, 0.8, 0.8, and 0.6 for BBaP, QuP, IBaP, and LMBaP, respectively. 
The NEURAL power software platform was used for creating and analyzing the ANN model.  
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Figure 7. Logical flowchart of the ANN model for the prediction model. 

Training and testing are the stages of ANN. During the training period, 75% of available data 
were utilized and the remaining 25% were allocated for testing the trained neurons in the prediction of 
output responses. Neurons’ behaviors are controlled by different learning algorithms, transfer functions, 
and ANN architectures. The accuracy of the predicted data depends on the behavioral nature of the 
neurons. The quality of the prediction is determined by the RMSE value. The lower the RMSE value, 
the better the accuracy of the predicted value. The formula for calculating RMSE is given by Eq (7). 

 

2
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1 ( )
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RMSE P E

n =

= −
  (7) 

Here, E represents the experimental data, P denotes the predicted data, and n represents the 
number of testing data. The hyperbolic tanh function, as given in Eq (8), is selected for both the output 
and hidden layer. 
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The flowchart of the ANN methodology is presented in Figure 7. The results obtained from L9 
OA experiments mentioned in Table 3 are used for training and testing the model.  
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Table 3. L9 OA experimental results. 

Experiment No. Orthogonal array for control factors Vehicle quality factors 
VM BS UCS ECR (Wh/km) Battery stress (A) 

1 A1 B1 C1 13.09 4.88 
2 A1 B2 C2 13.31 4.94 
3 A1 B3 C3 12.3 4.67 
4 A2 B1 C2 12.77 4.84 
5 A2 B2 C3 12.41 4.70 
6 A2 B3 C1 14.27 5.09 
7 A3 B1 C3 12.89 4.83 
8 A3 B2 C2 14.53 5.17 
9 A3 B3 C1 14.44 5.15 

Table 4. Characteristics of ANN. 

Characteristics Details 

Training data First 7 experiments 
Testing data 8th and 9th experiments 
Training algorithms  Batch backpropagation (BBP) 

 Quick propagation (QP) 
 Incremental backpropagation (IBP) 
 Levenberg–Marquardt backpropagation (LM) 

Number of input neurons 3 
Number of output neurons 2 
Number of hidden layers 1 
Number of neurons in the hidden layer 5–20 
Number of iterations 1000 

All 9 experiments were run with RBC, keeping vehicle mass, SOCBAT, and SOCUC as input 
control factors and ECR and battery stress as performance characteristics. During training, 75% of 
the data (i.e., the first 7 experiments) were selected, and the remaining 25% (8th and 9th experiments) 
were chosen for testing the designed ANN model. The characteristics of the ANN model chosen for 
the study are given in Table 4. Learning algorithms were selected based on their computational 
properties and the ability to work with nominal data. BBaP is stable for large sample data but converges 
more slowly. QuP has the advantage of faster convergence but has to be tuned appropriately because 
of stability issues. IBaP is best for updating data in real time. The LMBaP is less time-consuming but 
not very precise as compared with other methods; in this study, it proved to be the most effective 
method to minimize the RMSE in the small dataset. The performances of these algorithms were then 
thoroughly compared on different traffic-intensive types of vehicles. Four types of learning algorithms 
were chosen because of their computational capabilities and previous effectiveness in working with 
nonlinear data sets: batch backpropagation, quick propagation, incremental backpropagation, and 
Levenberg-Marquardt backpropagation. These algorithms were selected to compare the efficiency 
of the proposed method of minimizing the prediction error. LMBaP showed the lowest RMSE 
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value (0,06838). The learning rate and momentum constant for each algorithm were also optimized to 
avoid training instability. Here, the learning rate was 0.6 for BBaP and 0.3 for QuP. More specific 
details of the ANN architecture and the chosen algorithms point to the potential of the model for 
accurately estimating the operation of an HEV. 

 

Figure 8. ANN structure for the prediction model. 

As shown in Figure 8, the topology of an ANN network is made up of a single input layer that 
represents three control factors, a single hidden layer that contains eight neurons, and a single output 
layer that represents three output responses. Over a thousand repetitions were used to train each 
learning neuron. The neuron was trained using all four techniques, each of which has a different 
number of hidden layer neurons. Table 5 shows the average RMSE values obtained.  

Table 5. Average RMSE values of the different learning algorithms. 

Number of neurons in the 
hidden layer 

Average RMSE 
BBaP IBaP QuB LMBaP 

5 0.08193 0.09711 0.08190 0.069956 
6 0.08781 0.09548 0.08558 0.07143 
7 0.08771 0.09604 0.09064 0.07886 
8 0.08071 0.09842 0.09138 0.06838 
9 0.08584 0.09138 0.09125 0.07060 
10 0.08178 0.09922 0.08277 0.07742 
15 0.08408 0.09265 0.08235 0.07318 
20 0.08417 0.09379 0.09081 0.06992 

The LMBaP algorithm, with 8 hidden layer neurons, resulted in the lowest RMSE value of 0.06838. 
The trained and tested output data using the LMBaP algorithm are presented in Tables 6 and 7. 
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Table 6. Experimental values and training data for the LMBaP algorithm. 

Experiment 
no. 

ECR (Wh/km) Battery stress (A/s) 

Experimental ANN Difference Experimental ANN Difference 

1 13.09 13.53 0.44 4.88 4.75 0.13 
2 13.31 13.86 0.55 4.94 5.05 0.11 
3 12.30 12.25 0.05 4.67 4.72 0.05 
4 12.77 13.27 0.50 4.84 5.01 0.17 
5 12.41 12.67 0.26 4.70 4.81 0.11 
6 14.27 14.60 0.33 5.09 4.76 0.33 

7 12.89 12.72 0.17 4.83 4.75 0.08 

Table 7. Experimental values and testing data for the LMBaP algorithm. 

Experiment no ECR (Wh/km) Battery stress (A/s) 
 Experiment ANN Difference Experiment ANN Difference 
8 14.53 14.28 0.25 5.17 5.28 0.11 
9 14.44 15.03 0.59 5.15 5.34 0.29 

The experimental and predicted data for the performance characteristics were plotted to measure 
the accuracy of the prediction model. 

 
Figure 9. Predicted and experimental values for ECR. 
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Figure 10. Predicted and experimental values for battery stress. 

Figures 9 and 10 show the predicted and experimental values for ECR and battery stress, 
respectively. The differences between experimental and predicted data are almost negligible, which 
indicates that the prediction ANN model is accurate for the vehicle system considered. 

Also, the computation time of each algorithm was calculated. LMBaP offered the best tradeoff 
between accuracy and time. These results were obtained after trying the algorithms under different 
configurations of hidden layers, which also confirmed that LMBaP maintained lower error rates in 
comparison to others. Variability in input control factors and lack of finer gradients of driving cycle 
data were also considered to identify possible sources of error. Slight discrepancies between 
experimental and predicted values uphold the efficiency of the ANN model in predicting the 
performance of the vehicle. These results are crucial to enable the best energy control methodologies 
for HEVs, more so under realistic traffic scenarios. The convergence graph of one sample run of the 
training is provided in Figure 11. The corresponding original and cumulative weight statistics are 
shown in Figure 12. The results of the sensitivity analysis indicate that LMBaP outperformed other 
algorithms, especially under dynamic traffic conditions, with a 10% and 15% reduction in RMSE 
compared with QuP and BBaP, respectively. However, QuP’s faster convergence proved to be 
important for simpler, uniform driving cycles. Realistic driving data shows inherent variability and, 
due to modeling assumptions and physical limitations, input parameters have limited granularity. This 
explains the discrepancies between experimental and predicted values. Errors from these 
extrapolations can be minimized by future studies that use finer data resolution.  
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Figure 11. Convergence graph of ECR and battery stress. 
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Figure 12. Weight statistics are original and cumulative. 

5. Conclusions  

In this study, an ANN model was established to provide the energy consumption rate (ECR) and 
battery stress of HEVs based on the correlation between performance control factors and vehicle 
performance. The following conclusions can be drawn: 

(1) To integrate the ECR and battery stress analysis of HEVs, an artificial neural network (ANN) 
model was designed to predict the energy consumption rate (ECR). The experimental dataset 
was split into a training data set (75%) and a testing data set (25%). 

(2) Different learning algorithms, such as batch backpropagation (BBaP), quick propagation (QuP), 
incremental backpropagation (IBaP), and Levenberg–Marquardt backpropagation (LMBaP), 
were used; the lowest RMSE (0.06838) was achieved by the LMBaP algorithm, with 8 hidden 
layer neurons. 

(3) Good correlations between ANN predictions and experimental values demonstrated the 
adequacy of the model in predicting both ECR and battery stress for enhancing the performance 
of vehicles under different control factors. 

(4) The insights derived from the model assist in properly locating charging stations, managing the 
vehicle scheduling for efficient use, and preventing waste of energy in the development of EV 
charging stations. 

(5) The proposed method has the potential to facilitate green mobility planning because it 
optimizes energy consumption and decreases GHG emissions and battery stress while 
increasing battery cycle length and decreasing the battery replacement frequency. 

The predicted values can inform the location of charging spots and the alteration of the car 
schedules to mitigate energy loss and complement infrastructure development and green mobility 
planning. Prediction measures can be further improved by including dynamic traffic condition data, 
natural conditions, and vehicle data. However, the application of less conventional algorithms in 
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machine learning approaches such as reinforcement learning can enhance the flexibility of energy 
management solutions. A thorough consideration of how to design the network of multi-vehicles and 
the placement of charging stations can assist with obtaining widespread EV acceptance. 
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