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Abstract: Concomitant with the expeditious growth of the construction industry, the challenge of 
building energy consumption has become increasingly pronounced. A multitude of factors influence 
the energy consumption of building operations, thereby underscoring the paramount importance of 
monitoring and predicting such consumption. The advent of big data has engendered a diversification 
in the methodologies employed to predict building energy consumption. Against the backdrop of 
factors influencing building operation energy consumption, we reviewed the advancements in research 
pertaining to the supervision and prediction of building energy consumption, deliberated on more 
energy-efficient and low-carbon strategies for buildings within the dual-carbon context, and 
synthesized the relevant research progress across four dimensions: The contemporary state of building 
energy consumption supervision, the determinants of building operation energy consumption, and the 
prediction and optimization of building energy consumption. Building upon the investigation of 
supervision and determinants of building energy consumption, three predictive methodologies were 
examined: (i) Physical methods, (ii) data-driven methods, and (iii) mixed methods. An analysis of the 
accuracy of these three predictive methodologies revealed that the mixed methods exhibited superior 
precision in the actual prediction of building energy consumption. Furthermore, predicated on this 
foundation and the identified determinants, we also explored research on the optimization of energy 
consumption prediction. Through an in-depth examination of building energy consumption prediction, 
we distilled the methodologies pertinent to the accurate forecasting of building energy 
consumption, thereby offering insights and guidance for the pursuit of building energy 
conservation and emission reduction. 
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1. Introduction 

With the rapid development of the global economy and the continuous growth of the population, 
the proportion of building energy consumption in global energy consumption has increased yearly, 
becoming an important part of it. Building energy consumption refers to the energy used in the 
construction and operation of buildings, including the energy consumed in the production of building 
materials, construction processes, building operation, and maintenance. According to the International 
Energy Agency (IEA) [1], the share of building energy consumption in global energy consumption has 
risen from about 30% in the 1970s to approximately 40% today, and it is expected that buildings will 
account for more than half of global energy consumption by 2050. In China, as of 2021, building 
operation energy consumption accounted for 21% of the country’s total energy consumption, with CO2 
emissions constituting 19% of China’s total CO2 emissions [2], as shown in Figure 1. In response to 
the increasing energy consumption of buildings, many scholars are studying the supervision and 
prediction of building energy consumption. 

 

Figure 1. Energy consumption and CO2 emissions in Chinese construction field. 

In an effort to address the issue of building energy consumption, numerous country leaders have 
advocated for the monitoring and management of building energy usage, alongside the implementation 
of pertinent regulations and standards aimed at reducing energy consumption, enhancing building 
energy efficiency, mitigating environmental pollution, and fostering sustainable development. Through 
the scrutiny of building energy consumption data, patterns and anomalies in energy use are identified, 
thereby providing a foundation for effective building energy management and facilitating the 
optimization of energy utilization and efficiency. Concurrently, researchers have embarked on the 
prediction of building energy consumption, with the aspiration of refining energy management through 
the anticipation of future energy consumption data, thereby contributing to energy conservation and 
emission reduction. Data-driven technologies are employed to conduct a comprehensive analysis of 
various factors, including the building environment, energy consumption, and geographical location, 
thereby offering data support for green building design and optimizing building design schemes. 

To attain precision in building energy consumption prediction, researchers have proposed 
methodologies categorized as white-box, black-box, and gray-box approaches. Leveraging the 
granularity of IoT-enabled smart meter data, Natarajan et al. [3] utilized deep learning models to achieve 
accurate predictions of energy consumption in residential and commercial spaces. Ahmad et al. [4] 
introduced four machine-learning models to ensure the robustness and high accuracy of energy 
consumption predictions. Given the often complex and nonlinear nature of energy time series, a single 
model is typically insufficient for achieving satisfactory prediction results. Consequently, in recent 
years, an increasing number of scholars have endeavored to develop hybrid models to address this 
challenge. Xiao et al. [5] proposed constructing a hybrid prediction model based on the point selection 



37 
 

AIMS Energy  Volume 13, Issue 1, 35–85. 

ensemble group method, while Neo et al. [6] suggested the integration of XGboost into hybrid 
prediction methodologies. Building upon the research of these scholars, building energy consumption 
is effectively analyzed through data-driven and other methodologies, thereby enhancing building 
energy efficiency and reducing energy consumption. Furthermore, data-driven technologies can 
elucidate the relationship between various determinants of building energy consumption and actual 
energy usage, thereby enabling more targeted and precise energy consumption predictions. 

In the literature, most researchers looking at building energy consumption prediction have 
focused on data-driven models, such as Ahmad et al. [7], who reviewed data-driven and large-scale 
building energy consumption, and Mohamad et al. [8], who researched machine learning, deep learning, 
and statistical analysis models for building energy consumption prediction. Mathieu et al. [9] directed 
their attention towards the attributes of input data and the methodologies employed in data 
preprocessing, subsequently conducting a comprehensive review of the advancements in novel data-
driven models tailored for building-scale applications. Yin et al. [10] conducted a comprehensive 
review of the application of Artificial Neural Networks (ANNs) in predicting building energy 
consumption, with a particular emphasis on the evolution of ANNs for this purpose. Kadir et al. [11] 
focused on the scope of energy consumption prediction, the attributes of data employed, the 
methodologies of data preprocessing, and the machine learning algorithms utilized for predictive tasks. 
Most of these review articles introduce the application of data-driven approaches in building energy 
consumption prediction, allocating substantial consideration to aspects such as data-driven 
methodologies, algorithmic accuracy, and data preprocessing. Nevertheless, in practical scenarios, 
both intra-building and extra-building factors exert significant influence on the energy consumption of 
buildings. Consequently, we adopt a holistic approach, integrating the insights from prior research, to 
synthesize establishment and optimization strategies for building energy consumption prediction 
models, taking into account the multifaceted influences of building energy consumption factors, as 
informed by advancements in the field. Our purpose of this paper is to review the research progress of 
building energy consumption supervision and prediction and to discuss the practical significance of 
the research on building energy consumption supervision and prediction to green development. 

2.  Methodology 

To attain building energy efficiency and develop a more precise prediction methodology for 
building energy consumption, this study is primarily segmented into three phases: Delineating the 
scope of the literature review; establishing the criteria for literature selection; and categorizing and 
discussing the content of the selected literature. 

2.1. Research scope 

This paper primarily encompasses an examination of the regulatory landscape governing building 
energy consumption, an analysis of the factors influencing building energy consumption, and an 
exploration of prediction methodologies for building energy consumption. Various factors influence 
the energy consumption of buildings, originating from the building’s inherent characteristics such as 
design, structure, and materials, all of which impart a significant impact. Moreover, external factors, 
including climate, building equipment, and usage habits, also contribute to varying degrees of 
influence on the building, thereby correspondingly affecting energy consumption. The energy 
consumption values attributed to these diverse influencing factors are monitored by an energy 
consumption supervision system, which analyzes the data collected to facilitate short-term or long-term 
predictions of building energy consumption, thereby informing the formulation of targeted building 
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energy conservation strategies. Accordingly, we focus on the selection of literature pertaining to the 
factors influencing building energy consumption, the supervision of building energy consumption, and 
the prediction of energy consumption. 

2.2. Literature selection 

During the initial phase of literature collection, a total of 232 articles were identified and screened 
from relevant websites and journals based on specific keywords. The primary keywords included: 
Building energy consumption prediction, building energy consumption supervision, and data-driven 
approaches. Owing to the substantial volume of retrieved literature, the selection of articles was guided 
by the following criteria: (i) Publication within the past decade to ensure the incorporation of the most 
up-to-date research content; (ii) a focus on the forecasting of building energy consumption and load 
demand; and (iii) research pertaining to energy consumption prediction and optimization grounded in 
building influencing factors. Furthermore, relevant laws and regulations enacted by various countries 
to manage building energy consumption were also reviewed. These studies encompass the research 
contributions of scholars from diverse countries in the field of building energy, and they collectively reflect 
a comprehensive consideration of the latest research developments in energy consumption forecasting. 

2.3. Discussion of literature content classification 

Given the extensive volume of literature, these documents were categorized into distinct thematic 
areas at the outset of the screening process. The primary categories are as follows: 
(i) The Current Status of Building Energy Consumption Supervision  

We synthesize the regulatory frameworks of various countries, providing exemplars of pertinent 
regulatory provisions from representative nations. Accordingly, we introduce scholarly research on 
building energy consumption monitoring systems, discuss the developmental status of these systems 
with respect to architectural framework and system integration applications, and summarize the 
structural configuration of contemporary building energy consumption monitoring systems, thereby 
establishing a foundation for building energy consumption prediction. 
(ii) Categorization of Influencing Factors of Building Energy Consumption 

A multitude of factors influence building operation energy consumption, including architectural 
design, construction materials, building equipment energy management, usage patterns, and 
environmental factors. While architectural design and construction materials are extensively discussed 
within the domains of civil engineering and architecture, building equipment energy management is 
intrinsically linked to occupant behavior. Consequently, we identify climatic conditions, occupant behavior, 
and urban morphology as emblematic factors influencing building operation energy consumption. 
(iii) Inquiry into Building Energy Consumption Forecasting 

Research methodologies in the realm of building energy consumption prediction are 
predominantly classified into three categories: White-box methods (physical methods), black-box 
methods (data-driven methods), and gray-box methods (hybrid methods). We elaborate on the 
predictive processes of these three methodologies based on operational energy consumption factors, 
juxtaposing their respective advantages and disadvantages. Furthermore, given the diversity of 
methods within these three categories and the inherent limitations of relying on a single method for 
accurate building energy consumption prediction, we also explore optimization research in energy 
consumption prediction. By analyzing the procedural steps of building energy consumption 
prediction, two focal areas for optimization are selected for discussion: Algorithmic optimization 
and model optimization. 
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2.4. Future research discussions 

Through the synthesis, analysis, and summarization of the extant literature, a more precise 
methodology for forecasting building energy consumption is ascertained. As a proactive approach, 
building energy consumption prediction elucidates the intrinsic correlations between energy 
consumption determinants and actual energy usage via data-driven techniques, thereby furnishing a 
scientific foundation for formulating precise energy conservation strategies. In the realm of 
optimization research, investigations into algorithmic and model optimization reveal substantial 
potential for energy savings, facilitate the development of more refined building energy consumption 
optimization strategies, and enable the implementation of personalized and differentiated energy 
management practices. 

3. The current situation of energy consumption supervision in building operation 

With global energy consumption on the rise, building energy consumption, as a major contributor 
to overall energy use, has garnered significant attention. Many countries have implemented various 
measures to regulate and reduce building energy consumption. To address the increasing energy 
demands of buildings, governments worldwide have introduced a range of policy measures, including 
building energy efficiency standards, promoting renewable energy use, and green building evaluation 
systems. These policies are aimed at enhancing the energy efficiency of buildings, reducing energy 
consumption, and fostering sustainable development. Additionally, to decrease building energy 
consumption and improve energy efficiency, developing a building energy consumption monitoring 
system has been the subject of increasing research and attention. Researchers utilizing information 
technology are investigating various aspects of the monitoring system’s general design framework, 
including IoT-based data collection modes, data transmission technologies, and database deployment 
strategies, with the goal of establishing a comprehensive and scientific energy consumption monitoring 
system for public buildings. 

3.1. The development status of building energy consumption supervision at home and abroad 

In China, the regulatory status of energy consumption in building operations has garnered 
widespread attention. The Chinese government has implemented various measures to control energy 
use in building operations, including setting standards, conducting energy efficiency assessments, 
providing financial support, and promoting green building practices. These actions are aimed at 
steering the development of the building industry towards greater energy conservation and 
environmental protection. To achieve this, the Chinese government has enacted several laws, 
regulations, and policies to enhance energy efficiency and promote sustainable development in the 
building sector. 

China has developed a series of building energy efficiency standards, including the Design 
Standards for Building Energy Efficiency [12,13] and the Implementation Rules for Building Energy 
Efficiency Projects. These standards establish energy use limits and energy-efficient design 
requirements for buildings, aimed at ensuring that buildings operate with the lowest possible energy 
consumption. Additionally, China has implemented a mandatory energy efficiency rating system for 
building energy consumption. This system requires building owners to conduct energy efficiency 
assessments and ratings for new buildings and large-scale renovation projects, to ensure compliance 
with national energy efficiency standards. The Chinese government also encourages the construction 
industry to adopt advanced energy-saving technologies and equipment and has provided a range of fiscal 
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and tax incentives to motivate building entities to implement energy management and energy-saving 
renovation measures [14]. Concurrently, China has established a special fund for building energy 
efficiency, which supports building energy management and technological innovation. China is 
actively promoting green building certification systems, such as the China Green Building Evaluation 
Standard (GB/T 50378) and the Green Building Evaluation Mark (three-star, four-star, and five-star), to 
encourage the adoption of sustainable design and construction practices in the construction industry. As 
shown in Table 1, from 2007 to the present, the Chinese government has issued a series of standards and 
policies for building energy management and energy-saving renovation measures. 

Table 1. Relevant policies and standards for building energy management in China. 
Time/year Name of policy, standard Supervisor/Publishing department 

2007 Implementation opinions on strengthening the energy 
conservation management of office buildings and large public 
buildings of state organs 

Ministry of Housing and Urban-Rural 
Development 

2007 Guidelines for energy audit of office buildings and large public 
buildings of state agencies 

Ministry of Housing and Urban-Rural 
Development 

2008 Regulations on energy conservation in civil buildings State Council 

2008 Technical guidelines related to the construction of energy 
consumption monitoring systems for office buildings of state 
organs and large public buildings 

Ministry of Housing and Urban-Rural 
Development 

2014 Technical specification for remote monitoring system of energy 
consumption in public buildings JGJ/T285-2014 

Ministry of Housing and Urban-Rural 
Development 

2016 Guidelines for energy audits of public buildings Ministry of Housing and Urban-Rural 
Development 

2017 The 13th five-year plan for building energy conservation and 
green development 

Ministry of Housing and Urban-Rural 
Development 

2019 Green building evaluation CriteriaGB/T 50378-2019 Ministry of Housing and Urban-Rural 
Development 

In Europe and the United States, a range of regulations and standards for building energy efficiency 
have been established to promote the development of the building industry towards greater sustainability 
and energy efficiency. For instance, Europe’s Building Energy Performance Directive (EPBD) mandates 
that EU member states develop and implement building energy performance requirements and 
encourage the use of renewable energy. Member states are required to ensure that new buildings meet 
certain energy efficiency standards and to conduct energy audits of buildings. Additionally, the U.S. 
Energy Policy Act (EPACT) sets energy efficiency requirements for buildings owned by the U.S. 
federal government and requires states to develop building energy codes. Each state in the United 
States has its own energy efficiency standards that apply to both commercial and residential buildings. 
These regulations and standards are part of the framework for regulating building energy consumption 
in Europe and the United States, promoting the adoption of energy-saving measures in the building 
industry to reduce energy use and carbon emissions by establishing energy efficiency standards, 
certification systems, and policy incentives. For examples, Table 2 lists the policies and standards for 
building energy efficiency and energy management issued by Japan, Germany, and the United States.  
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In summary, a growing number of policies and legal provisions have been established for the 
supervision of building energy consumption both domestically and internationally. These initiatives 
collectively aim to contribute to the reduction of building energy consumption and to the global energy 
consumption reduction effort. Furthermore, it is evident that the awareness of building energy 
efficiency in European and American countries is ahead of China. Nevertheless, China’s building 
energy efficiency policy has seen rapid development in recent years, keeping pace with the 
construction industry’s growth. The Chinese government has revised its policies in line with current 
events, making a meaningful contribution to reducing global building energy consumption. These 
measures related to building energy efficiency provide a data foundation for the building energy 
consumption monitoring system and offer a reference range for further enhancing the accuracy of 
building energy consumption predictions. 

Table 2. Policies and standards related to building energy management in foreign countries 
(taking Japan, Germany, and the United States as examples). 

Country Time/year Name of policy, standard
Japan 1979 Energy Conservation Act and Design standards for energy efficiency in public buildings

1980 Design standards for energy efficiency in residential buildings and Guidelines for Energy 
Efficient Design and Construction of Residential Buildings

1992 Guidelines for Energy Efficient Design and Construction of Residential Buildings revised
1993 Design standards for energy efficiency in residential buildings revised 
2009 Design standards for energy efficiency in public buildings Design standards for energy 

efficiency in residential buildings and Guidelines for Energy Efficient Design and 
Construction of Residential Buildings revised

2013 Merger into Building Energy Efficiency Standard 2013 

Germany 1952 DN 4108 Insulation of high-rise buildings
1976 Building Energy Efficiency Act ENEG1976
1977 Building Insulation Regulations 1.0
1982 Building Insulation Regulations 2.0
1994 Building Insulation Regulations 3.0
2002 Building Energy Efficiency Regulation EnEV2002
2005 Building Energy Efficiency Regulation EnEG2005
2007 Building Energy Efficiency Regulation EnEV2007
2014 Building Energy Efficiency Regulation EnEV2014
2020 Building Energy Law (2020GEG) 

United 
States 

1973 Energy Policy and Conservation Law
2005 Energy Policy Act 2005
2013 Leadership in Energy and Environmental Design (LEED) standard revision V4 
2022 Federal Building Performance Standard

3.2. Research on building energy consumption monitoring system 

In addition to the regulations for the supervision of building energy consumption both 
domestically and internationally, an in-depth study of building energy consumption supervision 
systems is warranted. Such studies can provide new measures for reducing building energy 
consumption when using cooling and heating equipment in buildings. Among the various building 
energy consumption monitoring systems, researchers primarily focus on the integration and 
application of system architecture, functional design, and system capabilities. 
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3.2.1. System architecture and functional design 

Starting from the overall design framework of the monitoring system, scholars have investigated 
the design method, data transmission technology, and database deployment method for the data 
collector in the Internet of Things (IoT), with the aim of constructing a scientific and comprehensive 
energy consumption monitoring system for public buildings, as depicted in Figure 2. Boris et al. [15] 
introduced a conceptual architecture for an integrated performance monitoring system that can 
facilitate planning, execution, inspection, and action modes. Zhao et al. [16] devised a comprehensive 
system tailored for the surveillance of energy consumption in large public edifices, meticulously 
engineered from six strategic dimensions: The strategic selection of building monitoring points, the 
sophisticated design of data collection protocols, the implementation of measures to preclude data loss, 
and the development of both top-level database architectures and application software. The creation of 
application software is tantamount to the visualization of data and the administration of the system, 
thereby necessitating a multi-faceted examination in the design of an integrated building energy 
monitoring system. 

 

Figure 2. Building energy monitoring system architecture. 

The current building energy consumption monitoring system can be roughly divided into five 
sections (Figure 2). The first section involves defining the objectives and requirements of the 
monitoring system based on the building’s energy usage, designing the system, and selecting suitable 
sensors and data collectors. The second section entails installing sensors and data acquisition 
equipment at critical locations within the building, such as electricity meters, water meters, and 
temperature sensors. The third section involves collecting real-time building energy consumption data 
through sensors, including electricity, water, gas, and heat consumption, and then transmitting the 
collected data wirelessly to the processor. The fourth section utilizes computers for data clarification, 
storage, and analysis and calculates building energy consumption indicators, such as total energy 
consumption, sub-item energy consumption, and energy efficiency ratios. The fifth section involves 
displaying the generated energy consumption report on a device such as a mobile phone. Furthermore, 
in response to the inherent instability of the data, Ma et al. [17] introduced a methodology to ascertain 
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latent erroneous energy consumption data utilizing the building energy consumption monitoring 
platform. They categorized energy utilization patterns, employed cluster analysis to detect anomalous 
data, and conducted a comparative analysis between real-time and historical energy consumption data 
to validate the precision of the methodology and enhance the overall data quality. 

In addition, with the rapid development of emerging technologies such as the Internet of Things, 
the design of building energy consumption detection systems can also be based on this. For example, 
Malkawi et al. [18] designed a building energy management system based on data collection based on 
the Internet of Things architecture. Arun et al. [19] combined the Internet of Things technology to 
propose a safe and energy-saving intelligent building system architecture, which can effectively reduce 
building energy consumption through simulation analysis. Garín et al. [20] described an approach to a 
building environment monitoring system based on an open-source platform and the Internet of Things, 
which first collects data based on sensors and then analyzes and evaluates the collected data. In 
addition, the design of building energy consumption systems is carried out in combination with BIM 
tools, and Gökc et al. [21] have developed a system for building energy monitoring and management 
through sensor facilities, BIM tools, etc. 

The architecture and design of building monitoring systems have garnered increasing attention 
with the rise of big data. By integrating big data with the supervision system, the energy consumption 
of building operations can be accurately tracked. Subsequently, based on the energy consumption 
values obtained from the building energy consumption monitoring system, researchers can make more 
precise predictions of building energy consumption equipment, enhancing the accuracy of their 
predictions and thereby reducing building energy consumption. 

3.2.2. System integration and application 

In the design of building energy monitoring systems, they will also be integrated with other 
systems or technologies. In this paragraph, the combination of building automation systems and energy 
management systems and building energy consumption monitoring systems is reviewed to obtain 
higher-quality building energy consumption monitoring data. 

The Building Automation System (BAS) is an important part of the intelligent building, which 
automates the management of various mechanical and electrical equipment and systems in the building 
through centralized monitoring and remote control. Its core goal is to provide an efficient, safe, 
comfortable and economical living and working environment. Vandenbogaerde et al. [22] analyzed the 
building automation and control system for building energy consumption, such as heating, cooling, 
and ventilation of buildings, combined with the European standard EN 52120-1, and reflected the 
limitations of EN 52120-1 and the key parameters that need to be considered in the practical application 
of building automation and control systems. Morshed et al. [23] investigated a data mining method 
based on using K-means clustering analysis on building management systems to identify sources of 
waste in buildings. 

An Energy Management System (EMS) is a systematic solution for monitoring, controlling, and 
optimizing energy consumption. By collecting and analyzing energy usage data, the system helps 
businesses or organizations manage energy consumption more effectively, thereby reducing costs, 
reducing environmental impact, and improving energy efficiency. Muhammad et al. [24] developed a 
method for optimizing building energy management systems that uses multi-criteria decision-making 
techniques to balance the demand and consumption of buildings. 

In addition to the integrated application of the above two systems, there are also the applications 
of artificial intelligence technology, sensor network monitoring systems, etc. Rajalakshmi et al. [25] 
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proposed the application of artificial intelligence technology in the monitoring of energy management 
in intelligent buildings to monitor energy consumption and utilization. Wang et al. [26] used a sensor 
network-based monitoring system to analyze the performance of building energy-saving parameters. 

In summary, the research progress related to the design of building energy consumption 
monitoring systems has achieved certain results. The design of building energy consumption 
monitoring systems can mainly provide a new management scheme for building energy conservation, 
so as to achieve energy conservation and emission reduction from the demand side. However, there 
are some challenges in the design of building energy consumption monitoring systems, such as 
efficient operation and maintenance of the system, data security, and privacy protection. Future 
research can continue to focus on these issues and seek more efficient and reliable design methods to 
provide technical support for building energy efficiency and green building development. 

4. Factors influencing the energy consumption of building operations 

As research into building energy consumption supervision systems progresses, the understanding 
of the factors influencing building energy consumption has similarly evolved. Building energy 
consumption primarily encompasses expenditures in heating, cooling, lighting, and electrical 
appliances. The principal determinants of such consumption include architectural design, construction 
materials, equipment usage patterns, environmental conditions, and occupant behaviors. Within 
individual buildings or complexes, the specific factors influencing energy consumption vary with the 
architectural style. Consequently, architectural design must be considered within the broader context 
of urban morphology for a holistic evaluation. For isolated structures, indoor and outdoor 
meteorological conditions, as well as occupant behavior, are critical variables contributing to energy 
consumption fluctuations. In the context of urban clusters, the morphology shaped by urban planning 
and design, along with the urban green belt coverage ratio, influences urban heat emissions, thereby 
impacting building energy consumption. Thus, the primary factors examined in this discourse are 
climatic conditions, occupant behavior, and urban morphology. 

4.1. Climatic conditions 

Climatic conditions are an important external factor influencing a building’s energy consumption. 
For example, Thomas et al. [27] analyzed the impact of urban microclimate on building energy 
consumption based on the monthly urban energy consumption data of New York in the past three years, 
and Chen [28] AutoBPS was used to establish 22 different urban buildings, and the total energy use 
intensity of these 22 types of urban buildings in 2050 and 2080 under the scenario of low emissions in 
the future was compared, and the energy intensity of buildings increased by climate change was 
obtained. Luo et al. [29] proposed a model predictive control (MPC) system that relies on weather 
forecasting. This system is used to select the mode of renewable energy generation and building energy 
consumption. Furthermore, Nowak et al. [30] conducted a systematic review of the impact of 
microclimate on energy consumption, albeit with a focus on delineating Eco-feedback technology as 
a mechanism for energy conservation aimed at enhancing household awareness regarding energy usage. 

Climatic conditions that typically affect a building’s energy consumption include temperature, 
wind direction and speed, sunlight, and climate zones, as shown in Figure 3. However, depending on 
the region, the climatic conditions that affect the energy consumption of buildings are also different. 
For example, heating in cold areas accounts for a large proportion of energy consumption, while 
cooling energy consumption in hot areas accounts for a large proportion. Therefore, according to the 
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local climatic conditions, the energy consumption of buildings can be reduced by adopting appropriate 
energy-saving technologies and measures. 

 

Figure 3. The impact of urban microclimate on building energy consumption. 

Temperature is one of the most direct factors affecting a building’s energy consumption. In cold 
regions, buildings require a lot of heating energy to maintain indoor temperatures, while in hot areas, 
air conditioning energy consumption is relatively high. In areas with large temperature differences, the 
energy consumption of buildings will also increase accordingly. Verichev et al. [31] studied the 
changes in heating energy consumption of residential buildings in three regions of southern Chile under 
two scenarios of increased temperatures and found that the increase in temperature led to a decrease 
in the heating energy consumption of residential buildings. Li et al. [32] studied the variation of cooling 
energy consumption of office buildings in different climatic zones in China and concluded that the 
annual cooling load is mainly affected by dry-bulb temperature in severely cold regions, while wet-
bulb temperature is affected in other regions. 

Wind direction and velocity significantly influence the natural ventilation of a building. During 
the architectural design phase, it is imperative to consider the local wind direction and velocity to 
optimize the building’s layout and morphology, thereby mitigating the energy consumption associated 
with ventilation and air conditioning systems. A favorable wind direction can facilitate the exchange 
of air between the interior and exterior, thereby diminishing the reliance on air conditioning and 
mechanical ventilation systems and subsequently lowering energy consumption. The velocity of the 
wind enhances the convective heat transfer effect, which in turn impacts the heat exchange on the 
building’s external surfaces. Du et al. [33] conducted an analysis of the coupling relationship between 
the rugged topography of coastal cities, urban heat islands, land-sea breezes, and related local wind 
patterns, as well as their collective impact on the energy consumption of urban buildings. Mikulik [34] 
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investigated the correlation between various meteorological parameters—including wind speed, 
irradiation, humidity, and air temperature—and observed energy consumption, revealing a correlation 
coefficient of no more than 0.25 between energy demand and wind speed. Liu et al. [35] identified that 
the wind velocity at the building’s corner significantly influenced the energy consumption of high-rise 
buildings during renovations in severe cold regions. The renovation notably mitigated the strong wind 
zones in winter and the calm wind areas in summer. In summary, wind direction and velocity are pivotal 
factors affecting building energy consumption, and through judicious design and strategic interventions, 
it is possible to effectively reduce building energy consumption and enhance energy efficiency. 

Sunlight conditions have a direct impact on a building’s energy consumption for lighting and 
heating. Adequate sunlight can reduce the energy consumption of lighting, while in areas with 
insufficient sunlight, the energy consumption of buildings will increase accordingly. In addition, 
sunlight can also provide free heating energy for the building, reducing heating energy consumption. 
Mitja et al. [36] studied that slender buildings are more effective at harvesting solar energy than 
compact buildings in Central European climates, saving the need for heating energy. 

The energy consumption characteristics of buildings in different climate zones are different. For 
example, the energy consumption of buildings in tropical regions is mainly used for air conditioning 
and lighting, while the energy consumption of buildings in temperate regions is mainly used for heating 
and air conditioning. Duan et al. [37] studied the influence of climatic conditions on building energy 
consumption under the conditions of five thermal climate distributions in China and concluded that 
the influence of climatic conditions on building energy consumption is greater due to the greater energy 
consumption of building operations in severe cold areas and hot summer and cold winter areas. Ayoub 
et al. [38] selected six typical cities in Morocco to compare building energy consumption, and found 
that buildings in the Mediterranean climate have the largest energy demand, while those in the desert 
climate have the least energy demand. Wang et al. [39] analyzed measures to reduce hospital energy 
consumption in areas with hot summers and warm winters and proposed two measures to save energy 
and reduce emissions: Photovoltaic power generation and green roofs. 

In summary, climatic conditions are an important factor affecting the energy consumption of 
buildings, but the climatic conditions listed in this paragraph are far less than the impact of actual 
climatic conditions on building energy consumption, and specific analysis is required in combination 
with the actual building. For example, Kim et al. [40] used experimental reference years to study the 
impact of climate parameters on the energy demand of buildings in 18 regions of South Korea and 
concluded that temperature has a greater impact on building energy consumption in winter and solar 
irradiance has a greater impact on building energy consumption in summer. Therefore, in the analysis 
of the energy consumption of the actual building, it is often necessary to consider the influence of 
multiple climatic conditions on it to ensure the accuracy of the building energy consumption prediction. 

4.2. Occupant behavior 

The impact of occupant behavior on building energy consumption is often multifaceted, and the 
mode of energy consumption, the amount of energy consumed, and the distribution of consumption 
time all affect the prediction of building energy consumption. The use behavior of the occupant directly 
determines the switching status and running time of the internal equipment of the building, including 
lighting, air conditioning, heating, refrigeration, and electrical appliances. For example, excessive 
lighting use will increase electricity consumption, and inappropriate air conditioning and heating use 
will increase fossil energy consumption, which will directly affect the energy consumption of buildings. 
Generally, the influence of occupant behavior on building energy consumption can be primarily 
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categorized into three aspects: Occupancy, interaction, and behavioral efficiency. A high occupancy 
rate tends to elevate the frequency of interaction between individuals and building systems, thereby 
affording greater opportunities to optimize energy consumption through these interactions. Moreover, 
well-designed interaction mechanisms, such as intuitive control systems and real-time energy 
consumption feedback, have the potential to enhance the behavioral efficiency of occupants, thereby 
incentivizing more energy-efficient practices. Additionally, at a constant occupancy rate, a higher level 
of behavioral efficiency is likely to result in reduced energy consumption. Conversely, lower 
behavioral efficiency may exacerbate the energy consumption issues associated with high occupancy 
levels. as shown in Figure 4 [41]. 

Occupancy mainly refers to the occupancy rate of occupants in the building, and factors such 
as the number of people in the building, the time distribution of activities, and the nature of 
activities (e.g., different energy consumption needs of offices and gyms) will affect the total amount 
of energy consumption. For example, the peak energy consumption of domestic buildings usually 
occurs from the evening to night, while the peak energy consumption of commercial buildings may 
occur during the day on weekdays. Hu et al. [42] analyzed the composition and floor area of 4964 
households in China based on a questionnaire survey, and concluded that the larger the unit size of the 
household, the greater the energy consumption of the building. Osman et al. [43] studied the energy 
use intensity of six types of households: Single working individuals, single retired individuals, working 
couples, retired couples, nuclear families, and single-parent families and found that regions with more 
retirees had higher energy intensity at noon and larger households. Luo et al. [44] studied the impact 
of hotel occupancy rate on the efficiency of building photovoltaic cell energy consumption and 
proposed a new scheme for hotel energy cost savings. 

 

Figure 4. The impact of the occupants on the building’s energy consumption. 

Interaction refers to the behavior and habits of the occupants in the use of the building, such as: 
The interaction of the occupants with lighting, the interaction with the air conditioning system, the 
interaction with the heating system, the interaction with electrical appliances, etc. Moreover, regulating 
indoor temperatures, using lighting and appliances wisely, and avoiding wasting energy can reduce 
building energy consumption. Duan et al. [45] divided the energy consumption of households living 
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in high-rise buildings into five categories, namely, households with high energy consumption for 
heating and cooling, households with low energy consumption for heating and cooling, households 
with high cooling energy consumption and low heating energy consumption, households with low 
cooling energy consumption, households with high heating energy consumption, and households with 
medium energy consumption for heating and cooling. For university buildings, Deng et al. [46] 
calculated the electricity consumption of university dormitory buildings in China’s hot summer and 
cold winter areas for two consecutive years, and concluded that the frequency of computer use by men 
and women is different, and the height and orientation of the floors lead to different electricity 
consumption in the dormitories. Zhang et al. [47] proposed an improved building energy consumption 
prediction system, which uses the duration of occupant behavior as an input parameter to more 
accurately reflect the relationship between building users and building energy consumption. 

Behavioral efficiency refers to consciously improving the awareness and awareness of building 
users on energy conservation and emission reduction through publicity, which is also one of the 
effective ways to reduce building energy consumption. Rational usage mode can reduce ineffective 
energy waste and improve energy efficiency by optimizing the operating state of the equipment. For 
example, the intelligent control system can effectively reduce energy waste by adjusting the 
temperature of the air conditioner according to the temperature difference between indoor and outdoor 
and the needs of personnel. Zhou et al. [48] established a model of residents’ behavior in government 
office buildings, analyzed the specific causes of residents’ energy consumption behavior, and reduced 
the energy intensity of buildings as a basis for improving building energy efficiency. Yoon et al. [49] 
designed a new building energy consumption model based on the energy consumption of individual 
rooms, offices, and retail tenants in commercial buildings, focusing on the different energy 
consumption caused by different tenants to achieve energy conservation and emission reduction. 

According to the above research and analysis results on occupant behavior, it was found that the 
use behavior of occupants greatly affects the consumption of building energy, and different family 
structures will lead to different consumption of building energy. Therefore, in the prediction of building 
energy consumption, the behavior habits of occupants need to be considered. In addition, in order to 
better save energy and reduce emissions, it is advisable to consider taking into account the behavior 
and habits of occupants in the future building design and functional layout, so that occupants can use 
reasonable equipment, reduce the consumption of ineffective energy, and reduce energy intensity to 
improve the prediction accuracy in the prediction of building energy consumption. 

4.3. Urban form 

The impact of urban form on a building’s energy consumption is multifaceted. The urban form 
mostly includes the density, type, and spatial layout of the buildings, as shown in Figure 5. Different 
urban forms will have an impact on solar radiation, wind direction, and speed, which impact the energy 
consumption of buildings. 
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Figure 5. Different urban forms. 

First, the density and height of buildings in cities are often higher, which leads to the heat island 
effect between buildings, where temperatures are higher in urban areas than in surrounding rural areas. 
This heat island effect increases the cooling demand of the building, which in turn increases energy 
consumption. Du [50] categorized the urban morphological parameters into three distinct groups—urban 
structure, vegetation coverage, and impervious surface thermal characteristics—under mesoscale 
climatic conditions, and subsequently investigated the impact of these three urban forms on building 
energy consumption. 

Furthermore, buildings in cities tend to be more concentrated, which can lead to poor heat 
exchange and ventilation between buildings, further increasing energy consumption. Rostami et al. [51] 
studied the energy consumption and solar energy utilization in urban canyons and neighborhoods in 
three different regions under semi-arid climate conditions, and the results showed that different urban 
morphologies had an impact on both solar energy utilization and energy consumption in cities. Liu 
et al. [52] proposed a framework for multi-objective urban form design optimization to combine urban 
form with building energy consumption and solar energy potential, and summarized the optimal 
energy-saving building form in Jianhu City. The concentration of urban form signifies a concentration 
of population residences, where the flow of people is substantial, leading to increased demand for 
building energy consumption. 

The existence of an urban green environment also affects the generation of building energy 
consumption. Wang et al. [53] analyzed the correlation between the layout of different building 
environments around urban parks and building energy consumption, and concluded that water bodies and 
roads have a positive effect on compact high-rise buildings and a negative effect on sparse high-rise 
buildings. Zhu et al. [54] analyzed the relationship between urban vegetation morphology and urban 
building energy consumption, and concluded that urban vegetation morphology can significantly 
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reduce the energy consumption of urban buildings. Shareef et al. [55] aimed to explore urban forms 
suitable for the local climate in the UAE region to reduce the indoor energy consumption of 
buildings, and concluded that building orientation is the main factor affecting the energy 
consumption of urban blocks. 

A well-designed spatial layout can enhance the accessibility and connectivity of a building or area. 
Similarly, a well-designed public space can offer a venue for leisure and social interaction, which can 
encourage residents’ engagement, promote outdoor activities, enhance resident satisfaction and lead to 
increased occupancy. Xie et al. [56] analyzed the impact of different urban forms on the energy 
consumption and solar power generation potential of university dormitory buildings, and the results 
showed that different block patterns would lead to different energy use intensities. Ge et al. [57] 
analyzed the impact of vertical meteorological models on the energy consumption of different urban 
blocks, and obtained a regression equation for the relationship between building energy consumption 
and urban block morphology. Nasrollahi et al. [58] studied the influence of urban morphological 
parameters on building energy consumption in the Ilang region, and concluded that building height 
had the greatest impact on building energy consumption. High-density cities can offer a wider array of 
housing options to cater to the diverse needs of various income levels and lifestyles. A rich housing 
supply can help draw in diverse groups of people. However, it is important to recognize that excessive 
urban density can have a detrimental effect on environmental quality. Yu et al. [59] studied the inter-
building effect (EBI) of energy consumption of high-rise office buildings in high-density cities, and in 
order to ensure the accuracy of the data, the impact of shutters on EBI was considered, and the results 
showed that the impact of EBI on the total energy consumption of buildings was as high as 13.1%.  

In summary, urban forms increase the energy consumption of buildings and provide more 
opportunities to save energy and reduce emissions. In the early stage of urban construction, the urban 
form should be taken into account to fundamentally reduce the energy consumption of urban buildings 
and improve the accuracy of building energy consumption prediction. 

 

Figure 6. The relationship between the operational impact of building energy consumption. 
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In the prediction of building energy consumption, the above factors do not completely summarize 
the fluctuation of building energy consumption, but whether it is climatic conditions, building use 
behavior, or urban form, as shown in Table 3 and Figure 6, they are important factors affecting building 
operation energy consumption, which provide prerequisites for predicting building energy 
consumption. For the energy use of specific buildings, it is necessary to conduct multi-party 
investigation and research, this paragraph only provides a relevant analysis for predicting building 
energy consumption, and on the basis of these influencing factors, researchers can more accurately 
study new energy consumption prediction models and improve the accuracy of building energy 
consumption prediction. 

Table 3. A summary of the literature that affects the energy consumption of buildings. 
Classification of factors Keywords in the literature Summary

Climatic conditions Temperature [60–62], Solar irradiance [63], 
Shading of buildings [64], Typical 
meteorological year [65,66], 
Micrometeorology [67], Urban heat islands 
[68], Climate scenarios [29], Meteorological 
parameters [69] 

Different climatic conditions call for 
different strategies for building energy 
consumption, and climate parameters must 
be considered in various aspects when 
predicting building energy consumption. 

Occupant use behavior Occupant behavior [70–74], Windowing 
behavior [75–78], Air conditioning usage 
behavior [79], Family mode [80], Space 
occupancy [81] 

Occupant use behavior mainly refers to 
people’s activity patterns, equipment 
usage habits, and requirements for indoor 
environmental comfort in the building, 
which affect the energy consumption of 
buildings to varying degrees. 

Urban form Urban density [82], Residential type space 
[83], Architectural features [84], Layout of 
residential complexes [85], Green coverage 
[86], High-rise buildings [87], Community 
building layout parameters [88], Urban 
morphological factors [89–91], Type of 
dwelling cluster [92], Block form [93], City 
profile [94], City geometry parameters [95], 
Architectural layout [96], Behavior of school 
building use [97] 

Building density, orientation, street width, 
and direction can influence a building’s 
natural ventilation and daylight 
availability, leading to varying cooling and 
heating requirements. The height and high 
floor area ratio of a building determine the 
ratio of its external surface area to volume, 
which in turn affects heat exchange and 
energy loss. 

5. Research on building energy consumption prediction model 

Accurate building energy forecasting can help building managers understand future energy needs, 
so they can develop more effective energy conservation measures and energy use strategies. In the 
prediction of building energy consumption, it can be seen from the previous paragraph that there are 
many influencing factors, such as building type, building heating mode, internal personnel behavior, 
and urban form, which can affect the prediction of building energy consumption. Therefore, the 
establishment and optimization of prediction models for building energy consumption is an important 
research topic. Constructing an accurate building energy consumption prediction model is an effective 
measure for building energy conservation, which can help managers control operating costs and 
optimize energy scheduling by predicting building energy consumption. When there is an anomaly in 
the building energy system, the building energy consumption forecast can also help to carry out 
maintenance and repair in a timely manner. Therefore, it is crucial for research content to do a good 
job in the prediction and optimization of building energy consumption. 
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In the past few decades, many scholars have conducted a lot of research on the prediction of 
building energy consumption, aiming at the prediction algorithms, models, and characteristics of 
building energy, etc., and now the research methods of building energy consumption prediction are 
mainly divided into three categories: physical model (white box method), data-driven method (black 
box method), and hybrid method (gray box method) [98]. 

5.1. Physical methods 

Physical models, also known as white box methods, typically evaluate a building’s energy 
consumption based on comprehensive data, including the building’s construction details, HVAC 
system specifications, physical characteristics of equipment, and occupant behavior patterns. The 
physical modeling approach necessitates the establishment of a detailed building physics model, which 
encompasses the geometric structure, material properties, thermal characteristics, and internal 
equipment systems of the building. Additionally, it is imperative to account for the heat exchange 
between the building and the external environment, thereby maintaining energy balance. Utilizing the 
developed physical model, in conjunction with input meteorological parameters and other relevant 
data, the predicted energy consumption of the building is calculated through simulation. Consequently, 
physical models generally rely on computer simulation tools and software, such as EnergyPlus, 
eQUEST, DOE-2, Trnsys, and Matlab, to forecast energy consumption by simulating the building’s 
thermal environment and air conditioning load. 

EnergyPlus is a building energy consumption simulation engine jointly developed by the U.S. 
Department of Energy and Lawrence Berkeley National Laboratory, which is a detailed software that 
can simulate building energy consumption, suitable for simulation and evaluation of building heating, 
cooling, lighting, ventilation and other energy consumption. Wang et al. [99] used a dynamic coupling 
of the physical model (VCWG) with EnergyPlus, which provides the prediction conditions of the urban 
microclimate to EnergyPlus, and EnergyPlus predicts the heat dissipation and exterior surface 
temperature of the building. Bilous et al. [100] established a dynamic simulation model of the room in 
EnergyPlus to analyze the influence of these factors on the thermal state of the building. Based on 
meteorological data, Wang et al. [101] established the EnergyPlus simulation model under two climatic 
conditions to analyze and predict the overall energy consumption, heating energy consumption, and 
cooling energy consumption of office buildings. 

Design Builder is a comprehensive user interface simulation software developed based on 
EnergyPlus, which can perform simulation calculations and analyses for building heating, carbon 
emissions, building incremental costs, light simulation, indoor and outdoor CFD simulations, and 
LEED scores. Wang et al. [102] used Design Builder to simulate the annual dynamic energy 
consumption of three models: The target single building, the target building and the building group 
within 50 m, and the target building and the building group within 200 m, and analyzed the energy 
consumption difference of the target building under three different conditions. 

Trnsys is an instantaneous system simulation program that simulates and evaluates building 
energy consumption by entering a building model to simulate the built environment. Hu et al. [103] 
used Trnsys to simulate and predict the energy consumption of rural residential buildings and analyzed 
the carbon emissions and their economics under three different heating methods: Natural gas, biomass 
and standard plum, and biomass and air conditioning. In addition, Trnsys can also analyze the hourly 
energy consumption of buildings throughout the year, simulate and calculate solar heat pump systems 
or ground source heat pump systems, etc., and can establish links with other software such as 
EnergyPlus and Matlab to provide strong support for building energy consumption data prediction. 
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Cao et al. [104] proposed a method combining WRF and Trnsys, which uses the data provided by WRF 
to make corrections in Trnsys and then predict the cooling and heating loads of commercial buildings. 
Alibabaei et al. [105] studied the development of a joint Matlab and Trnsys simulator for more 
advanced and accurate predictive control and verified the effectiveness of the simulator on the energy 
saving of actual residential HVAC systems under three different types of prediction strategies: load shifting, 
intelligent dual-fuel switching system, and load shifting and intelligent dual-fuel switching system. 

eQUEST is a DOE-2 engine-based building energy simulation tool, which can be applied to 
building energy simulation and economic analysis of various building types. The software can output 
graphical results intuitively, which is convenient for users to analyze the results of building energy 
consumption. Zhao et al. [106] proposed a building energy consumption prediction method based on 
monitoring data and Bayesian theory, and used eQUEST software to establish a campus building 
energy consumption model and output the results, which verified the applicability of the method. Xing 
et al. [107] used eQUEST software to conduct energy simulation analysis of hotel buildings, studied 
the major factors affecting the energy consumption of hotel buildings, and proposed energy-saving 
renovation measures. 

The white box method uses the laws of physics (e.g., thermodynamics, heat transfer, etc.) to 
simulate and predict building energy consumption through detailed building information, including 
the building’s structure, material properties, equipment performance, and operating mechanisms. The 
white box method is based on physical processes so that the model can be adapted and optimized to 
suit the energy consumption characteristics of different buildings in the face of different building types, 
designs, and operating modes. In addition, the white box method not only simulates the energy 
consumption under known conditions but also predict the energy consumption response of the building 
under changing environmental and operation strategies, providing a scientific basis for the energy 
management and energy-saving measures of the building. However, since the white box method is 
mostly based on physical processes for prediction, researchers need to have professional knowledge 
of physics, which is difficult for people who lack physical knowledge. In recent years, due to the rise 
of big data, data-driven applications in building energy consumption prediction have become more and 
more extensive. 

5.2. Data-driven methods 

The data-driven method, also known as the black box method, is a simplified approach commonly 
used in building energy simulations. This method does not delve into the detailed physical processes 
of a building’s energy consumption, but instead treats the building as a "black box", focusing only on 
the relationship between inputs (time series characteristics, meteorological conditions, building physical 
parameters, etc.) and outputs (building heating and cooling loads, electricity consumption, etc.). When 
using the black box method to simulate the energy consumption of a building, it is not necessary to 
have an in-depth understanding of the details of the building’s internal structure, material properties, 
equipment performance, etc., but only to focus on the overall energy consumption characteristics of 
the building. The black box method can improve the efficiency of the simulation, lower the technical 
threshold, and provide scientific and practical analysis results for building energy efficiency in the 
simulation of building energy consumption. 

According to Sun et al. [108], the classification of data-driven models for building energy 
forecasting can be divided into two categories: statistical models and machine learning models, as 
shown in Figure 7. 
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Figure 7. Classification of data-driven approaches. 

5.2.1. Statistical modeling 

Statistical analysis is a method of collecting, analyzing, interpreting, and presenting data using 
mathematical and statistical methods. In the field of data science, statistical analysis is the basis for 
building machine learning models and conducting data exploration, providing theoretical support and 
data processing methods for machine learning algorithms. The purpose of this method is to establish a 
statistical relationship between energy consumption and influencing parameters by analyzing historical 
energy consumption data to make energy consumption predictions. Such methods mostly include 
linear regression models and time series models. 

Linear regression models are common in the field of machine learning and are mainly used to 
predict the linear relationship between a continuous target variable and one or more independent 
variables. The linear regression model mainly combines the historical eigenvalues and model 
parameters of building energy consumption to predict building energy consumption. Linear regression 
models are typically noted as:   𝑦 ൌ 𝑤ଵ𝑥ଵ  𝑤ଶ𝑥ଶ  ⋯ 𝑤𝑥  𝑏 ൌ ሾ𝑤𝑤ଵ𝑤ଶ …𝑤ሿ 𝑥𝑥ଵ…𝑥  𝑏 

thereinto： 

 y is the prediction function;  

 w is the model parameter;  

 x is the feature input;  

 b is the paranoid quantity. 

R2 (coefficient of determination), MAE (mean absolute error), MSE (mean square error), 
RMSE (root mean square error), MAPE (mean absolute percentage error), and so on are used as 
metrics to evaluate the predicted performance of the linear regression model. In the linear regression 
model, when the coefficient of determination is high, and the mean square error and root mean square 
error values are low, it is indicative that the method can be effectively utilized as a prediction model 
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for building energy consumption. As a typical example, Ciulla et al. [109] developed an alternative 
white-box method, a reliable multiple linear regression method, to predict building energy. This 
method selects several suitable variables for sensitivity analysis and then develops simple linear 
relationships to determine the cooling and heating load requirements of buildings. Bilous et al. [100] 
established a multiple nonlinear regression model, which used the modified coefficient of 
determination as the prediction criterion and the indoor air temperature as the eigenvalue. This model 
was verified to have high applicability and accuracy and can be used for other performance parameters 
of indoor and outdoor buildings. 

Time series models are primarily suited for processing time series data and predicting energy 
consumption trends. Similarly, the prediction criteria for time series models are derived from metrics 
such as MAE (mean absolute error), MSE (mean square error), RMSE (root mean square error), and 
MAPE (mean absolute percentage error). Li et al. [110] developed a time series energy consumption 
prediction model for five campus buildings in northern China. They proposed an energy consumption 
evaluation method based on sub-projection and overall forecasting and conducted a comprehensive 
comparison of MAE (mean absolute error), RMSE (root mean square error), and CV-RMSE (coefficient 
of variation of root mean square error). They concluded that the accuracy of building energy 
consumption sub-prediction was higher than that of the overall prediction. In time series analysis, there 
are also autoregressive moving average models (ARMA) and differential autoregressive moving 
average models (ARIMA). Alexander et al. [111] proposed a genetic algorithm to optimize the 
regression wavelet neural network to predict the daily gas consumption of buildings, which uses the 
multiple nonlinear autoregressive model modeling of the s-shaped neural network and performs 
wavelet decomposition on the time series of outdoor average temperature regression, which effectively 
reduces the prediction error compared with the traditional autoregressive moving average error model. 
Jahanshahi et al. [112] employed an autoregressive composite moving average model to predict energy 
consumption in residential buildings across the EU, revealing an improvement in energy efficiency. 
Transformer models have great advantages in analysis and time series forecasting models because of 
their powerful sequence modeling capabilities and ability to capture long-distance dependencies in 
time series. Li et al. [113] proposed the Transformer model to establish a building load prediction 
model based on the dependence between time series information in building load data, and compared 
with the latest methods of the XGBoost model, deep learning model (LSTM model), and hybrid 
model (CLM model), the TRN model has higher prediction accuracy. 

The linear regression model is well-suited for capturing the linear relationship between building 
energy consumption and static factors such as floor area, number of floors, geographical location, etc. 
Moreover, the time series model predicts that building energy consumption is influenced by various 
dynamic factors, including seasonality, calendar effects, weather changes, etc., and can effectively 
capture the patterns of these changes. In the evaluation of the predictions from these two models, the 
coefficient of determination (R²), adjusted R², mean square error (MSE), root mean square error (RMSE), 
and mean absolute error (MAE) are used as metrics for assessing prediction errors. The linear 
regression model is typically used for long-term forecasting, while the time series model is more 
suitable for short-term forecasting. In practical building energy consumption forecasting, it may be 
beneficial to combine time series models and linear regression models to leverage the strengths of both. 
For instance, a time series model could be used for short-term forecasting, followed by a linear regression 
model for long-term forecasting. Alternatively, a linear regression model could be used to extract static 
features, which could then be combined with a time series model to capture dynamic changes. 

In summary, the building energy consumption prediction model based on statistical analysis 
primarily performs linear analysis on characteristic parameters, which can intuitively depict the 
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variability of building energy consumption. However, due to the prevalence of many nonlinear 
relationships in building energy consumption data, statistical analysis methods are not fully applicable 
for building energy consumption prediction. Consequently, prediction accuracy may be compromised. 
As a result, machine learning methods have become increasingly prevalent in recent years. 

5.2.2. Machine learning models 

Machine learning is a branch of artificial intelligence that enables computers to learn from data 
to improve performance without the need for explicit programming. Machine learning models predict 
the output of unknown data by learning patterns from data. These models can be statistically based, 
such as linear regression, logistic regression, or complex algorithms, including decision trees and 
support vector machines. The goal of machine learning is to build models that can learn from historical 
data and make predictions or decisions. Researchers use machine learning models to analyze building 
energy consumption data, including deep learning (DL), artificial neural networks (ANN), random 
forests (RF), and support vector machines (SVMs). Similar to the statistical analysis model, the 
machine learning approach to building energy consumption prediction also relies on metrics such 
as the coefficient of determination (R²), adjusted R², mean square error (MSE), root mean square 
error (RMSE), and mean absolute error (MAE). 

Deep learning (DL) is a subfield of machine learning (ML) that focuses on learning complex 
patterns and features of data using neural networks with multi-layered structures. These neural 
networks mimic how the human brain works, passing and processing information layer by layer, 
extracting useful features from raw data. Common deep learning architectures encompass 
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term 
Memory (LSTM) frameworks, and Artificial Neural Networks (ANNs). These architectures are 
individually examined as representative methodologies within the domain of deep learning, while the 
respective advantages and disadvantages of the latter three deep learning methodologies are delineated 
in Table 4.
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Table 4. Literature summary of deep learning architectures. 
Deep learning category Examples of individual documents Similar literature Advantage Disadvantage
Convolutional Neural Network 
(CNN) 

 

Maryam et al. [114] proposed a method 
for predicting the energy consumption 
of mosques, using a convolutional 
neural network deep learning model 
that can operate in different operating 
scenarios. 

CNN [115–122], Spatiotemporal 
Graph Convolutional Network 
(STGCN) [123,124], Temporal 
Convolutional Neural Network 
(TCN) [125,126]  

Automatically extract data 
features, process multi-
dimensional data, local 
perception, and parameter 
sharing 

The data demand is large, 
the training time is long, and 
the interpretation is poor 

Recurrent Neural Networks 
(RNNs)

 

Rahman et al. [127] developed a new 
deep recurrent neural network model 
for hourly power consumption 
prediction for commercial and 
residential buildings. 

RNN [128–136] It has time series data 
processing ability and 
memory ability and can 
carry out parameter sharing 
and dynamic input 
processing 

Easy gradient vanishing and 
gradient explosion, difficult 
to capture long-term 
dependencies, poor 
explanatory properties 

Long Short-Term Memory 
Architecture (LSTM) 

 

Jang et al. [137] created three LSTM 
models for analysis and comparison of 
the impact of the operation of non-
residential buildings on the prediction 
of building heating energy 
consumption. 

LSTM [138–147], FRS-LSTM 
[148], BiLSTM [149] 

It can capture long-term 
dependencies, alleviate the 
problem of gradient 
vanishing, and have strong 
time series data processing 
capabilities 

The computational cost is 
high, the training efficiency 
is slow, the risk of 
overfitting is prone to occur, 
and the interpretation is poor 

A combination of more than two 
types of deep learning 

 

Somu et al. [150] proposed a deep 
learning framework called kCNN-
LSTM, which collates and processes 
the energy consumption data of each 
stage recorded in advance to accurately 
predict the energy consumption of 
buildings.

ResNet-LSTM [151], CNN-
LSTM [152–156], CNN-RNN 
[157], LSTM-AEs and CNNs 
[158], CNN and BiLSTM [159], 
Mixed DL and LSTM [160] 

Automatic identification of 
features, ability to process 
irregular energy 
consumption data, ability to 
process correlations between 
time and historical energy 
consumption, etc.

The computational cost is 
high, the interpretability is 
poor, and the training 
difficulty is increased. 
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An artificial neural network (ANN) comprises numerous interconnected neurons, each possessing 
a specific input-output relationship. These neurons are typically organized into three layers: The input 
layer, the hidden layer, and the output layer (Figure 8). The input layer receives external data, the 
hidden layer processes and transforms the data, and the output layer delivers the final result. Despite 
the nonlinear nature of most building energy consumption data, ANNs possess adaptive learning 
capabilities, enabling them to automatically extract features from input data without the need for 
complex feature engineering. They are adept at handling complex and nonlinear data, capturing 
intricate relationships among various factors, and thereby predicting building energy consumption with 
greater accuracy. Moreover, ANNs are robust and can tolerate a certain level of data noise and outliers. 
Afzal et al. [161] employed three extended ANN frameworks and a regression model to predict cooling 
and heating loads, comprehensively analyzed the correlation coefficients of the cooling and heating 
loads, and optimized the data to develop an optimal hybrid model. Talib et al. [162] employed artificial 
neural network (ANN) models to accomplish multi-step forecasting of building thermodynamics 
utilizing historical and contemporary data. To mitigate the overfitting phenomenon inherent in ANN 
models, the dataset underwent cross-validation, thereby facilitating effective generalization of the 
dataset. Consequently, the root mean square error (RMSE) of the ANN model was determined, 
demonstrating commendable performance. 

ANNs typically demand a significant number of computational resources, particularly when 
dealing with large datasets. Moreover, due to the multitude of ANN parameters, if the training data is 
insufficient, the risk of overfitting increases, which can diminish the model’s generalization ability and 
lead to a reduction in prediction accuracy. Lu et al. [163] employed a geographically weighted 
regression model to analyze the influencing factors of energy consumption in commercial buildings in 
Singapore. They utilized K-means clustering and an artificial neural network to predict energy 
consumption, significantly enhancing the fitting effect. However, the analysis lacked 
comprehensive data, and the number of datasets for each cluster was not equal, resulting in 
inaccuracies in cross-sectional data comparison.  

Artificial neural networks (ANNs) generally possess robust capabilities for predicting building 
energy consumption. Their multi-layer architecture is adept at processing nonlinear data, and their 
capacity for automatic feature extraction mitigates reliance on intricate feature engineering, while 
exhibiting a certain degree of robustness. Nevertheless, ANNs are not without the common 
shortcomings inherent to neural network models, including substantial computational resource 
demands, a propensity for overfitting owing to many parameters, and limited interpretability. 
Consequently, despite their potential in forecasting building energy consumption, ANNs necessitate 
further optimization to holistically account for their strengths and weaknesses, thereby enhancing the 
accuracy and practicality of predictions. 
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Figure 8. Artificial Neural Network (ANN) model. 

Random Forest (RF) is an ensemble learning method that is based on decision trees (Figure 9), it 
holds significant application value in building energy consumption prediction. Random Forest 
randomly selects a subset of the original feature set and constructs multiple decision trees based on 
that subset. Each decision tree is independently trained on the training set, which enhances the training 
and prediction speed of the model and results in the optimal segmentation scheme. Finally, the 
prediction results of the multiple decision trees are aggregated by voting or averaging to derive the 
final prediction results. Throughout this process, Random Forest can handle high-dimensional data 
with numerous features and can manage noise and outliers to enhance the robustness of the model. Lei 
et al. [164] proposed combining the entropy weight K-means and the Random Forest method to 
establish a prediction model for building energy consumption and to facilitate the classification and 
selection of influencing factors. Ahmad et al. [98] utilized three methods—Nonlinear autoregressive 
model (NARM), stepwise regression linear model (LMSR), and Random Forest (LSBoost)—To 
analyze the power consumption and climate data of the target building on a monthly, quarterly, and 
annual basis. However, Random Forest requires the construction of multiple decision trees, each of 
which is built independently. Additionally, there are numerous feature selections and parameter 
quantity selections, which lead to a significant computational burden in the Random Forest and 
increase the training and prediction cost of the model. 
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Figure 9. Random forest model diagram. 

The Support Vector Regression (SVR) model is a powerful machine learning algorithm. It first 
requires the selection of features related to energy consumption, such as indoor and outdoor 
temperature, humidity, light intensity, and human activity, which will be used as inputs for the SVR 
model in the prediction of building energy consumption. Second, the SVR algorithm is employed to 
conduct regression analysis on the training data, and the optimal model is determined by adjusting the 
model parameters (such as the penalty parameter C and the kernel function type) during the training 
process. The performance of the model is then evaluated using cross-validation methods, such as mean 
square error (MSE), coefficient of determination (R²), and other metrics. Finally, the model is 
optimized and adjusted based on the evaluation results. SVR identifies the optimal hyperplane by 
optimizing the objective function, enabling it to capture complex relationships in the data and provide 
high prediction accuracy when dealing with nonlinear data. Hamed et al. [165] selected the SVR 
method and the combination of a meta-heuristic algorithm to predict the heating energy consumption 
of residential buildings. They comprehensively compared the coefficients of determination of the 
training dataset and the test data of the model and concluded that the model exhibits high prediction 
accuracy. The SVR has relatively few parameters and supports various kernel functions, making it 
suitable for different data types and prediction tasks. Li et al. [166] proposed a hybrid prediction model 
based on Multivariate Empirical Mode Decomposition (MEMD) and SVR. This model decomposes 
the eigenvalues and building heat load into several components using MEMD and maintains these 
components constant, then uses SVR to predict the building heat load. The model compares metrics 
such as MAPE, NMBE, CVRMSE, and R² to enhance the accuracy of the heat load prediction. 
Jain et al. [167] d developed a sensor-based prediction model using SVR to forecast building energy 
consumption. However, the SVR training process is time-consuming, especially in the absence of 
high-performance computing resources, and the scale of data collection cannot be effectively utilized. 

All four machine learning models can process nonlinear data and capturing complex relationships 
in building energy forecasting. This implies that they can handle seasonality, weather changes, and 
other factors in building energy consumption data, and can automatically extract features from these 
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factors. By employing data-driven techniques, they address the uncertainty in building energy 
consumption forecasting and enhance prediction accuracy. In addition, both random forests and 
support vector regression are ensemble learning methods that build multiple models to improve 
prediction accuracy. This also enables them to enhance the robustness of predictions and deal with 
noise and outliers. However, the process of extracting data features often necessitates a large number 
of datasets, especially when working with large-scale datasets. Different parameter adjustments can 
lead to errors in building energy consumption predictions. Deep learning models, in particular, have 
high requirements for data preprocessing, demand a substantial amount of labeled data, and their 
parameter adjustment is more complex. If the training data is insufficient, it is prone to overfitting. 

Whether it is a statistical model based on the linear relationship of building energy consumption 
data or a machine learning model based on the nonlinear relationship of building energy consumption 
data, it focuses only on the input of historical building energy data or eigenvalues and then makes 
relevant predictions. Both black box methods focus more on the end result of a building’s energy 
consumption, i.e., the relationship between input energy and output energy, and are more helpful in 
identifying key issues in building energy consumption without considering the intricate details of the 
building’s interior. In general, the application of the black box method in building energy consumption 
simulation can improve the efficiency of simulation, reduce the technical threshold, and provide 
scientific and practical analysis results for building energy efficiency. However, the black box method 
also has limitations, and the premise of using the black box method is that there is a sufficient data set 
and a wide range of types, so the black box method cannot accurately predict the influencing 
parameters of the building’s energy consumption behavior. 

5.3. Mixed methods 

The mixed methods (also known as the gray box method, Figure 10) is a method commonly used 
in the simulation and analysis of building energy consumption, which combines detailed simulations 
based on physical models (white box method) and simplified simulations based on statistical or 
empirical models (black box method). The gray box method approximates the prediction of building 
energy consumption by abstracting and simplifying complex processes in the physical model, using 
fewer input data and a simplified simulation process. 

Mao et al. [168] proposed an Elman neural network prediction model based on the improved 
Harry Eagle algorithm, which mostly uses the entropy weight method and the grey correlation method 
to select the eigenvalues, and then uses the improved Elman neural network model to predict the 
cooling load of the building. Talib et al. [162] used a resistor-capacitance thermal network to predict 
the thermal dynamics of buildings and compared it with the artificial neural network model prediction; 
the gray box model was more accurate. Fan et al. [169] developed a new hybrid model for short-term 
prediction of power load, which predicts energy consumption based on several models such as gray 
mutation, random forest, and support vector regression, and optimizes the prediction results of the 
model using genetic algorithms, and the conclusion proves that the model has high prediction accuracy. 
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Figure 10. The relationship between the three prediction models. 

To sum up, the gray box method combines the white box method and the black box method and 
combines the advantages of the two methods to process a large amount of data, find the relationship 
between the input variables and the output variables, and predict the building energy consumption 
more accurately. In addition, a new hybrid method combining a white box method and a black box 
method can be found to adjust model parameters, etc., and to reduce the building’s energy consumption 
by comparing it with a single method. The gray box method is more widely used in the application of 
actual building energy consumption, which can effectively reduce building energy consumption, improve 
the energy efficiency of buildings, and contribute to energy conservation and emission reduction. 

From the perspective of actual building energy consumption prediction, the gray box model 
generally exhibits superior prediction accuracy compared to both the black box and white box models. 
Nevertheless, irrespective of the method employed, it is imperative to investigate the role of 
influencing factors on building energy consumption. The white box method, grounded in the physical 
model of the building, necessitates consideration of the building’s physical characteristics. Conversely, 
the black box method is highly dependent on the accuracy and completeness of historical data, with the 
selection of appropriate characteristic parameters—Such as temperature, humidity, and lighting—Being 
crucial to the model’s accuracy. The gray box method, however, integrates both the physical 
characteristics of the white box method and the characteristic parameters of the black box method. 
Consequently, it is essential to consider the influencing factors of building operation energy 
consumption in the prediction process to enhance the accuracy of building energy consumption 
forecasts, thereby creating pivotal conditions for building energy conservation and optimization of 
energy management. Building managers, armed with this enhanced accuracy, can more precisely 
control building energy consumption, contributing to reductions in energy use and furthering efforts 
to save energy and reduce emissions. To this end, optimizing these three methods remains a focal point 
for researchers, as refining building energy consumption prediction enables a deeper understanding of 
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energy flow, fundamentally mitigates energy waste, and facilitates the achievement of energy 
conservation and emission reduction in buildings. 

6. Optimization study of building energy consumption forecasting 

Building energy consumption prediction constitutes a critical facet of building energy 
conservation strategies, wherein precise predictions can facilitate enhancements in energy efficiency 
and the attainment of energy conservation and emission reduction objectives. Within the extant body 
of research, aside from the prediction of building energy consumption, there are researchers who focus 
on the optimization of such predictions. The optimization of building energy consumption prediction 
not only has the potential to transform the predictive modalities of current research and propose novel 
model-based inquiries but also to further elevate the accuracy of building energy consumption demand 
forecasts, thereby enabling more precise energy conservation and emission reduction outcomes. The 
optimization of building energy consumption forecasting is an iterative process, encompassing 
multiple stages aimed at enhancing the accuracy, stability, and utility of the predictive model. Moreover, 
the prediction and optimization phases are intricately linked to the influencing factors of building 
operational energy consumption, with both algorithmic and model optimization necessitating the 
consideration of input characteristic parameters, which typically derive from historical climate data, 
equipment usage data, and historical energy consumption data, among other sources. Consequently, 
the optimization process must also place emphasis on these influencing factors. 

The optimization procedures for building energy consumption are inherently complex (Figure 11), 
initially requiring the determination of the temporal scope, type of energy consumption, and the 
granularity of the prediction. Subsequently, data collection and preprocessing are undertaken to gather 
building energy consumption data, meteorological data, and building usage data, followed by the 
standardization of data through the cleanup and conversion of missing values, outliers, and duplicate 
data. The selection of an appropriate prediction model involves the construction of model architecture 
and the specification of network layers, neuron counts, and activation functions. The model is then 
trained using historical data, and the resulting structure is validated and refined. The analysis of the 
discrepancy between predicted results and actual energy consumption is conducted using appropriate 
evaluation metrics, such as Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean 
Absolute Error (MAE). The optimization strategy—Whether feature optimization, model optimization, 
or otherwise—Is determined by analyzing these results. Conclusions are drawn based on the 
optimization strategy employed. From the optimization workflow, it is evident that the process 
involves data processing and adjustment, followed by algorithmic optimization, and culminates in 
optimizing the prediction model. An examination of the optimization process reveals that building 
energy consumption data, meteorological data, and building use data are integral to the entire workflow 
of building energy consumption prediction and optimization, necessitating the consideration of data 
anomalies. Consequently, the influencing factors of building energy consumption are inherently linked to 
the optimization process. To enhance the accuracy of building energy consumption prediction, the focus of 
optimization efforts can be directed toward two fundamental components: The algorithm and the model. 
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Figure 11. The model predicts the optimization step. 

6.1. Algorithm optimization research 

Algorithm optimization of building energy consumption prediction refers to improving the 
accuracy, efficiency, and reliability of energy consumption prediction by improving the design of the 
algorithm, adjusting the parameters, or combining multiple algorithms. The energy consumption 
optimization based on optimization algorithm mainly optimizes the energy consumption of buildings 
through optimization algorithms such as genetic algorithm, particle swarm optimization algorithm, and 
simulated annealing algorithm. The optimization process for this category of algorithms predominantly 
follows a similar sequence of steps. Initially, data preprocessing is undertaken, which entails data 
cleaning and the elimination of aberrant elements. Subsequently, an appropriate algorithm is selected 
based on the intrinsic characteristics of the data, followed by the optimization of its parameters. The 
dataset is then utilized to train the model, thereby accomplishing the objective of optimization. 
Consequently, data serves as the foundational element for algorithmic optimization, with high-quality 
data significantly contributing to the enhancement of predictive accuracy. During the collection and 
collation of energy consumption data, it is imperative to ensure the veracity, completeness, and 
precision of the data. Ju et al. [170] used the AHU data collected from the operating buildings to 
evaluate the performance of the locally calibrated building heat source energy consumption prediction 
model, and compared with the uncalibrated building heat source energy consumption prediction model, 
the calibrated prediction model has a coefficient of determination (R2) of 0.95, which is more suitable 
for model predictive control. Abbass et al. [171] proposed a comprehensive framework based on 
artificial neural networks, which optimizes the scenario parameters of building energy consumption, 
evaluates them completely, and finally selects appropriate artificial neural networks for prediction. 

Zheng et al. [172] proposed an interpretable system for predicting building energy consumption 
based on energy consumption pattern recognition and time fusion transformers, which experimentally 
proved that the system had a lower average absolute percentage error than other traditional prediction 
models. Zhang et al. [173] proposed an ensemble model using the Exponentially Weighted Moving 
Average (EWMA) algorithm for energy consumption prediction optimization for the energy 
consumption prediction of building heating systems, and selected four basic machine learning to 
compare with it, and the ensemble model effectively improved the accuracy of heating energy 
consumption prediction. Cao et al. [174] proposed an improved particle swarm optimization overlay 
ensemble model (PStIE) and a preferred feature selection method to solve the problem that it is difficult 
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to determine the optimal combination of parameters of the ensemble algorithm when using the 
ensemble model to predict building energy consumption, and the root mean square error of the model 
is 1.71 lower than that of the ordinary machine learning method. 

Selecting the right features is also an important step in optimizing the algorithm. Through the 
analysis of the influencing factors of building energy consumption, the characteristics closely related 
to energy consumption are selected, such as outdoor meteorological parameters, building parameters, and 
equipment performance. After selecting the appropriate features, they are combined with the optimized 
algorithm to improve the accuracy of building energy consumption prediction. Zhang et al. [47] proposed 
an improvement of the building energy consumption prediction system, which includes the 
modification of the input system and the modification of the operation algorithm. The behavioral 
relationship between sockets, lighting, air conditioners, and people is proposed as input parameters, and 
the swarm intelligence algorithm with circle mapping is used to predict energy consumption. The method 
is used to predict building energy consumption with a determination coefficient of 0.9588–0.9901 and 
an average absolute percentage error of 4.44%~11.60%, and the performance of the building energy 
consumption prediction model is optimized. In addition, Table 5 lists some scholars’ research on 
algorithm optimization. It can be observed that the essence of algorithm optimization lies in the 
processing of energy consumption data. Effective data processing can lead to accurate predictions of 
building energy consumption, which aligns with the above-mentioned demonstration of building 
energy consumption prediction and optimization steps. 

Table 5. A partial summary of the research on algorithm optimization. 
Author Literature summary
Xiao Chen [175] A new meta-heuristic optimization algorithm, CSBOA, is adopted, and indoor temperature 

and occupancy are taken as input parameters.
Majid Emami 
Javanmard [176] 

In Iran, the PSO algorithm and the gray wolf optimization algorithm were used to forecast 
the energy demand of seven industries, and compared with the six machine learning 
algorithms, the PSO algorithm and the gray wolf optimization algorithm were more 
accurate. 

Chengyu Zhang [177] In this paper, Bi-LSTM is used as the basic algorithm to replace LSTM, and the improved 
WO algorithm is used for optimization.

Yiran Yang [178] The shuffle frog jumping algorithm (SFLA) was used to optimize and predict the cooling 
and heating load of the building.

Mohd Herwan 
Sulaiman [179] 

The Evolutionary Mating Algorithm (EMA) is proposed to optimize the use of energy to 
ensure indoor comfort.

Guohui Feng [180] The optimized support vector machine regression algorithm is used to train and predict the 
load data 

Most of the algorithm optimization for building energy consumption prediction is data-driven. 
The optimized algorithm can more accurately predict the energy demand of the building, which helps 
managers allocate energy rationally and reduce waste. With accurate energy forecasting, building 
operators can make more economical purchasing decisions and reduce operating costs when energy 
prices fluctuate. However, advanced energy consumption prediction algorithms may require complex 
data analysis and model building, which requires a high level of expertise and skills. Moreover, 
optimization algorithms often rely on large amounts of historical data, and the quality and availability 
of data may affect the accuracy of predictions. Therefore, the optimization algorithm is not fully 
applicable to all buildings, and it is necessary to conduct practical research based on the building. 
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6.2. Model optimization studies 

Building energy consumption prediction model optimization refers to improving the prediction 
accuracy, stability, and generalization ability of the model on energy consumption data by improving 
the structure, parameters, or training process of the prediction model. Choosing the right predictive 
model is also the key to improving the accuracy of the forecast. In numerous studies, it has been found 
that scholars have improved the performance of predictive models through machine learning, the use 
of artificial intelligence, and algorithm selection. 

With machine learning algorithms, complex nonlinear relationships can be processed, and 
patterns and features in the data can be automatically learned. Vasanthkumar et al. [181] proposed an 
improved Mustang optimization deep learning method model for the prediction of energy consumption 
of residential buildings, and according to the experimental results, the method is better than the prediction 
of other deep learning methods. Alymani et al. [182] introduced an improved Moth Flame Optimized 
Weighted Voting Ensemble Learning (IMFO-WVEL) model based on machine learning methods. 

Khan et al. [183] proposed an AI-based efficient hybrid framework to accurately predict building 
electricity consumption and power generation in response to the mismatch between building supply and 
demand, and experimentally reduced the hourly mean square error of the method by 0.012 and 0.045 
compared with the latest technology (SOTA). Zhang et al. [184] developed an interpretable artificial 
intelligence model that integrates building features, building geometry, and urban morphology to 
accurately predict building energy consumption and greenhouse gas emissions, and experiments 
have proved that this method is feasible. Based on machine learning and artificial neural networks, 
Aruta et al. [185] proposed a model framework that can predict energy demand in advance and plan 
the optimal set value of building energy consumption based on meteorological data. 

While establishing the building energy consumption prediction model, the feature selection 
algorithm is optimized or selected. In order to improve the efficiency of building energy consumption 
prediction, Afzal et al. [186] combined multi-layer perceptron with eight meta-heuristic algorithms to 
obtain that the MLP-PSOGWO hybrid model has the best performance and the highest accuracy in 
building energy consumption prediction. Sun et al. [187] proposed a Thermal Comfort Control 
Strategy for Buildings (PTCN-ICHOA) that combines temporal convolutional neural networks with 
chimpanzee optimization algorithms, which predicts the energy consumption of buildings in both 
winter and summer with the smallest error. Liu et al. [188] proposed a Data-Driven Evidence 
Regression (EVREG) model based on feature selection and model parameter learning, which can 
predict the point and interval prediction of building energy consumption, which can better describe the 
fluctuation of building energy consumption and achieve better prediction than the traditional EVEG model. 

For the company or system that provides energy, the building energy consumption prediction 
model is designed to achieve energy saving. Wang et al. [189] proposed a GRU-GTO model for HVAC 
energy consumption prediction, which uses different communication protocols to reduce transmission 
efficiency and improve the accuracy of building energy consumption prediction. Irankhah et al. [190] 
designed a model based on bidirectional gated recurrent units (BiGRUs) and particle swarm 
optimization (PSO) methods for energy consumption prediction of power companies, which can 
effectively improve the accuracy of energy consumption prediction. Cai et al. [191] used the support vector 
regression model combined with six meta-heuristic algorithms to select the optimal model SVR-AEO to 
predict the cooling and heating load of buildings. 

Table 6 lists the research on using deep learning for model optimization in building energy 
consumption prediction over the past decade. From this table, it is evident that model prediction 
optimization has garnered increasing attention from many scholars in recent years, which is conducive 
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to a comprehensive understanding of building energy consumption. The optimization of the model can 
help building managers gain a better understanding of energy consumption patterns, enabling them to 
optimize energy management, reduce waste, cut costs, and promote sustainable development. 
Compared to algorithms, the model can more accurately control indoor environmental factors such as 
temperature and humidity, thereby enhancing the comfort of the living or working environment. To 
build accurate prediction models, a substantial amount of high-quality historical energy consumption 
data and related variable data, such as weather and usage patterns, is often necessary, and the 
combination of simulation software and computer simulations is required. During this process, 
researchers must collect a large amount of high-quality historical data and relevant variable parameters 
to prevent data anomalies and ensure accurate model predictions. 

Table 6. Summary of different types of model optimization. 
Categorization Model classification Literature citations
Optimization based 

on statistical 

models 

Linear regression 

models 

2014/Barbato [192], 2016/Shiel [193], 2018/Ahmad [194], 2018/Roy 

[195], 2019/Ahmad [196], 2020/Alam [197], 2021/Pandey [198], 

2022/Pachauri [199], 2022/Yang [200], 2024/Araújo [201], 

2024/Ravichandran [202], 2024/ Lairgi [203] 

Time series models 2017/Sadaei [204], 2021/Chou [205], 2022/Ngo [206], 2024/Liu [207]

Optimization based 

on machine 

learning models 

Deep learning 2020/Bouktif [208], 2020/Kim [209], 2022/Godahewa [210], 

2022/Vasanthkumar [211], 2023/Alymani [182], 2023/Jiang [212], 

2023/Kaur [213], 2023/Sekhar [159], 2023/So [126], 2023/Uwiragiye 

[214], 2023/Wang [189], 2024/Da [215], 2024/Irankhah [190], 

2024/Somu [216] 

Artificial neural 

networks 

2018/Wang [217], 2019/Kaur [218], 2020/Georgiou [219], 

2020/Hafeez [220], 2020/Luo [221], 2020/Luo [222], 2021/Ishaq 

[223], 2022/D’Amico [224], 2022/Yang [225], 2023/Abbass [171], 

2024/ Arowoiya [226] 

Support vector 

regression 

2015/Jung [227], 2016/Zhang [228], 2020/Gao [229], 2022/Cheng 

[230], 2022/Ngo [231], 2023/Khajavi [165], 2023/Ma [232] 

Through the optimization of building energy consumption forecasting, energy use can be adjusted 
with greater precision, facilitating the rational allocation and utilization of energy, thereby enhancing 
energy use efficiency. The optimization of algorithms in building energy consumption prediction leverages 
the flexibility and stability of mathematical algorithms, taking into account various building-related 
influencing factors. This process involves the optimization and adjustment of diverse building feature 
data and the extraction and processing of effective data, thereby mitigating the impact of random errors 
and enhancing the stability of predictions. By selecting influencing factors and readily interpretable 
features that are highly correlated with operational energy consumption as the basis for algorithm 
optimization, the comprehensibility of the model is augmented, thereby improving the accuracy of the 
prediction model and reducing prediction errors. Research indicates that both the optimization of 
mathematical algorithms and model optimization necessitate the collection of a substantial volume of 
high-quality historical data and relevant characteristic parameters, which are derived from factors 
influencing building operational energy consumption. To enhance the accuracy of building energy 
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consumption prediction, this approach provides a more precise direction for energy-saving 
transformations in building energy consumption. 

7. Summary 

We primarily address the significance of building energy consumption supervision and prediction 
and explore methods for optimizing building energy consumption prediction models through 
mathematical algorithms and data feature selection. The supervision and prediction of building energy 
consumption are pivotal in achieving energy conservation and emission reduction, reducing operating 
costs, and enhancing living comfort. By identifying the influencing factors of building energy 
consumption and subsequently employing suitable mathematical algorithms and model selection 
techniques, the accuracy of building energy consumption prediction can be enhanced, thereby 
providing robust support for building energy management. 

Global Emphasis and Systematic Design in Building Energy Regulation: Numerous nations 
persistently concentrate on the formulation of regulations and standards pertaining to building energy 
regulation. Regarding the design of building energy consumption supervision systems, the 
optimization and integration of system architecture have facilitated the precise extraction of data and 
the comprehensive analysis of building energy-saving parameters. This has intuitively delineated the 
trends in energy consumption and their underlying factors, thereby providing robust data support for 
the prediction of building energy consumption. Nevertheless, there remains a deficiency in reliable 
research methodologies within the domains of system maintenance and data security, necessitating 
urgent further exploration. 

Multivariate Analysis of Building Energy Consumption Influencing Factors: We systematically 
synthesize the intricate effects of climatic conditions, occupant behavior, and urban morphology on 
building energy consumption. Divergent climatic conditions exert varying influences on energy 
consumption within buildings, while the air conditioning habits and window opening behaviors of 
occupants engender substantial discrepancies in household energy usage. Furthermore, urban 
morphology, block scale, and the density of surrounding buildings also exert a range of impacts on 
building energy consumption. These aforementioned factors delineate the trajectory for research on 
building energy consumption prediction and robustly facilitate the profound advancement of energy 
conservation and emission reduction initiatives. 

Three-Dimensional Analysis of Building Energy Consumption Prediction Methodologies: 
Building energy consumption prediction methodologies are primarily categorized into three classes: 
Physical methods, data-driven methods, and mixed methods. Although the physical method is 
predicated on computer technology and simulation software, it necessitates a high level of physical 
knowledge on the part of the researchers. The black-box method, a subset of data-driven methods, can 
process vast datasets, extracting pertinent information, and enhancing prediction accuracy through 
data-driven and algorithmic leveraging; however, it requires the support of extensive and diverse 
datasets, presenting challenges in the training phase. The mixed method is extensively employed in 
the prediction of building energy consumption, integrating physical models with data-driven 
techniques, and has been shown to significantly augment prediction accuracy in comparison to 
single-method approaches. 

Dual-Track Examination of Building Energy Consumption Prediction and Optimization: To 
further enhance the precision of building energy consumption forecasting, we conduct a succinct 
analysis of prediction process optimization methodologies. The optimization trajectory primarily 
concentrates on refining mathematical algorithms and predictive models. The optimization of data 
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algorithms can augment data quality, albeit necessitating extensive data collection and profound 
analysis, thereby imposing stringent requirements on researchers’ mathematical proficiency. While 
model optimization can be realized through feature selection, it also mandates substantial data support. 
Consequently, both algorithmic optimization and model optimization are inherently linked to data 
analysis and collation, warranting researchers’ meticulous attention. 

In the analysis of the aforementioned literature, it is evident that factors related to building 
operation energy consumption form the foundation of energy consumption prediction. Data-driven 
approaches are a crucial element in achieving accurate predictions of building energy consumption. 
Looking ahead, for the prediction and optimization of building energy consumption, a new model 
could be developed by integrating the influencing factors of building operation energy consumption 
with a prediction model based on mathematical algorithms. This integration would enable a more 
precise estimation of building energy use intensity and contribute to further research on energy 
conservation and emission reduction. 
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