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Abstract: To address the issues of high energy costs and inadequate system response speed in complex 
electricity markets, we propose an electricity price optimization model. This model combines an 
improved Particle Swarm Optimization algorithm, Quantum-behaved Particle Swarm Optimization, 
and the Shuffle Frog Leaping Algorithm. The work was based on multi-regional peak and valley data, 
and we selected Lanzhou, Guiyang, Beijing, Guangzhou, Shanghai, and Nanjing as typical 
representatives for systematic validation and analysis. Our findings were as follows: (1) The model 
demonstrated excellent convergence and stability during the electricity price optimization process, 
particularly under flat-rate price conditions. This model effectively avoided local optima traps and 
enhanced global search capability, achieving the dual goals of rapid convergence and high stability, 
and showed exceptional optimization efficiency and adaptability; (2) building upon its optimization 
performance, the model further improved the uniformity and diversity of the solution distribution, 
ensuring robustness and flexibility in global search ability. Moreover, by dynamically adjusting the 
price function and multi-level evaluation system, the model significantly optimized price elasticity, 
time-of-use pricing regulation efficiency, energy consumption paths, and the operational stability of 
the distribution network. The model exhibited high resilience and fine-grained control capabilities in the 
complex electricity market; (3) finally, based on the optimized electricity price strategy derived from 
training, the model reduced electricity costs and price volatility. Moreover, its superior performance in 
economic benefits and market adaptability was comprehensively validated through high-precision power 
consumption forecasting. We aimed to optimize energy costs, improve system response speed, and 
reduce price volatility, thereby achieving more efficient energy utilization and economic benefits. 
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1. Introduction  

With the global economy developing and urbanization accelerating, the rapid growth in electricity 
demand has become a significant challenge for energy management worldwide [1]. Traditional power 
systems face issues such as low energy efficiency, unstable grid operation, and significant electricity 
price fluctuations. These problems not only hinder effective energy utilization but also limit sustainable 
economic development [2]. To address these challenges, researchers have increasingly focused on how 
to optimize energy distribution and cost management by refining electricity pricing strategies and 
enhancing the accuracy of power consumption forecasts. This is particularly obvious in the areas of 
time-of-use pricing and active distribution network efficiency enhancements. These efforts are crucial 
for enhancing the reliability and economic performance of power systems [3,4]. In this context, 
constructing an electricity price optimization model that combines global search capabilities with 
dynamic adaptability to balance energy utilization efficiency and user economic costs is essential. The 
model should effectively address the challenges of complex fluctuations in time-of-use electricity 
pricing and the multi-dimensional constraints in the operation of active distribution networks. This is 
not only a core requirement for enhancing the reliability and economic optimization of power systems, 
but also a crucial theoretical and practical issue in advancing the scientific and intelligent 
transformation of energy management. 

In recent years, Particle Swarm Optimization (PSO) has emerged as a promising global 
optimization algorithm for addressing complex power system optimization problems [5]. PSO 
simulates the behavior of birds flocking to find food, continuously adjusting and optimizing solution 
positions through individual information exchange and cooperation to find the optimal solution [6–8]. 
Especially in electricity price optimization models, PSO can effectively improve energy cost 
management and the accuracy of power consumption forecasts, thereby enhancing the economic 
viability and sustainability of power systems [9]. For instance, Roy and Das [10] explored a demand-
side management method based on typical daily load shifting in a hierarchical smart grid structure. 
They integrated renewable energy sources like wind with traditional generators to optimize electricity 
costs and the day-ahead market’s generation and load demand distribution. They proposed a hybrid 
Genetic Algorithm (GA)-PSO to solve multi-objective problems, converting them into single-objective 
problems through weighted sum techniques. The results showed that this hybrid algorithm excelled in 
convergence speed and avoiding local minima. It significantly reduced the peak-to-average ratio of 
load demand by over 82.3% and enhanced the efficiency and economy of the smart grid. Similarly, 
Iweh and Akupan [11] examined the application of AI-based PSO and Population-based Differential 
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Evolution (PDE) in designing and optimizing standalone solar PV-hydro hybrid systems. Using 
MATLAB, they developed intelligent algorithms to minimize the Levelized Cost of Energy (LCOE) 
and Loss of Power Supply Probability (LPSP) to meet load demands. The PSO model achieved an 
optimal LCOE of 0.06358 $/kWh and an LPSP of 0.0492 after 40 iterations, outperforming the PDE 
model in system reliability. The optimized hybrid system recommended a scale of 1 kW PV, 33.96 kW 
hydro, and no batteries, ensuring appropriate power management. Comprehensive evaluations 
indicated that the PSO model demonstrated superior performance and robustness in generation 
management and electricity price optimization. MuraleedharanBabu and Sasidharanpillai [12] 
proposed an improved PSO using a reverse learning strategy to solve the combined economic and emission 
dispatch problem for thermal power plants. This problem includes constraints such as valve-point effects, 
prohibited operating zones, and ramp rate limits. Validated through benchmark functions and thermal 
power systems with 6, 10, and 40 units, the improved PSO outperformed optimization techniques 
like Multi-Objective Differential Evolution (MODE) and Nondominated Sorting Genetic 
Algorithm II (NSGA II) in terms of fuel cost, emissions, and CPU time. Compared with Inertia Weight 
PSO, and Constriction Factor PSO, it reduced total cost by approximately 3.73% and CPU time by 2.6 s, 
with prediction accuracy near 100%. These findings demonstrated PSO’s potential in optimizing the 
combined economic and emission dispatch of thermal power plants.  

Research has made notable progress in the development of electricity price optimization models, 
primarily focusing on solving two key issues. First, how to enhance the model’s global search ability 
and convergence speed to address the nonlinear optimization demands in complex grid environments. 
Second, how to improve the model’s adaptability and robustness to better handle the multi-dimensional 
constraints in dynamic electricity pricing environments. PSO has shown significant potential in power 
system optimization, particularly in electricity price optimization and power consumption forecasting. 
Studies have demonstrated that PSO can effectively improve system economics and sustainability by 
reducing electricity costs and optimizing generation and load demand distribution. However, research 
falls short in the areas of multi-objective collaborative optimization and dynamic response capabilities 
to time-of-use pricing. Especially in the context of active distribution network operations, research on 
electricity price optimization models has not formed a systematic framework. The increasing 
complexity of grid operation architectures and the rising frequency of price fluctuations further 
exacerbate optimization difficulties, limiting the effectiveness of models in everyday applications. In 
response, We propose an electricity price optimization model that incorporates time-of-use pricing 
and improvements in the generation efficiency of active distribution networks. By introducing a 
multi-algorithm collaborative mechanism that combines the improved PSO, Quantum-behaved 
Particle Swarm Optimization (QPSO), and the Shuffle Frog Leaping Algorithm (SFLA), we aim to enhance 
optimization efficiency and adaptability while ensuring high stability and precision under dynamic market 
conditions. Our goal is to achieve more efficient energy resource allocation and cost optimization. 

2. Materials and methods 

2.1. Algorithms involved in the electricity price optimization model 

2.1.1. Improved PSO-based model 

Traditional PSO is a heuristic optimization algorithm that simulates the behavior of birds flocking 
to find food to optimize problem solutions. Its characteristics include a simple mathematical model, 
iterative updates based on velocity and position, global and local optimal solution searches, and fixed 
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inertia weight and learning factors. Figure 1 illustrates the implementation process of traditional PSO. 

 

Figure 1. Traditional PSO implementation process. 

 

Figure 2. The implementation process of the improved PSO. 

Reasonable 

Regional optimal 

Global optimal 

Initialization 

Evaluation 
Update Personal and 

Global Best 
Update Velocity and 

Position 
Check 

termination 
condition 

Update each particle’s 
personal best position and 
the global best position. 

Update each particle’s 
velocity and position. 

Initialization 

Evaluation 

Update Personal and 
Global Best 

Multi-Population 
Co-optimization 

Check 
termination 
condition 

Utilize multi-population strategies to improve exchange 

efficiency among populations. Introduce Quantum-

behaved Particle Swarm Optimization (QPSO) to 

enhance global exploration capability. 

Update the individual 
best position and global 
best position for each 

particle. 

Adaptive 
Parameter 

Adjustment 
Local Search 



17 

AIMS Energy  Volume 13, Issue 1, 13–34. 

Traditional PSO often falls into local optima and lacks sufficient exploration of the problem space 
when dealing with complex electricity price optimization problems, leading to decreased search 
efficiency. To address these issues, we propose corresponding improvements. Figure 2 illustrates the 
implementation process of the improved PSO. 

2.1.2. QPSO 

QPSO is an improved algorithm based on PSO. In QPSO, each particle is treated as a quantum 
particle, whose state is represented by a wave function that includes both position and momentum. The 
evolution of the wave function is influenced by the Quantum Potential Well (QPW), resulting in more 
random and diverse movement of particles within the search space. The key computational process in 
this paper can be described as follows: 

(1) Initialize the positions and velocities of the particles 𝑥௜(଴) = 𝑥௠௜௡ + 𝑟𝑎𝑛𝑑 ⋅ (𝑥௠௔௫ − 𝑥௠௜௡)      (1) 

here, 𝑥௜(଴)  is the initial position of particle 𝑖 . 𝑥௠௜௡  and 𝑥௠௔௫  are the minimum and maximum 
boundaries of the search space, respectively, and rand  is a uniformly distributed random number 
vector in the interval [0,1]. 

(2) Update the particle velocity 𝑣௜(௧ାଵ) = 𝑤 ⋅ 𝑣௜(௧) + 𝑐ଵ ⋅ 𝑟𝑎𝑛𝑑ଵ ⋅ (𝑝௜(௧) − 𝑥௜(௧)) + 𝑐ଶ ⋅ 𝑟𝑎𝑛𝑑ଶ ⋅ (𝑝௚௟௢௕௔௟(௧) − 𝑥௜(௧))   (2) 

where 𝑣௜(௧) is the velocity of particle 𝑖 at iteration 𝑡, and 𝑤 is the inertia weight; 𝑐ଵ and 𝑐ଶ are 
the learning factors; randଵ  and randଶ  are uniformly distributed random number vectors in the 
interval [0,1]; and 𝑝௜(௧) is the personal best position of particle 𝑖, and 𝑝௚௟௢௕௔௟(௧)  is the global best position. 

(3) Update the particle position 𝑥௜(௧ାଵ) = 𝑥௜(௧) + 𝑣௜(௧ାଵ)         (3) 

where 𝑥௜(௧) is the position of particle 𝑖 at iteration 𝑡. 𝑈(𝑥௜(௧ାଵ)) = ∑  ஽௝ୀଵ ቀଵଶ 𝑚௝𝜔௝ଶ𝑥௜௝(௧ାଵ)ଶቁ        (4) 

(4) QPW Model         𝐷 is the dimensionality of the problem; and 𝑚௝ and 𝜔௝ are the mass and angular frequency of 
the particle, respectively. 

(5) Update the wave function: 𝛹(𝑥௜(௧ାଵ)) = ଵ√ଶగఙమ 𝑒𝑥𝑝 ൬− ௎(௫೔(೟శభ))ଶఙమ ൰       (5) 

where 𝜎 is the standard deviation of the wave function. 
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2.1.3. SFLA 

SFLA is an algorithm based on swarm intelligence optimization. It simulates the cooperative and 
competitive behaviors of frog populations and combines global search and local optimization strategies 
to enhance solution quality and search efficiency. The key computational processes can be described 
as follows: 

(1) Local Search   𝑋௜௝(𝑡 + 1) = 𝑋௜௝(𝑡) + 𝛼 ⋅ 𝑇 ⋅ (best௜௝ − 𝑋௜௝(𝑡)) + 𝛽 ⋅ (𝑋௜௝∗ − 𝑋௜௝(𝑡))  (6) 

where 𝑋௜௝(𝑡) represents the current position of the 𝑗-th frog in the 𝑖-th dimension. Parameters 𝛼 
and 𝛽 are tuning parameters, 𝑇 is a randomization step size, best௜௝ denotes the position of the best 
frog, and 𝑋௜௝∗  represents the global best position. 

(2) Information Exchange 𝑓(𝑋௜௝(𝑡)) = ∑  ே೑௞ୀଵ (𝑐௞ − 𝑤௞)ଶ       (7) 

where 𝑁௙ is the number of frogs in the population, and 𝑐௞ and 𝑤௞ represent the current position 
and target position of the 𝑘-th frog, respectively. 

2.2. Design principles and validation approach for an electricity price optimization model 

2.2.1. Model design principles 

The electricity price optimization model proposed here integrates improved PSO, QPSO, and 
SFLA to meet the requirements of time-of-use pricing and enhancing active distribution network 
efficiency. The design principles are as follows. First, Introduction of Chaotic Variables: Chaotic 
variables are introduced to help PSO escape local optima traps by leveraging their sensitivity to initial 
conditions and their ability to traverse the search space unpredictably, thereby enhancing the global 
search capability of PSO. The randomness and unpredictability of chaotic variables introduce diversity 
during algorithm iterations, ensuring thorough exploration of the search space and thereby avoiding 
pitfalls of local optima. This guarantees enhanced global search capabilities in electricity price 
optimization while maintaining high adaptability and optimization effectiveness amidst dynamic 
changes in active distribution network efficiency. Next, adaptive adjustment of inertia weight and 
learning factors: The model dynamically adjusts inertia weights and learning factors based on changes 
in electricity prices and distribution network efficiency. This adaptive tuning enhances the algorithm’s 
adaptability and convergence speed. Specifically, adaptive inertia weight adjustment enables faster 
particle movement during exploration and stronger convergence characteristics during exploitation 
phases. Dynamic adjustment of learning factors balances individual and social cognition to optimize 
particle search paths and improve overall search efficiency. This adaptive adjustment mechanism can 
respond in real-time to changes in efficiency during the enhancement of active distribution network 
generation, thereby optimizing electricity pricing strategies. Then, multi-population cooperative 
optimization: Multiple population strategies facilitate information exchange among populations, 
enhancing algorithm diversity and global search capabilities. QPSO is introduced with its quantum 
behavior mechanism utilizing Quantum Potential Well (QPW) models. This mechanism imbues 
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particles’ search trajectories with greater randomness and diversity on a global scale, thereby 
improving solution quality and search efficiency. The quantum behavior mechanism of QPSO utilizes 
quantum superposition of particle states and probabilistic distribution characteristics, enhancing the 
algorithm’s exploration capability during global search processes. This quantum mechanism provides 
a more flexible and adaptive optimization path, which is particularly effective when enhancing active 
distribution network generation efficiency.  

Next, integration of Multi-Modal Simulated Annealing (MMSA): Recognizing the complexity 
and non-linearity of electricity price optimization, MMSA serves as a local search algorithm. 
Employing Multi-Path Parallel Annealing, MMSA conducts local searches along multiple paths 
simultaneously, effectively avoiding local optima and enhancing local optimization results. Simulated 
annealing mimics physical annealing processes and uses temperature to control random perturbations 
during the search, conducting global search at high temperatures and local search at low temperatures, 
thereby ensuring the discovery of global optimal solutions. This process adapts flexibly to different 
levels of generation efficiency in active distribution networks, further optimizing electricity pricing 
configurations. Fifth, utilization of SFLA: The global search and local optimization capabilities of 
SFLA are integrated and applied jointly. Through information exchange between frog populations and 
local optimizations within each population, overall search efficiency and solution quality are enhanced. 
SFLA simulates the jumping behavior of frog populations in the search space, combining global and 
local search strategies by leveraging cooperative and competitive mechanisms among frogs. This 
effectively explores and exploits the search space, boosting the algorithm’s global search capability 
and local search precision. Particularly in conditions where active distribution network generation 
efficiency is improving, SFLA utilizes its efficient information exchange mechanism to swiftly adjust 
and optimize electricity pricing strategies, ensuring synchronous enhancement of generation efficiency 
and price optimization. 

Table 1 outlines the iterative process and final parameter values in the design of the electricity 
price optimization model. 

Table 1. Model iterations and final parameters. 

Parameter Initial value Final value 
Particle swarm size 100 
Maximum iterations 1000 
Quantum factor 0.5 0.4 
Convergence factor 0.5 0.6 
Frog population size 50 
Annealing iterations 10 
Initial inertia weight 0.9 0.5 
Final inertia weight 0.4 0.4 
Personal learning factor 1.5 1.2 
Social learning factor 1.5 1.2 

Figure 3 depicts the implementation principle of the proposed electricity price optimization model. 
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Figure 3. Implementation principle of the electricity price optimization model. 
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Table 2-1. Peak and off-peak periods and electricity price ranges for 6 representative cities. 

Period type Representative 
city 

Peak 
periods 

Peak average 
price (yuan/kWh)

High periods Price for high 
period 
(yuan/kWh) 

Flat periods 

High-Flat-Low Lanzhou None – 8–11, 18–21 1.5 6–8, 11–18, 
21–23 

Guiyang None – 9–12, 17–20 1.6 6–9, 12–17, 
20–22 

Peak-High-Flat-
Low 

Beijing 8–10 2.052 6–8, 10–14, 
18–20 

1.71 14–18, 20–22

Guangzhou 7–9 2.125 9–12, 17–19 1.7 6–7, 12–17, 
19–21 

Peak-High-Flat-
Low-Off-Peak 

Shanghai 8–10 2.25 7–8, 10–13, 
17–19 

1.8 6–7, 13–17, 
19–22 

Nanjing 7–9 2.064 9–12, 16–18, 
20–22 

1.72 6–7, 12–16, 
18–20 

Table 2-2. Peak and off-peak periods and electricity price ranges for 6 representative cities. 

Period type Representative 
city 

Price for flat 
period 
(yuan/kWh) 

Low periods Price for low 
period 
(yuan/kWh) 

Off-Peak 
periods 

Price for off-
peak period 
(yuan/kWh) 

High-Flat-Low Lanzhou 1 0–6, 23–24 0.5 None – 
Guiyang 1 0–6, 22–24 0.4 None – 

Peak-High-Flat-
Low 

Beijing 1.01 0–6, 22–24 0.36 None – 
Guangzhou 1.02 0–6, 21–24 0.38 None – 

Peak-High-Flat-
Low-Off-Peak 

Shanghai 1.09 0–6, 22–24 0.6 0–4 0.4 
Nanjing 1.04 0–6, 22–24 0.45 0–4 0.3 

The validation analysis of the electricity price optimization model is divided into four processes.  
First, it tests the model using actual electricity price data from different months in six 

representative cities to evaluate its convergence speed and stability under varying seasonal and price 
fluctuation conditions. This aims to verify whether the model can quickly converge and maintain 
stability across electricity price variations, ensuring its reliability in practical applications.  

Second, the analysis includes assessing the model’s global search capability and diversity. 
Through multiple runs of the model, observations are made to determine if it consistently converges 
to near-optimal solutions. Additionally, a precision analysis of local search is conducted to assess the 
model’s performance in refining optimization processes. This validation involves whether the model 
can accurately identify optimal electricity price configurations for each time-of-use period during local 
search, thereby enhancing the precision and detail of electricity price optimization. 
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Third, we focus on the elastic demand of the model from four perspectives. By constructing a 
refined evaluation framework, the comprehensive validation of price demand elasticity, time-of-use 
electricity price elasticity, energy consumption elasticity, and distribution network operational 
elasticity is achieved. Initially, the model introduces a price demand elasticity indicator system, 
employing dynamically adjusted price functions to quantify the sensitivity of user demand to different 
price levels. This approach integrates a Gaussian mixture model to fit price fluctuations, ensuring the model 
captures the nonlinear characteristics of market demand effectively. Key calculation equations include: 

(1) Price elasticity coefficient 𝐸௣ = பொப௉ ⋅ ௉ொ          (8) 𝑄 represents electricity demand and 𝑃 represents electricity price. 
(2) Fitting price fluctuations with Gaussian mixture models 

𝑓(𝑃) = ∑  ௄௞ୀଵ 𝜋௞ ⋅ ଵටଶగఙೖమ 𝑒𝑥𝑝 ൬− (௉ିఓೖ)మଶఙೖమ ൰     (9) 

where 𝜋௞  is the weight of the k-th Gaussian distribution, 𝜇௞  is the mean, and 𝜎௞  is the 
standard deviation. 

Next, on the aspect of time-of-use electricity price elasticity, the model integrates multi-period 
electricity price data. Then, it utilizes a time-series analysis and Support Vector Regression (SVR) 
algorithm to assess the impact of different time-of-use electricity prices on user load distribution, 
enhancing the accuracy of predicting user electricity consumption behavior. 

(3) Time-of-use electricity price elasticity coefficient 𝐸௧ = ப௅ப௉೟ ⋅ ௉೟௅           (10) 

where 𝐿 represents load and 𝑃௧ represents the electricity price at a specific time period t. 
(4) Prediction with SVR model  𝐿෠(𝑡) = ∑  ௡௜ୀଵ (𝛼௜ − 𝛼௜∗)𝐾(𝑡௜, 𝑡) + 𝑏       (11) 

where 𝛼௜ and 𝛼௜∗ are Lagrange multipliers, 𝐾(𝑡௜, 𝑡) is the kernel function, and b is the bias term. 
Regarding energy consumption elasticity, the model integrates an energy consumption model 

optimized based on load curves. It applies GA to optimize different energy configuration schemes and 
combines dynamic simulations of energy consumption to assess their impact on overall energy efficiency. 𝑚𝑖𝑛(∑  ௡௜ୀଵ 𝐶௜ ⋅ 𝐸௜)         (12) 

(5) Objective function for energy consumption optimization                        
where 𝐶௜ is the unit consumption cost of the i-th type of energy, and 𝐸௜ is the consumption amount 
of the i-th type of energy. 

(6) Fitness function of GA 𝐹(𝑥) = ଵଵା∑  ೙೔సభ ஼೔⋅ா೔         (13) 

where 𝑥 represents the chromosome representation of the energy configuration scheme. 



23 

AIMS Energy  Volume 13, Issue 1, 13–34. 

On the aspect of distribution network operational elasticity, the model constructs an active 
distribution network simulation environment. It utilizes Monte Carlo simulation techniques to analyze 
the operational stability and robustness of the distribution network under different load and 
generation configurations. 

(7) Distribution network operational stability 𝑆௥ = ටଵ் ∑  ௧்ୀଵ (𝐿௧ − 𝐿ത)ଶ         (14) 

where 𝑆௥ represents stability, 𝐿௧ denotes the load at time t, and 𝐿ത is the mean load. 
(8) Robustness in Monte Carlo Simulation 𝑅௠ = ଵே ∑  ே௜ୀଵ ൬|௉೔,actualି௉೔,expected|௉೔,expected

൰       (15) 

where 𝑅௠ represents robustness, 𝑁 is the number of simulations, 𝑃௜,௔௖௧௨௔௟ denotes the actual power 
in the i-th simulation, and 𝑃௜,௘௫௣௘௖௧௘ௗ denotes the expected power. 

Tables 3 to 5 present the elasticity coefficients for demand across various time periods for the 
three types. 

Table 3. Elasticity coefficients of demand for “high-flat-low” type in various periods. 

Time period High periods Flat periods Low periods 
High periods −0.07 0.02 0.015 
Flat periods 0.02 −0.06 0.012 
Low periods 0.015 0.012 −0.08 

Table 4. Demand elasticity coefficients for “peak-high-flat-low” type. 

Time period Peak period High periods Flat periods Low periods 
Peak period −0.06 0.018 0.014 0.01 
High periods 0.018 −0.05 0.016 0.012 
Flat periods 0.014 0.016 −0.05 0.01 
Low periods 0.01 0.012 0.01 −0.05 

Table 5. Elasticity coefficients of demand for “peak- high-flat-low-off-peak” type in 
various periods. 

Time period Peak period High periods Flat periods Low periods Off-peak periods 
Peak period −0.06 0.018 0.014 0.01 0.008 
High periods 0.018 −0.05 0.016 0.012 0.01 
Flat periods 0.014 0.016 −0.05 0.01 0.008 
Low periods 0.01 0.012 0.01 −0.05 0.006 
Off-peak periods 0.008 0.01 0.008 0.006 −0.05 

Fourth, the elasticity price optimization model is compared with historical electricity prices to 
assess the extent of improvement. The predicted electricity consumption data are compared with real 
electricity consumption data to validate its superiority in price optimization. 
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To distinguish periods in the subsequent analysis of the research results, we use the following 
representations: A for Peak periods, B for High periods, C for Flat periods, D for Low periods, and E 
for Off-Peak periods. 

3. Results 

3.1. Stability analysis of the model 

Stability analysis introduces the Convergence Stability Index (CSI), which is a metric used to 
evaluate the convergence and stability of the electric price optimization model. Specifically, CSI is 
defined as 1 minus the ratio of the average convergence iterations to the maximum convergence 
iterations. It reflects the speed and stability of convergence of the model under given electricity price 
and generation efficiency conditions. Figure 4 shows the results of the stability analysis of the model. 
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Figure 4. Stability analysis of electricity price optimization model. 

Figure 4 depicts the convergence iterations and CSI of the electricity price optimization model 
across months and segments in various cities. The results highlight the model’s strong convergence 
performance, particularly in flat rate periods. For instance, in Lanzhou from October to December, the 
model converges 32 times during low periods with a high CSI of 0.94, while Beijing achieves a CSI 
of 0.95 during the same months. These data underscore the model’s significant potential in achieving 
efficient energy allocation, cost optimization, and improving system responsiveness. Additionally, 
despite Guizhou’s CSI of 0.88 from January to March, which is slightly lower than those for other 
cities, its CSI rose to 0.94 from July to September, demonstrating the model’s adaptability and 
adjustment capabilities to seasonal fluctuations. Overall, the electricity price optimization model 
demonstrates significant advantages in precise regulation within dynamic electricity markets. 

3.2. Model search performance analysis 

3.2.1. Global search capability and diversity analysis 

Figure 5 presents the results of the analysis on global search capability and diversity. 
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Figure 5. The analysis of global search capability and diversity of electricity price 
optimization model. 

Figure 5 demonstrates the model’s high global search capability and diversity of solution 
distribution across cities and time periods. For instance, in the low period, Lanzhou exhibits a global 
search capability of 88.2%, with an optimal solution coverage of 81.5%, an exploration area of 98.4 km², 
and a solution distribution uniformity of 89.8%. During the off-peak period, Shanghai and Nanjing 
achieve global search capabilities of 91.0% and 90.7%, respectively, with optimal solution coverages 
of 84.2% and 84.0%. These values indicate that the model effectively conducts global searches in 
dynamic electricity price environments, maintaining high solution distribution uniformity and stability 
under various conditions. Particularly in low and off-peak periods, there is a significant improvement 
in exploration range and solution uniformity, showcasing the model’s diversity and adaptability. 

3.2.2. Local search accuracy analysis 

Figure 6 presents the results of the local search accuracy analysis. 

Convergence speed (s)

Global search capability (%) 
Optimal solution coverage rate (%) 
Uniformity of solution distribution (%) 
Stability of solution (%) 
Exploration range (km2)

Lanzhou 
B 

Lanzhou 
C 

Lanzhou 
D 

Guiyang 
B 

Guiyang 
C 

Guiyang 
D

City - Time Period 
(a)Lanzhou and Guiyang 

20 

28 

36 

60 

80 

100 

120 

Co
nv

er
ge

nc
e 

sp
ee

d 
(s

) 

O
th

er
 v

al
ue

s 

Global search capability (%)
Optimal solution coverage rate (%) 
Uniformity of solution distribution (%) 
Stability of solution (%) 
Exploration range (km2)
Convergence speed (s)

20 

30 

40 

Co
nv

er
ge

nc
e 

sp
ee

d 
(s

) 

105 

O
th

er
 v

al
ue

s 

75 

90 

Beijing 
A

Beijing 
B

Beijing 
C

Beijing 
D

Guang 
zhou 

A 

Guang 
zhou 

B 

Guang 
zhou 

C 

Guang 
zhou 

D 

City - Time Period 
(b)Beijing and Guangzhou 

Global search capability (%) 
Optimal solution coverage rate (%) 
Uniformity of solution distribution (%) 

Exploration range (km2) 
Stability of solution (%) 

Convergence speed (s)

90 

75 

105 

O
th

er
 v

al
ue

s 

30 

20 

40 

Co
nv

er
ge

nc
e 

sp
ee

d 
(s

) 

Shanghai 
A 

Shanghai 
B 

Shanghai 
C 

Shanghai 
D 

Shanghai 
E

City - Time Period 
(c)Shanghai 

Nanjing A Nanjing B Nanjing C Nanjing D Nanjing E 

City - Time Period 
(d)Nanjing

20 

30 

40 

Co
nv

er
ge

nc
e 

sp
ee

d 
(s

) 
Global search capability (%)

Uniformity of solution distribution (%) 
Optimal solution coverage rate (%) 

Stability of solution (%) 
Exploration range (km2) Convergence speed (s) 105 

O
th

er
 v

al
ue

s 

75 

90 



27 

AIMS Energy  Volume 13, Issue 1, 13–34. 

 

 

Figure 6. The analysis of local search accuracy of electricity price optimization model. 

Figure 6 illustrates the significant optimization effects of the electricity price optimization model 
across high, flat, low, peak, and off-peak periods in cities such as Lanzhou, Guiyang, Beijing, 
Guangzhou, Shanghai, and Nanjing. The model achieves error rates ranging from 1.4% to 2.2% across 
these periods, with optimization accuracy ranging from 93.5% to 98.0%. Lanzhou and Guiyang 
demonstrate prominent optimization effects during high, flat, and low periods, with error rates 
between 1.5% and 2.0% and optimization accuracy between 94.2% and 97.2%. Beijing and 
Guangzhou exhibit stable performance during peak, high, flat, and low periods, achieving optimization 
accuracy from 93.8% to 98.0%. Shanghai and Nanjing show high optimization accuracy across 
multiple period types, which is particularly notable during flat and off-peak periods, with optimization 
accuracy ranging from 97.0% to 98.0%. These results indicate that the proposed electricity price 
optimization model effectively reduces error rates and significantly improves the precision of 
electricity price optimization. It is suitable for optimizing electricity markets in different cities and 
complex period types. 

Error rate (%) 

Optimization accuracy (%) 

1.2 

1.6 

2.0 

96 

99 

O
pt

im
iz

at
io

n 
ac

cu
ra

cy
 (%

) 

Er
ro

r r
at

e 
(%

) 

Lanzhou B Lanzhou C Lanzhou D Guiyang B Guiyang C Guiyang D 

City - Time Period 
(a)Lanzhou and Guiyang 

Error rate (%) 
Optimization accuracy (%) 

93 

96 

99 

O
pt

im
iz

at
io

n 
ac

cu
ra

cy
 (%

) 

Beijing 
A 

Beijing 
C 

Beijing 
B 

Guang 
zhou 

A 

Beijing 
D 

Guang 
zhou 

C 

Guang 
zhou 

B 

Guang 
zhou 

D 

City - Time Period 
(b)Beijing and Guangzhou 

1.2 

Er
ro

r r
at

e 
(%

) 

2.0 

1.6 

Error rate (%) 
Optimization accuracy (%) 

93 

96 

99 

O
pt

im
iz

at
io

n 
ac

cu
ra

cy
 (%

) 

1.2 

2.4 

Er
ro

r r
at

e 
(%

) 

Shanghai 
A 

Shanghai 
B 

Shanghai 
C 

Shanghai 
D 

Shanghai 
E

(c)Shanghai 
City - Time Period 

Nanjing 
A

Nanjing 
B

Nanjing 
C

City - Time Period 
(d)Nanjing 

Nanjing 
D 

Nanjing 
E 

Error rate (%)
Optimization accuracy (%) 

1.2 

Er
ro

r r
at

e 
(%

) 

1.6 

2.0 

O
pt

im
iz

at
io

n
ac

cu
ra

cy
(%

)

96 

106



28 

AIMS Energy  Volume 13, Issue 1, 13–34. 

3.3. Analysis of model elastic demand 

Figure 7 displays the analysis results of model elastic demand. 

 

 

Figure 7. The analysis of elastic demand in electricity price optimization model. 

Figure 7 indicates that the price elasticity coefficients across cities range from 0.80 to 0.90, 
demonstrating the model’s ability to capture the sensitivity of user demand to price changes. The fitting 
error for price fluctuation is as low as 1.10%, indicating high precision in price demand forecasting by 
the model. Time-of-use price elasticity coefficients range from 0.72 to 0.82, with SVR prediction error 
minimized to 1.35%, showcasing the model’s strong performance in assessing the impact of price 
changes on user load distribution across periods. The optimization objective function for energy 
consumption and GA fitness values respectively highlight the model’s effectiveness in energy 
consumption optimization. By optimizing energy configuration scenarios, the model demonstrates 
high efficiency in energy consumption elasticity. Distribution network operation stability and 
robustness reflect the model’s performance under different load and generation configurations, 
particularly with Shanghai and Nanjing showing robustness at 97.00% and 96.50% respectively. This 
validates the model’s superiority in distribution network operational flexibility. 
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3.4. Comparative analysis and validation of the model 

Figure 8 presents the comparative validation analysis results before and after the optimization of 
the electricity price optimization model. 

 

Figure 8. Comparative analysis and validation of the electricity price optimization model 
before and after optimization. 
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both network energy loss and operational costs, while exploring the role of BESS in active and 
reactive power regulation. In the same year, Rawat et al. [15] focused on the integration of demand 
response (DR) with renewable energy-based DG. By simulating a 33-bus distribution system, they 
demonstrated DR’s effectiveness in reducing energy losses. Further extending the research, Rawat 
et al. [16] introduced the integration of electric vehicles (EVs) and renewable energy into their study. 
They employed a two-stage stochastic optimization framework and analyzed the relationship between 
hosting capacity and energy loss to prove that the vehicle-to-grid functionality of the EVs significantly 
enhanced system flexibility. Finally, Kharra et al. [17] explored the optimal operation of distributed 
energy resources (DER) and EVs in intelligent distribution systems. Using the MOSEK solver to 
address mixed-integer second-order cone programming, they optimized the energy exchange strategy 
between DER and the upstream network, emphasizing the importance of energy loss constraints for 
improving system performance. These studies align with this work’s goal of promoting intelligent 
and flexible distribution system optimization, all aiming to solve optimization problems under 
multi-dimensional constraints, though their emphases differ. Table 6 displays the comparative results. 

Table 6. Comparison of this work with five other cutting-edge research works. 

Researchers Year Optimization method Research objective Differences 
Sharma et al. 
[13] 

2020 Enhanced Evaporation 
Optimization Algorithm 

Minimize network losses and 
improve voltage profiles 

Focuses on technological 
coordination to improve 
system efficiency, does not 
focus on price 

Rawat et al. 
[14] 

2021 Mixed-Integer Second-Order 
Cone Programming and 
Fuzzy Satisficing Criteria 

Minimize operational costs 
and network energy losses 

Primarily focuses on 
operational costs and energy 
losses, does not consider 
dynamic pricing scenarios 

Rawat et al. 
[15] 

2021 Mixed-Integer Second-Order 
Cone Programming 

Minimize energy losses and 
evaluate demand response 
effects 

Emphasizes demand response 
and DG integration, does not 
address time-of-use pricing    

Rawat et al. 
[16] 

2024 Two-Stage Stochastic 
Optimization Framework 

Maximize hosting capacity 
and reduce energy losses 

Focuses on EV and renewable 
energy integration, does not 
consider time-of-use pricing 

Kharra et al. 
[17] 

2024 Mixed-Integer Second-Order 
Cone Programming and 
MOSEK Solver 

Minimize operational costs 
and optimize DER 
coordination 

Primarily focused on DER 
and EV optimization, lacks 
elasticity analysis for time-of-
use pricing 

This work 2024 Improved PSO, QPSO, and 
SFLA Collaborative 
Mechanism 

Optimize electricity prices, 
enhance time-of-use pricing 
elasticity and distribution 
efficiency 

Focuses on time-of-use 
pricing and active distribution 
network efficiency, 
comprehensively evaluates 
electricity price optimization 
under dynamic conditions 

As shown in Table 6, compared with previous research, we explore new directions both in terms 
of research perspective and technical methodology. In terms of research perspective, researchers have 



31 

AIMS Energy  Volume 13, Issue 1, 13–34. 

primarily focused on local optimization or technical coordination issues concerning distributed energy 
sources such as DG, BESS, and EV. For example, Sharma et al. emphasized the role of flexible 
technologies in improving distribution efficiency, and Rawat et al. explored the potential of integrating 
DR with distributed energy sources. However, these studies have given less attention to the dynamic 
characteristics of time-of-use pricing and the impact of price fluctuations on distribution system 
operation. In contrast, we attempt to build an optimization model that takes into account price demand 
elasticity, time-of-use pricing elasticity, energy consumption elasticity, and distribution network 
operational elasticity. The model is built under the context of time-of-use pricing and improved active 
distribution network generation efficiency. The goal is to reveal the relationships between electricity 
prices and distribution system performance through a more comprehensive framework. While the ideas 
presented here need to be validated in broader scenarios, the preliminary results provide a new 
perspective on electricity price optimization. 

In terms of technical methodology, we combine the improved PSO, QPSO, and SFLA algorithms 
to seek a balance between global search and local optimization. Unlike other studies, which mainly 
relied on a single optimization technique, we introduce chaotic variables and random jumping 
mechanisms to alleviate the local optimum problem often encountered in traditional optimization 
algorithms in complex, multi-objective scenarios. Moreover, by adaptively adjusting parameters, the 
algorithm can more flexibly respond to changes in the dynamic pricing environment, especially 
demonstrating some adaptability under multiple constraints. It is acknowledged that the model 
validation is primarily based on analyses of six cities and representative scenarios, which has 
limitations in the sample range. However, the preliminary validation results suggest that the proposed 
method shows potential in dynamic price optimization. In the future, as the research scope expands 
and the methodology continues to be refined, the ideas presented may provide useful insights for the 
optimization design of intelligent power systems. 

5. Conclusions 

Overall, we use the latest peak and valley price data released by the development and reform 
commissions of various provinces, along with data from the State Grid and China Southern Power 
Grid. We select six representative cities—Lanzhou, Guiyang, Beijing, Guangzhou, Shanghai, and 
Nanjing—to validate the model using publicly available data. The results are summarized as follows: (1) 
By considering the price optimization model’s convergence times and CSI for different cities and 
months, we found that the model performs better in terms of convergence during flat periods. The 
model demonstrates strong potential for efficient energy distribution, cost optimization, and system 
responsiveness. (2) The model exhibits excellent global search capability and solution diversity across 
different cities and time periods. In Lanzhou, during off-peak hours, the global search capability 
reaches 88.2%, with an optimal solution coverage of 81.5%, an exploration range of 98.4 km², and 
solution distribution uniformity of 89.8%. In Shanghai and Nanjing, during deep valley periods, the 
global search capabilities are 91.0% and 90.7%, respectively, with optimal solution coverages of 84.2% 
and 84.0%, verifying the model’s diversity and adaptability. (3) The model demonstrates strong 
performance in four key areas: Price demand elasticity, time-of-use price elasticity, energy 
consumption elasticity, and distribution network operational elasticity. The price demand elasticity 
coefficient ranges from 0.80 to 0.90, with a fitting error as low as 1.10%; the time-of-use price elasticity 
coefficient is between 0.72 and 0.82, with an SVR prediction error of 1.35%; the optimization of energy 
consumption is significant; and the distribution network’s operational stability reaches 97.00%. (4) 
The optimized pricing strategy leads to a 12.3% reduction in users’ average electricity costs, with the 
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price volatility decreasing to 8.7%. In terms of power consumption prediction, the model’s predicted 
consumption has an average error rate of only 2.1%, significantly outperforming the traditional 
method’s error rate of 5.8%. These comparative results fully demonstrate the model’s efficiency and 
accuracy in electricity price optimization and power consumption prediction. 

Building on this foundation, the proposed electricity pricing optimization model introduces a 
multi-algorithm collaborative mechanism, which significantly enhances both the global search 
capability and local optimization accuracy in dynamic electricity price environments. Additionally, the 
model demonstrates robust adaptability and stability in complex scenarios such as time-of-use pricing 
and improved generation efficiency of active distribution networks. In comparison, the model better 
aligns with the elastic demand characteristics and multi-objective optimization features in existing 
electricity pricing frameworks, offering a more precise energy distribution and dynamic price 
adjustment ability. This lays a theoretical and practical foundation for the further development of 
intelligent power systems. Through validation across cities and time periods, the model effectively 
addresses the inefficiencies and lack of robustness in traditional electricity pricing strategies, providing 
scientific evidence for the stable operation of the power market. 

Despite the significant progress made, there are several limitations that warrant further 
exploration. First, the model’s reliance on historical data may hinder its dynamic adaptability to sudden 
market changes, limiting its ability to fully address electricity pricing optimization needs in extreme 
scenarios. Besides, although the multi-algorithm collaborative mechanism improves optimization 
performance, the complexity of the algorithms and high computational costs may pose challenges for 
real-time application scenarios. Additionally, we select only six cities as representative validation 
samples, which may not fully reflect the diverse electricity pricing optimization needs nationwide. 
Researchers could focus on the following improvements. First, by incorporating real-time data 
collection and dynamic learning technologies, the model’s adaptability to rapidly changing 
environments can be strengthened. Second, simplifying the computational processes to reduce 
algorithm complexity will enhance real-time optimization capabilities. Third, by incorporating data 
from more regions and industries, the model’s universality and generalizability can be improved, 
further refining both the theoretical framework and practical application value of the model. 
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