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Abstract: There is an increasing interest in using agricultural residues and wastes for energy 
production due to concerns regarding climate change and energy security issues. One of the alternative 
fuels considered is Refuse-derived fuel (RDF) from biomass, which has a Higher Heating Value (HHV) 
comparable to coal. This study aims to investigate the relationship between the moisture content and 
the HHV value. Palm kernel shells (PKS), coconut husks (CH), and coconut shells (CS) were blended 
at various ratios (10%–80%) and moisture levels (5%, 7%, 10%). The HHV was analyzed through a 
proximate analysis, with JMP Pro 17.0 modelling the HHV against the moisture content. Then, the 
Tukey-Kramer analysis identified the optimal energy ratio, thus providing insights into maximizing 
the RDF efficiency. The result showed that the highest HHV was 21.617 MJ/kg with the RDF2 
formulation. Notably, the RDF2 energy content was less than 4% of that of coal, thus demonstrating 
the potential of utilizing agricultural waste to produce solid fuel with a positive environmental impact. 

Keywords: agricultural residues; refuse-derived fuel (RDF); proximate analysis; higher heating 
value (HHV); energy security 
 

1. Introduction  

The energy demand has been increasing over the years due to various factors such as population 
growth, economic development, and technological advancements [1]. Electricity is a form of energy 
generated from primary sources of energy, such as coal, natural gas, and nuclear, and renewable sources, 
such as wind, solar, and hydropower. In Malaysia, electricity is commonly derived from non-renewable 
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resources, with 88.4% coming from conventional fossil fuels, primarily coal, and is followed by natural 
gas [2]. There has been an increase in the global usage of coal for electricity production from 2020 to 2022, 
where it led to a sharp rise from 6% to 42% in 2022 [3]. Between these two years, the average 
proportion of electricity generated was almost 43.55%. The reduction in electricity generation, which 
amounted to a 2.7% decrease, was attributed to transformations in the hydropower approach [4]. An 
increased demand for electricity leads to higher coal costs, making it more expensive to generate 
electricity. According to Malaysiakini News, Malaysia heavily relies on imported coal, with 
Indonesia being the largest supplier at 63%, followed by Australia at 24%, Russia at 11%, and South 
Africa at 2% [5]. According to Tenaga National Berhad (TNB), an increase in the price of coal can 
result in higher surcharge rates for customers through the Imbalance Cost Pass-Through (ICPT) 
surcharge. Recently, increases in the global coal prices have dramatically raised the electricity 
generation costs by 45 percent in the peninsular Malaysia [6]. Although the government approved the 
increase in electricity tariffs through the ICPT surcharge, the actual impact on TNB’s income is still 
unclear. As the price of imported coal is unstable, it can pressure the TNB’s profit margin. TNB’s 
earnings could face a downward pressure if the fuel cost parameters provided in the ICPT rate 
adjustment formula were raised without the corresponding increases to the base tariff rates.  

Coal makes up 59% of the country’s generation capacity and affects the tariff rates [7]. 
Additionally, a reliance on imported coal exposes it to global market price shifts, as a recent statement 
highlighted that the war in Ukraine has affected the global markets by driving up coal prices. To reduce 
the dependence on coal, transitioning to renewable energy can enhance the energy justice, stabilize 
prices, and advance the Sustainable Development Goals (SDGs), particularly SDG 7 (Affordable and 
Clean Energy) and SDG 13 (Climate Action) [8] . Beyond this, the challenges in using renewable 
energy have highlighted the need for robust energy infrastructure and improved financial frameworks. 
For instance, India’s large-scale solar energy projects showcase the potential to mitigate the effects of 
global energy market fluctuations while promoting greener energy sources [9,10]. On the other hand, 
the combustion of coal in power plants will generate greenhouse gas emissions, including carbon 
dioxide (CO2), methane (CH4), and nitrous oxide (N2O). These gases cause the greenhouse effect, 
thereby trapping heat in the atmosphere and causing global warming and climate change. In 2022, it 
was reported that Malaysia emitted at least 291.07 million tons of CO2 gas from fossil fuel sources, 
thus indicating an increase of 4% compared to the previous year [11]. Alternatively, coal can be 
substituted with renewable energy sources that would reduce the dependence on imported coal over 
the long term. Previous studies have shown that Refuse Derived Fuel (RDF) from biomass is a potential 
solution to reduce the coal dependency due to its similar energy content [12]. This approach has gained 
attention for its environmental benefits, thereby providing a sustainable way to convert waste into solid 
fuel, known as RDF, for use in large power plants or the production of liquid fuel for cogeneration 
systems. This study focuses on increasing the thermal energy of fuel and enhancing its efficiency, 
thereby optimizing the energy use in the production of RDF in the pellet form [13].  

Reportedly, more than 70% of the global agricultural waste is produced each year [14]. In 
Malaysia, 1.2 million tons of agricultural waste is dumped in landfills annually. Moreover, 
approximately 15% of Asia’s total waste consists of agricultural waste [15]. In 2009, Malaysia 
generated approximately 0.122 kg of agricultural waste per capita per day, with projections indicating 
an increase to 0.210 kg per capita per day by 2025 [16]. According to studies by Kaniapan et al., palm 
kernel shells (PKS) exhibit the highest Heating Value (HHV) at 20.73 MJ/kg, followed by coconut 
shells (CS) at 20.53 MJ/kg, and empty fruit bunches (EFB) at 16.98 MJ/kg, with variations depending 
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on the moisture content [17]. In addition, previous studies have indicated that CS contain 57.00% 
volatile matter (VM) and 19.20% fixed carbon (FC), with an energy value of 16.70 MJ/kg. Research 
on VM and ash of CS and PKS were calculated at around 71.80% and 5.80% and 73.87% and 6.28%, 
respectively [18]. The HHVs were 19.73 MJ/kg for CS and 18.52 MJ/kg for PKS. Several 
investigations in the past aimed at finding methods to calculate the HHV. The proximate analysis was 
utilized to obtain the fuel’s qualities by knowing the amount of moisture, ash, and combustible to carry 
out the calculations [19]. The HHV amounts can be determined using the known proximate analysis 
data without the need for the calorimetric approach [20]. There are several equations when determining 
the HHV, as shown in Table 1.  

According to the studies, important factors including the moisture and ash content determine the 
quality of the RDFs. In energy recovery plants, a moisture level of less than 15 weight percent is ideal 
for an efficient operation. An advantage for waste management and the environment is that ash in the 
range of 0.49 to 12.58% may contain trace amounts of salts, heavy metals, chloride, and organic 
pollutants [21]. It was suggested that a high ash content reduces the fuel quality, while a greater amount 
of fixed carbon and volatiles improve fuel properties. In summary, feedstocks with low amounts of ash 
and high amounts of carbon and volatiles are preferred for optimal combustion and energy recovery [22]. 
Previous studies have highlighted the importance of developing effective strategies for the energy 
conversion of agricultural products, thereby identifying that olive mill effluent (OME) can be 
converted into a low-cost solid biofuel, thus providing a viable alternative for energy production with 
an energy value of approximately 5600–5700 kJ/kg [23]. On the other hand, transforming agricultural 
waste into RDF presents an innovative approach to waste management that offers an exciting 
opportunity to generate sustainable energy [24]. However, there is a lack of studies on mixed 
agricultural residues (Ag-residue) in producing RDF. Therefore, this study aims to investigate the 
relationship between the moisture content and the HHV value for RDF. The HHV value will be evaluated 
using a proximate analysis and by identifying the best RDF blending using the HSD Tukey-Kramer post 
hoc test for a reliable statistical comparison. In addition, this study will develop a statistical prediction 
model to estimate the HHV values based on the fit model statistical modeling approach. 

2. Materials and methods 

2.1. Material 

Figure 1 shows the procedure of the RDF production. The Ag-Residue used in this study are CS, 
CH, and PKS. These Ag-Residues were collected from local palm coconut shops and plants near 
Gambang, Pahang, Malaysia. 

The Ag-Residues were dried in a hot-air oven at 105 ℃ for 24 hours to reduce the moisture content. 
Then, the samples were crushed into very small particles using IKA Multidrive Milling (MI 250 
Multidrive Basic). A tap sieve shaker with 4.0 mm mesh sieves was utilized to obtain the powder 
particles for easier mixing. The procedure outlined in ANSI/ASAE S319.4 Standard was followed for 
the particle size distribution. The RDF composition involves blending PKS, CH, and CS in specific 
ratios ranging from 10% to 80%, with moisture contents of 5%, 7% and 10%.   
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Figure 1. RDF production procedure. 

2.2. Methodology 

In this analysis, a Thermalgravimetric Analyzer (TGA) (Hitachi / STA7000 Model) was employed 
to analyze the RDF that was thermally treated from an ambient temperature to a set temperature 
of 900 °C in an air environment with an airflow rate of 20 mL/min. Furthermore, the effect of the 
heating rates on the sample was investigated at 20 C/min, with weight samples in the range of 8–10 mg. 
This study conducted a TGA-based proximate analysis of the RDF using the American Society for 
Testing and Materials (ASTM ) Standard D5142 [25]. Several factors, including moisture content (MC), 
ash, fixed carbon (FC) and volatile matter (VM) contents were determined. The respective value was 
calculated as percentages of the total weight using standard testing procedures. A temperature range 
of 25–107 ℃ was selected to determine the MC by analyzing thermogravimetric (TG) and differential 
TG (DTG) graphs. The samples were held at this temperature for 120 min without air exposure. The 
VM was measured from 107 to 950 ℃, rapidly heated to 950 ℃ at 30 ℃/min, and then held for 7 min. 
Then, the RDF was cooled to 600 ℃ in air. Ash was found by steadily heating the samples to 815 ℃ 
at 3.6 ℃ per minute and holding for 150 minutes. The FC was calculated by subtracting the sums of 
the MC, VM, and Ash percentages from 100% total [26]. 

The HHV (MJ/kg) value was determined based on the guidelines outlined in ASTM D7582-15 
by the American Society for Testing and Materials. Table 1 presents the equation used to determine the 
experimental HHV value for the RDF based on previous studies. 

Table 1. Equation of experimental HHV value.  

HHV value model References 
HHV1 = 0.312FC + 0.1534VM [26] 
HHV2 = 0.3543FC + 0.1708VM [27] 
HHV3 = 0.1905VM + 0.2521FC [28] 
HHV4 = 19.914 − 0.2324 Ash [29] 
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The HHV test was performed using JMP Pro 17.0 (SAS Corporation, USA). The statistical 
analysis worked on the null hypothesis (P-value < 0.05) by first stating that each parameter and the 
associated interaction had no significant effect on the HHV of the RDF samples. A correlation test was 
conducted by primarily finding out the relationship between the two variables of observations as the 
HHV and the MC of the RDF sample production. The correlation coefficient ranged from +1 to -1. 
Additionally, a full factorial design was used to evaluate the influence of the variables MC, VM, ASH, 
and FC. The HHV was based on the estimate parameters of a linear model using the method of least 
squares. An HSD Tukey’s analysis was used to evaluate significant differences between the group means 
and to indicate the HHV of RDF. It is typically performed after a one-way analysis of variance (ANOVA), 
which indicates that there are overall significant differences among the group means, with the statistical 
significance at a probability level of 0.05.  

3. Results and discussion 

3.1. Analytical analysis 

Six samples of RDF formulations containing PKS, CS, and CH were used to compare the HHV. 
The Ag-Residue was randomly mixed with ratios ranging from 10% to 80% each. The values of the 
MC, VM, FC, and ash with different MC (% dry basis) are tabulated in Table 2.  

Table 2. Proximate analysis based on design of experiment.  

Mo൴sture content (% dry bas൴s) RDF sample Volat൴le matter (%) F൴xed carbon (%) Ash (%) 
5% RDF1 62.22 24.60 3.01 

RDF2 39.45 43.80 11.89 
RDF3 40.10 42.75 12.37 
RDF4 58.41 29.45 8.27 
RDF5 46.30 36.58 12.56 
RDF6 44.00 35.93 15.28 

7% RDF1 64.78 26.28 2.86 
RDF2 40.32 41.56 10.64 
RDF3 41.46 40.36 11.28 
RDF4 56.23 29.22 8.11 
RDF5 46.56 34.57 12.09 
RDF6 44.84 33.15 15.12 

10% RDF1 58.12 28.80 3.08 
RDF2 43.08 38.08 8.84 
RDF3 43.51 36.78 9.71 
RDF4 52.96 28.88 8.16 
RDF5 46.95 31.55 11.50 
RDF6 46.09 28.98 14.93 
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Figure 2. Comparison of experimental HHV (MJ/kg) value for different moisture content 
(a) 5% (b) 7% (c) 10%.  

Figure 2 illustrates four HHV models used at different MCs, as mentioned in Table 2. The value 
of the HHV using all models (i.e., HHV1, HHV2, HHV3, and HHV4) provides a significant finding. 
By comparing the results across the samples, it was observed that different HHV calculation methods 
can yield different results. However, for each MC, the HHV2 model consistently produced the highest 
values compared to HHV1, HHV3, and HHV4. RDF2 was identified with the highest HHV value 
among the others with the respective values of VM, FC, and ash at different levels of MC. For an MC 
at 5%, the VM, FC, and ash values were 39.45%, 43.80%, and 11.89%, respectively. Meanwhile, in 
the range of an MC at 7%, the VM, FC, and ash values were 40.32%, 41.56%, and 10.64%, respectively. 
At a 10% MC, the VM, FC, and ash values were maintained at 43.08%, 38.08%, and 8.84%, 
respectively. In short, as the moisture decreases, there is a clear increase in the ash content. Similarly, 
lower MCs potentially results in the highest HHV. The permissible range of ash content to achieve 
high efficiencies in mass burning incinerators recommended by the US Environment Protection 
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Agency is 5–15% (dry basis) [30]. To have a better understanding of the coal rank, it was found that 
the maximum ash content allowed was 8%, since higher ash contents cause a drop in the productivity 
of coke in the combustion chamber [31]. In addition, previous studies demonstrated that the least 
amount of ash in the RDF showed the potential to be used as a waste derivative for energy purposes in 
terms of the calorific value. The data indicates that the VM averaged 43% for each MC level. However, 
it’s worth noting that recommendations suggest that the VM should ideally exceed 45% for suitability 
in the incineration process [2]. The RDF2 demonstrated an HHV value of 22.29 MJ/kg at 5% of 
MC, 21.71 MJ/kg at 7% MC, and 20.85 MJ/kg at 10% MC, thus indicating that an increase in the MC 
leads to a decrease in the energy content. Meanwhile, according to D. Sedha (2023), the RDF with a high 
MC has a negative influence on the emission of gases as a reduction in the combustion efficiency [32]. 
Therefore, a further investigation was conducted on the HHV2 model with RDF2 using statistical 
methods to derive a predictive model that takes the interaction with MC values into account. 

3.2. Statistical analysis 

A moderate negative correlation was observed between the MC and the HHV of the samples, with 
a correlation coefficient of -0.5630, as shown in Table 3. This analysis shows that lower MCs 
correspond to higher HHV. In this study, hypothesis testing for the correlation coefficient was not 
conducted because it was only intended to examine the relationship between the HHV and the MC.  

Table 3. Correlation. 

Value Correlat൴ons Correlat൴ons 
HHV (MJ/kg) 1.000 -0.5630 
MC (%) -0.5630 1.000 

Table 4 shows the one-way ANOVA analysis, which consists of the standard error and the lower 
and upper bounds of the 95% confidence interval for each RDF sample. From this analysis, the mean 
of experimental HHV was then compared using Tukey-Kramer HSD test at an alpha = 0.05 for all six 
RDF samples, as tabulated in Table 5. It indicated that the RDF2 sample (HHV mean = 21.61759 MJ/kg) 
was significantly higher than the other RDF samples. Thus, RDF2 are considered to be evaluated as 
the statistical prediction model. 

Table 4. Mean for One-way ANOVA experimental HHV value for all sample. 

Rank൴ng  HHV (MJ/kg) Std Error Lower 95% Upper 95% 
RDF2 21.617 0.4303 19.412 21.287 
RDF3 21.282 0.4303 20.680 22.555 
RDF1 20.349 0.4303 20.344 22.213 
RDF5 20.090 0.4303 18.948 20.823 
RDF4 19.886 0.4303 19.153 21.028 
RDF6 19.265 0.4303 18.327 20.202 
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Table 5. Mean experimental HHV value for all sample. 

Rank൴ng  HHV (MJ/kg) 
RDF2 21.617 
RDF3 21.282 
RDF1 20.349 
RDF5 20.090 
RDF4 19.886 
RDF6 19.265 

From the statistical analysis using the fit model, the P-value for all the parameters, namely the 
MC, VM, FC and ash, are less than 0.05. Thus, it has strong statistical evidence that all the parameters 
significantly affect the HHV value of the RDF. The statistical prediction model equation for the HHV 
value, Y, as a function of the HHV (MJ/kg) is found to be as follows:   

Y= −1.0089 + 1.15MC + 0.1806VM + 0.3643FC + 0.0103Ash (MC − 0.00733)          (1) 

Equation (1) demonstrates that a one-unit increase in the MC results in a 1.1586 decrease in the 
predicted HHV (MJ/kg) value of the RDF, while holding the VM and the FC constant. The tested 
model does not appear to violate the assumptions made. Additionally, the residual-by-predicted plot 
demonstrates a somewhat even spread across the predicted values, as illustrated in Figure 3. This 
consistency in the residual variance across the predicted values suggests a good fit, as all the points were 
located close to the diagonal line (predicted values were equal to the experimental values of HHV). 

 

Figure 3. The HHV(MJ/kg) value residuals vs predicted plot analysis. 

Figure 4 depicts the comparison between values from the statistically predicted model and the 
experimental adopted HHV2 model for the RDF2 sample at different levels of MC. The experimental 
HHV2 values for the MC at different ranges of 5%, 7%, and 10% are closely aligned with the predicted 
actual HHV values. Thus, the results demonstrate that the statistically predicted model is fairly accurate, 
with variations around 0.4% to 0.5%, thus indicating a relatively small difference between the two sets 
of values. In other words, this suggests that the JMP model effectively predicts the HHV based on 
independent variables. 
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Figure 4. Comparison HHV(MJ/kg) values between statistical prediction model and 
HHV2 model for RDF2 sample at different moisture content (%). 

4. Conclusions 

The study investigated the formulation of RDF utilizing Ag-Residue from CS, PKS, and CH 
blended at various ratios for combustion in power generation. Proximate analysis parameters such as 
the MC, VM, FC, and ash were assessed using a TGA at different blending ratios. Additionally, the 
HHV for six RDF samples were determined. The results indicated that RDF2 presented the highest 
HHV among all samples tested, with RDF2 yielding an average HHV of up to 21 MJ/kg. Remarkably, 
the HHV analysis revealed that the HHV2 formula for the RDF samples exhibited the highest values 
compared to other models, with absolute and bias errors of 1.70 and 0.68%, respectively. The 
correlation between the MC and the HHV of the RDF samples revealed that as the MC decreased, the 
HHV increased. These findings underscore the significance of controlling the moisture levels in RDF 
production processes to optimize the energy efficiency and top maximize the heating value. As noted, 
the energy value of coal is typically in the range of 25–35 MJ/kg. The anthracite type of coal is 
recognized as the highest quality coal due to its carbon content of more than 90% and the highest 
calorific value [33]. Although the energy value of RDF2 is 16% lower than coal, it still qualifies as a 
renewable energy source, thus offering a positive impact from an environmental and economic 
perspective. By utilizing Ag-residue instead of coal and natural gas, Malaysia can work towards 
achieving its target of reducing the greenhouse gas emissions intensity by 45% under Vision 2030, as 
outlined in the Malaysia Beyond 2025 plan [34]. The utilization of these alternative fuels can 
effectively reduce the carbon footprint of the power generation industry. RDF presents a viable solution 
to waste management issues by optimizing waste mixing to achieve the highest energy value. However, 
a further study is required to assess the economic and environmental impact on RDF production 
compared to coal pricing.  
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