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Abstract: The Sine Cosine Algorithm (SCA) excels in local search capabilities for solving real 

optimization problems. However, its strong local search ability and rotational invariance often lead to 

convergence at local optima. In this paper, we introduce a hybrid single-objective optimization 

algorithm, the Improved Sine Cosine Algorithm, and the Population-Based Incremental Learning 

Algorithm (ISCAPBIL). First, the Improved Sine Cosine Algorithm (ISCA) is developed by 

incorporating the hyperbolic sinusoidal cosine function, which dynamically interferes with individual 

positions to enhance optimization accuracy. Additionally, the Levy flight function is embedded within 

ISCA to improve its exploratory capabilities. The combination of ISCA and PBIL leverages their 

respective strengths, with ISCA performing local searches and PBIL handling global searches. This 

integration achieves a dynamic balance between global and local search processes. Our experimental 

results demonstrated that ISCAPBIL effectively avoided local optima, significantly improving 

solution accuracy compared to other algorithm variants. Moreover, when applied to the economic load 

scheduling problem in power systems, ISCAPBIL exhibited superior optimization efficiency and 

potential for practical application. The Economic Load Dispatch (ELD) problem is a core optimization 

task in power systems that aims to minimize generation costs while satisfying demand balance and 

various operational constraints. However, ELD is often formulated as a complex nonlinear 

optimization problem, influenced by high dimensionality and constraints, making it challenging for 

traditional methods to achieve efficient solutions. To address these challenges, we proposed a hybrid 

algorithm combining the improved Sine Cosine Algorithm (SCA) and Population Incremental 
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Learning (PIL). By leveraging the strengths of both techniques, the proposed algorithm achieved a 

balance between global exploration and local exploitation. The algorithm was applied to several 

benchmark ELD problems, and the results demonstrated its superiority in terms of convergence speed 

and solution quality compared to other methods. 

 

Keywords: meta-heuristic; sine cosine algorithms; population incremental learning; E&P; single-objective 

optimization; OLD 

 

1. Introduction 

Optimization problems are widespread in the world. Traditionally, these problems are linear,  

low-dimensional, continuous, and unconstrained. However, with the development of artificial 

intelligence, they have evolved into nonlinear, high-dimensional, discontinuous, and         

multi-constraint challenges [1,2]. Researchers have proposed various optimization algorithms to 

address these issues, including Particle Swarm Optimization (PSO) [3], Genetic Algorithm (GA) [4], 

Differential Evolution (DE) [5], Simulated Annealing (SA) [6], Harris Hawk Optimization (HHO) [7], 

Grey Wolf Optimization (GWO) [8], Salp Swarm Algorithm (SSA) [9], Whale Optimization 

Algorithm (WOA) [10], Firefly Algorithm (FA) [11], Bat Algorithm (BA) [12], Flower Pollination 

Algorithm (FPA) [13], and Gravitational Search Algorithm (GSA) [14,15]. 

In 2016, Mirjalili et al. introduced the Sine Cosine Algorithm (SCA) [16], which has been favored 

for its simplicity, few parameters, ease of understanding, and strong local search capability. The SCA 

has been successfully applied to various real-world problems such as shop floor scheduling [17], 

feature selection [18], network classification [19], and economic power management [20]. However, 

the SCA has significant limitations. The leading individual in SCA guides the evolution of the 

algorithm, and if it falls into a local optimum, the population converges prematurely. Finally, the 

balance between global and local search capabilities is suboptimal, with the algorithm often focusing 

too much on local search in the late stages of evolution, leading to local optima. 

To address these shortcomings, scholars have proposed various improvements to the SCA. For 

example, Qsha et al. [21] embedded a Q-learning table in SCA to dynamically control parameters. 

Hussien et al. [22] introduced a doubly adaptive stochastic standby augmented SCA to balance 

exploitation and exploration. Long et al. [23] improved the SCA by incorporating inertia weight factors 

and using a Gaussian function for parameter adjustments. Li et al. [24] proposed an enhanced 

brainstorming SCA to improve population diversity, while Cheng et al. [25] used a cloud model to 

adaptively adjust control parameters. 

Despite the abundance of excellent optimization algorithms, the No Free Lunch Theorem [26] 

asserts that no single algorithm can solve all problems perfectly. Therefore, we propose a new hybrid 

algorithm, ISCAPBIL, for function optimization. The ISCAPBIL introduces a hyperbolic sine cosine 

function to work alongside the traditional sine cosine function for improved search accuracy. The Levy 

flight function is also embedded to enhance local exploitation. Initially, ISCA performs a local search, 

followed by PBIL for global search, maintaining the algorithm’s rapid descent rate through multiple 

local searches. To avoid local optima, PBIL is executed after each local search phase. By alternating 

ISCA and PBIL at fixed intervals, the algorithm effectively balances global and local search efforts. 
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Simulation experiments using 23 benchmark test functions, CEC2013 standard test functions,  

and 6 high-dimensional test functions demonstrate that ISCAPBIL outperforms the basic SCA and 

other optimization algorithms. The results show significant improvements in solution accuracy and the 

ability to avoid local optima. 

The Economic Load Dispatch [27] (ELD) problem plays a pivotal role in power system operations. 

It aims to determine the optimal power generation schedule to minimize the total fuel cost of generation 

while meeting the system's load demand and respecting operational constraints such as generation 

limits, transmission limits, and emissions. The ELD problem has been extensively studied due to its 

significant impact on the efficiency and cost-effectiveness of power systems. 

Traditionally, methods such as linear programming, dynamic programming, and gradient-based 

techniques have been applied to solve the ELD problem. However, these methods often struggle with 

non-linearity, multi-modal objective functions, and the presence of constraints that make the problem 

computationally challenging, especially when dealing with large-scale systems or complex constraints. 

In recent years, evolutionary algorithms (EAs) such as genetic algorithms (GA), particle swarm 

optimization (PSO), and differential evolution (DE) have shown promise in solving the ELD problem 

due to their ability to escape local minima and efficiently explore the solution space. Despite their 

advantages, these algorithms often face issues such as slow convergence and premature convergence, 

especially in highly complex problems. 

To address these challenges, we propose a novel hybrid algorithm that combines the improved 

Sine Cosine Algorithm (SCA) with Population-Based Incremental Learning (PBIL). By integrating 

these two methods, the proposed approach effectively balances global exploration and local 

exploitation, achieving improved performance in solving the ELD problem. The remainder of the paper 

includes the methodology, experimental setup, results, and conclusion, showing the advantages of the 

proposed approach over other techniques. 

The major contributions of this paper include: 

⬧ We introduce a novel hybrid algorithm that combines the improved Sine Cosine    

Algorithm (SCA) with Population-Based Incremental Learning (PBIL). This hybrid approach 

is designed to address the limitations of existing methods in solving the Economic Load 

Dispatch (ELD) problem. The integration of SCA and PIL offers enhanced exploration 

capabilities and more effective convergence, leading to superior performance in terms of both 

solution quality and computational efficiency. 

⬧ The proposed hybrid algorithm incorporates improvements to the SCA through a dynamic 

parameter adjustment mechanism, which enables better local search abilities and faster 

convergence compared to the traditional SCA. PIL further improves the population diversity 

during the search process, mitigating premature convergence and ensuring a better global 

search strategy. 

⬧ The performance of the hybrid algorithm is rigorously evaluated using multiple benchmark 

power system case studies. These include well-known standard ELD test systems with varying 

complexities. The results demonstrate that the proposed algorithm outperforms existing 

algorithms in terms of optimality, computational efficiency, and robustness under different 

operating conditions. 

⬧ The proposed hybrid algorithm is not only theoretical but also demonstrates strong 

applicability to real-world power system dispatch scenarios. The flexibility of the method in 

handling practical constraints such as transmission limits and emission constraints make it a 
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valuable tool for power system operators aiming to optimize economic performance in    

real-time operations. 

⬧ This work contributes to the growing field of hybrid metaheuristic algorithms for power 

system optimization, presenting a promising approach that combines the strengths of SCA and 

PIL. The results of this study provide important insights for future research and development 

in the optimization of complex power systems. 

The rest of the paper is organized as follows: In Section 2, we describe the fundamentals of SCA. 

In Section 3, we detail the proposed ISCAPBIL. In Section 4, we present experiments and comparisons. 

In Section 5, we discuss the application of ISCAPBIL to the economic load dispatch problem in power 

systems. In Section 6, we conclude the paper. 

2. Sine cosine algorithm  

2.1. Principles of the sine cosine algorithm 

The Sine Cosine Algorithm (SCA) is inspired by the periodic oscillatory nature of sine and cosine 

functions to locate the optimal solution within the algorithm's search space. The optimization process 

of SCA is divided into global search and local exploitation, which are balanced according to control 

parameters until the global optimal solution is achieved. The basic principle is illustrated in     

Figure 1 [16]. 

 

Figure 1. Principle diagram of SCA. 

Assuming that the population size is N and the search space is D-dimensional, the position of the 

ith individual is denoted as xi = ( xi,1 ,xi,2 ,...,xi,D ), i∈1,2,...,N the position of the optimal individual in 

the iterative updating of the population is denoted as pbest = (pbest,1, pbest,2,..., pbest,D). The ith individual 

in the population updates the spatial position according to Eq (1). 
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+    − 
=    

(1) 

where xi,j is the jth dimensional component of the ith candidate solution, pbest,j is the jth dimensional 

component of the globally optimal solution in the iteration, j ∈ (1,2,...,D), where r2 ∈ (0,2π ),    

r3 ∈ (0,2), and r4 ∈ (0,1) are three uniformly distributed random numbers. 
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In SCA, the r1 parameter effectively balances the global search and local exploitation 

performance, and gradually converges to the global optimal solution as the number of iterations 

decreases linearly, and the r1 parameter is updated according to Eq (2). 

 

1

a
r a t

T
= −   (2) 

where a is a constant, generally taking the value of 2, t is the current number of iterations, and T is the 

maximum number of iterations. 

2.2. Convergence analysis of the sine cosine algorithm 

The Sine Cosine Algorithm (SCA) belongs to the class of stochastic search algorithms. 

Consequently, its convergence is analyzed based on the convergence rules applicable to stochastic 

algorithms. First, we provide the relevant definitions and theorems of the Markov chain model used to 

describe the behavior of SCA. 

Assumption 1 This assumption posits that the population state transitions are Markovian. 

Specifically, it assumes that each new population state depends only on the current population state, 

not on any preceding states. This property enables us to represent the population states as a sequence 

governed by a Markov chain, which is critical for proving convergence in a stochastic framework. In 

practical terms, this means that each iteration's solution quality depends solely on the positions and 

parameters from the immediate previous iteration, without needing historical information from    

past iterations. 

Assumption 2 This assumption asserts that the probability of transitioning between any two 

population states is positive and bounded within the algorithm’s feasible solution space. This 

assumption guarantees that every feasible solution can eventually be explored within a finite number 

of iterations, ensuring that the algorithm has access to all potential optima in the search space. 

Consequently, this enhances the robustness of the algorithm, as it prevents the algorithm from getting 

trapped in local minima without the possibility of moving to other solutions. 

Definition 1 Let each individual state, representing a distinct position, be denoted as λ. The 

complete space of all possible individual states is given by λ = {λ|λ∈Y}, where Y is the space of 

feasible solutions. The overall population state, which includes all individual states, is represented by 

φ = (λ1, λ2, … , λNi). Here, λi represents the i-th individual state, and Nϕ is the total population size. 

Consequently, the space of all possible population states can be defined as: 

 
1 2

{ ( , ,..., ) | }
Ni i

Y     = =   (3) 

Definition 2 For φ ∈ ψ and λ ∈ φ, the number of population states containing individual 

states is denoted. 

 

1

| |( , ) ( )
N

i

i



  
+

=  (4) 

where x|λ| denotes the schematic function of the event λ. There are two populations φ1, φ2∈ψ for  

∀λ∈Y. If ρ (φ1, λ) = ρ (φ2, λ), then φ1 and φ2 are said to be equivalent and are denoted φ1∼φ2. 

equivalent and are denoted φ1∼φ2. The equivalence class of population states induced by the 

equivalence relation “∼” is denoted L = ψ/∼, or the population The equivalence class of population 
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states induced by the equivalence relation “∼” is denoted L = ψ/∼, or the population equivalence class 

for short, and has the following properties.  

1) Any population state within an equivalence class L is equivalent to each other, i.e., φi∼φj, ∀φi, 

φj∈L; ∀φi, φj∈L. 

2) Any population state within L is not equivalent to any population state outside L, i.e., φi ≁φj, 

∀φi∈L, φj ∉L. 

3) Any two different equivalence classes have no intersection, i.e., L1 ∩ L2 = ∅, ∀L1 ̸ = L2. 

Definition 3 For ∀λi∈φ, λj∈φ, a one-step transfer of an individual state from λi to λj in an 

iteration of the algorithm is denoted as Tφ (λi) = λj. 

Theorem 1 In the SCA algorithm, the transfer probability P (Tφ (λi) = λj ) of a one-step transfer 

of an individual state from λi to λj is given by  
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   (5) 

Proof Considering the population as a set of point sets in a hyperspace, the update process of 

individual merit search is an exchange between point sets in Based on Definition 2 and the geometric 

properties of the SCA algorithm, the probability of transferring a sin state from λi to λj in one step    

is obtained. 

  

[ , ]1 ,
| |

,

0

0 5;

,

.

( ( ) )

a
aj ai a

i
i i

a s
a s

otherwise

pa T i j

   

 

− 
 −  

= =







 (6) 

Cos the probability of transferring a state from λi to λj in one step 
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xi Transfer probability of a state moving from λi to λj in one step 
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Since the SCA algorithm is based on a function that works with individuals in an iterative search, 

Eqs (6–8) determine the probability of transferring an individual state from λi to λj in one step. 

Definition 4 For ∀φi∈ψ, φj∈ψ, the population state is transferred from φi to φj during the SCA 

iteration, denoted as Tψ (φi) = φj. The transfer probability of the population state being transferred 

from φi to φj in one step is 

 ( ( ) ) 1 ( ( ) )p T i j N K p T iK jK    = = = =  (9) 

That is, the probability that all individual states within a population are simultaneously transferred 

from φi to φj in one step constitutes a one-step transfer of the population state from φi to φj. 
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Theorem 2 The sequence of individual states {φ(t): t > 0} in SCA is a finite chi-squared   

Markov chain. 

Proof The theorem is proved mainly in terms of Markov chainability, finiteness, and chi-squaredness. 

This property is evidenced by Theorem 1, which states that the transfer probability P (Tφ(φ(t − 1)) = 

φ(t)) of an individual state sequence is only related to the state at time t-1, but not at time t-1. Since 

the population has a finite number of individuals, its state space is also finite. 

The above research has established a Markov chain model for SCA, which is an important basis 

for studying the convergence of the SCA algorithm. Referring to the convergence proof process of the 

grey wolf algorithm based on the Markov chain model [28], the SCA algorithm meets Assumptions 1 

and 2 of the convergence criterion and satisfies the sufficient conditions for global convergence, so 

that the SCA is a globally convergent algorithm. 

2.3. Algorithm pseudo-code 

In summary, the pseudo-code of the SCA algorithm is shown below: 

Algorithm 1: Sine cosine algorithm (SCA) 

Enter parameters and initialize. 

Set the population size N, (xi, i = 1, 2, ..., N), and the maximum number of iterations T, and spatial 

dimension D (where the function f14~f23 is a fixed dimension). 

Calculate the individual fitness value f (xi), i = 1, 2, ..., N) and find the globally optimal 

individual and its location. 

t = 0; 

While (t < T) do 

For i = 1 to N do 

Calculate the value of the control parameter r1 using Eq (2) 

        Using Eq (1) 

End for 

Updating the current optimal individual and position. 

t = t + 1; 

End while 

3. Proposed algorithm and economic load dispatch model for power system 

3.1. Improved sine cosine algorithm (ISCA) 

Trigonometric functions are a crucial branch of mathematical functions, with the cosh and sinh 

functions being the fundamental hyperbolic functions in trigonometry. In this paper, we introduce cosh 

and sinh functions into the algorithm's structure to dynamically influence individuals while preserving 

the algorithm's simplicity and fundamental structure. Additionally, to further enhance the performance of 

the Sine Cosine Algorithm (SCA), we incorporate the Levy flight strategy into the evolutionary process.  

The Levy flight function is specifically used to enhance the global search capabilities of the 

algorithm by introducing a mechanism for larger, more random jumps within the search space. This 

characteristic of Levy flights enables the algorithm to effectively explore distant, unexplored regions 

of the solution space, rather than focusing solely on local refinements. 
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The Levy distribution’s “heavy-tailed” nature generates step sizes that vary widely, with 

occasional large jumps. These jumps help the algorithm escape from local optima by periodically 

initiating broad searches beyond the neighborhood of current solutions. Thus, Levy flights support 

exploration on a global scale, which is essential for problems with complex landscapes that contain 

multiple local optima, thereby enhancing the global search capability of the Improved Sine Cosine 

Algorithm (ISCA). The Levy function is embedded into the position update formula, as shown in Eq (3). 

 , , 1 2 3 , , 4

, , 1 2 3 , , 4

( ) sinh( ) sin( ) ,   0.51

, ( ) cosh( ) cos( ) ,   0.5

t t t t
i j i j best j i j

t t t t
i j i j best j i j

Levy x x r r r p x rt

i j Levy x x r r r p x r
x





 +     − +

 +     − 
=             (10) 

In Eq (10), |r3 × pbest − xi,j| denotes the distance between the current individual x and the globally 

optimal individual pbest. The parameter r1 controls the range of the algorithm update, while r2, r4, and 

r3 are uniformly distributed random numbers within the range [0, 1]. The functions cosh(x) and sinh(x) 

provide dynamic interference to individual X, with values ranging from [−1, 1]. The hyperbolic sine 

and cosine functions (sinh and cosh) are chosen due to their unique mathematical properties that 

provide more flexibility in exploring the search space, especially in higher-dimensional or more 

complex optimization problems. Unlike standard sine and cosine functions, which oscillate   

between −1 and 1, the hyperbolic sine and cosine functions grow exponentially, offering a better 

capability to explore larger regions of the solution space. This is particularly useful in our context 

where a balance between local exploration and global search is crucial for optimization performance. 

This increases the algorithm’s spatial search range, helping to maintain population diversity in later 

iterations and facilitating the search for the global optimal solution. The sine and cosine functions work 

together to ensure the current individual converges to a global optimal solution, thereby improving 

convergence accuracy. Levy flight, a random wandering mode, can be calculated according to Eq (11): 

1

1

(1 ) sin( )
2( ) , 1.5

1 1
( ) 2

2 2
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 +     

= = = 
+ −     
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(11) 

 

where µ and ʋ are normal distributions, respectively, Γ (∙) is the standard gamma function, and the 

variance of Levy flights (σ2) is exponential with the evolutionary process (t). Therefore, the SCA 

carrying Levy flights has a significant improvement in searching ability in unknown space. 

3.2. Combined with PBIL algorithm 

The Population-Based Incremental Learning Algorithm (PBIL) [29] solves optimization 

problems by constructing probabilistic models. Unlike traditional evolutionary algorithms, which use 

selection and recombination operations that can disrupt the internal structure of individuals and affect 

the algorithm's accuracy, PBIL represents the population as a probability vector (PV) and views the 

evolutionary process as a learning accumulation process. In PBIL, better individuals guide others in a 

learning process, avoiding the decomposition and reorganization of individuals and, thus, maintaining 

the algorithm's accuracy in finding the optimal solution. 

PBIL generates a real-valued probability vector p = (p1, .... .pm .... pD), which is used to create 

potential solutions during the sampling process. Here, pm denotes the probability of obtaining a value 



1302 

 

AIMS Energy Volume 12, Issue 6, 1294–1333. 

of 1 in the m-th component. The standard algorithm operates as follows: at each step t, λ, a set of 

individuals ( ) ( ) ( )

1 2
,t t tx x x


,...,  is generated based on the probability vector p(t), and the optimal individual 

μ is selected from this set ( ) ( ) ( )

1: 2: :
( ), ,t t tx x x

   
  ,..., . These selected individuals are then used to update the 

probability vector. The pseudo-code for PBIL is shown in Algorithm 2. 

The Improved Sine Cosine Algorithm (ISCA) offers fast descent and high convergence accuracy 

but tends to fall into local optima. To enhance the algorithm’s global search performance and ability 

to find the optimal solution, this paper proposes alternating the execution of PBIL according to 

probability for global search. 

 

( 1) ( ) ( )

: '

1

1
(1 )t t t

k

k

p p x



 



+

=

= − +   (12) 

where p is the probability vector in step t and α∈(0,1) is the learning rate. The distance to push the 

probability vector depends on the learning rate of each iteration. After updating the probability vectors, 

a new set of solutions is generated by sampling from the updated probability vectors and the  

recursion continues. 

3.2.1. Pseudo-code for the PBIL algorithm 

In summary, the pseudo-code of the PBIL algorithm is shown below: 

Algorithm 2: Population based incremental learning (PBIL) 

Generate a set x (0) of λ samples by p(0) 

Repeat 

Using p(t) obtain a set x(t) = (x(t)
1, x(t)

2, ..., x)(t)
λ 

Evaluate the fitness function with respect to g 

Select the µ ≤ λ best individuals x(t)
1:λ , x(t)

 2:λ ,... , x(t)
µ:λ 

Update p(t) by Eq (12) 

Until termination condition holds 

3.3. ISCAPBIL algorithm steps and its flowchart 

In summary, the ISCAPBIL steps are represented as follows: 

Step 1: Set the parameters and initialize the population, set the population size N, spatial 

dimension D, maximum number of iterations T, and incremental learning strategy iteration interval P; 

Step 2: Calculate individual fitness value, record the global optimal individual; 

Step 3: Calculate the value of control parameter 𝑟1 according to Eq (2); 

Step 4: When t mod P == 0, perform step 5, otherwise move to step 6; 

Step 5: Update each individual according to Eq (12); 

Step 6: Update each individual according to Eq (10);  

Step 7: Update the global optimal individual; 

Step 8: Determine whether the maximum number of iterations T has been reached, if the condition 

is satisfied then stop the iteration and output the global optimal solution, otherwise go to step 3. 
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In summary, the pseudo-code of the ISCAPBIL algorithm is shown in Figure 2. 

Algorithm 3: A hybrid algorithm based on improve sine cosine algorithm and population incremental 

learning (ISCAPBIL) 

Enter parameters and initialize. 

Set the population size N, (xi , i = 1, 2, ..., N), and the maximum number of iterations T and spatial 

dimension D (where the function f14~ f23 is a fixed dimension). 

Calculate the individual fitness value f (xi ), i = 1, 2, ..., N) and find the globally optimal 

individual and its location. 

t = 0; 

While (t < T) do 

For i = 1 to N do 

Calculate the value of the control parameter r1 using Eq (2) 

If (t mod P == 0) 

PBIL performs global search Using Eq (12) 

Else if 

ISCA performs local search Using Eq (10) 

End if 

End for 

Updating the current optimal individual and position. 

t = t + 1; 

End while 

 

start

Initialize the population and set the 

algorithm parameters 

Calculate the fitness of each search individual 

Select the globally optimal individual

Calculate parameter r1 using Eq.(2)

If t >T

Return the global optimum

Stop

No

Yes

Improve Sine Cosine Algorithm 

using Eq.(10)
Population Incremental Learning 

using Eq.(12)

If t mod P==0

Yes No

 

Figure 2. The flowchart of the proposed algorithm. 
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3.4. Time complexity 

In optimization algorithms, time complexity significantly impacts the fundamental performance 

of the algorithm. It reflects the operational efficiency and serves as an important metric for evaluating 

the algorithm's execution capability. In the Sine Cosine Algorithm (SCA), assuming D is the dimension, 

N is the population size, and T is the maximum number of iterations, the time complexity of SCA is: 

 ( ) ( )O SCA O N T D=    (13) 

With the same basic parameters, the time complexity of ISCAPBIL consists of the Improved Sine 

Cosine Algorithm (ISCA) phase and the Population-Based Incremental Learning Algorithm (PBIL) 

phase. The time complexity of PBIL to perform the population-based incremental learning phase 

according to the p-probability is 

The time complexity of performing the sine-cosine co-evolution strategy phase according to  

the 1-p probability is 

 

From the above equation, the complexity of ISCAPBIL is: 

3.5. Convergence analysis of the ISCAPBIL algorithm 

In this section, we provide a theoretical analysis of the convergence properties of the   

ISCAPBIL (Improved Sine Cosine Algorithm with Population-Based Incremental Learning). Drawing 

from the convergence proof of the Sine Cosine Algorithm (SCA) and Markov chain theory, we 

demonstrate that ISCAPBIL satisfies the conditions for global convergence. 

Assumption 1 (Markov property) 

The population state transitions in ISCAPBIL follow a Markov property. Specifically, each new 

population state depends solely on the current state and is independent of all preceding states. This 

property enables us to model ISCAPBIL's population states as a Markov chain. 

Assumption 2 (Positive transition probability) 

Within the feasible solution space, the probability of transitioning between any two population 

states is positive and bounded. This ensures that all feasible solutions can be accessed within a finite 

number of iterations, preventing the algorithm from being trapped in local minima. 

Definition 1: Individual and population states 

Let λ∈Y represent an individual state, where Y is the feasible solution space. 

The population state is the set of all individual states, denoted as 𝜙 = (𝜆1, 𝜆2, . . . , 𝜆𝑁𝜙
), where 

Nϕ is the population size. 

The set of all possible population states is denoted as:  

𝜓 = {𝜙 = (𝜆1, 𝜆2, . . . , 𝜆𝑁𝜙
)|𝜆𝑖 ∈ 𝑌}.                   (17) 

 ( ) ( )O PBIL O N T D P=     (14) 

 ( ) ( ( ))O ISCA O N T D P=    1-  (15) 

 
( ) ( ( )) ( )O ISCAPBIL O N T D P O N T D P=    +   1-  (16) 
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Definition 2: Population state transition 

The one-step transition of a population state from ϕt to ϕt+1 during an iteration of ISCAPBIL is 

denoted as: 

𝑃(𝑇𝜓(𝜙
𝑡) = 𝜙𝑡+1) = ∏  

𝑁𝜙

𝑖=1
𝑃(𝑇𝜙(𝜆𝑖

𝑡) = 𝜆𝑖
𝑡+1),            (18) 

where, 𝑃(𝑇𝜙(𝜆𝑖
𝑡) = 𝜆𝑖

𝑡+1) represents the transition probability of an individual state. 

The ISCAPBIL algorithm combines the sine cosine update mechanism of SCA and the 

probabilistic learning update from Population-Based Incremental Learning (PBIL). The individual 

state update rule is given by: 

𝜆𝑖
𝑡+1 = 𝜆𝑖

𝑡 + 𝑎𝑖 ⋅ 𝑓(𝜇, 𝑟)                    (19) 

where, 𝑎𝑖 is the step size controlling the search range; f(μ,r) is the sine-cosine-driven update function, 

defined as: 

𝑓(𝜇, 𝑟) = {
𝑟 ⋅ sin(𝜇𝜋),if𝜇 < 0.5,
𝑟 ⋅ cos(𝜇𝜋),if𝜇 ≥ 0.5;

                     (20) 

where, r and μ are random variables ensuring diversity in the search. 

The probabilistic learning mechanism of PBIL introduces additional exploration by shifting 

individual states based on the population's historical best positions, further enhancing     

convergence robustness. 

Theorem 1: Markov property of population states 

The ISCAPBIL algorithm satisfies the Markov property: 

𝑃(𝜙𝑡+1|𝜙𝑡 , 𝜙𝑡−1, . . . , 𝜙0) = 𝑃(𝜙𝑡+1|𝜙𝑡).      (21) 

Proof: 

The state 𝜆𝑖
𝑡+1 of each individual depends only on its current state 𝜆𝑖

𝑡, the step size ai, and 

the random variables (μ, r). 

Thus, the population state𝜙𝑡+1 depends solely on 𝜙𝑡, satisfying the Markov property. 

Theorem 2: Global convergence 

ISCAPBIL is globally convergent, meaning it will reach the global optimum with probability 1 

as the number of iterations tends to infinity. 

Proof: 

The feasible solution space Y is finite, and hence the population state space ψ is also finite. 

Assumption 2 guarantees that 𝑃(𝑇𝜓(𝜙
𝑡) = 𝜙𝑡+1) > 0for any two states 𝜙𝑡 , 𝜙𝑡+1 ∈ 𝜓. This 

ensures that the algorithm can explore the entire solution space. 

Based on Markov chain theory, if the state space is finite and all states are accessible (irreducibility), 

the Markov chain is guaranteed to converge to a stationary distribution. ISCAPBIL satisfies these 

conditions through its combined update mechanism, which balances local exploitation and       

global exploration. 

The sine-cosine function (f (μ, r)) ensures sufficient randomness for global exploration, while 

PBIL guides the search toward promising regions. This dual mechanism prevents the algorithm from 

getting stuck in local minima. 

From the above analysis: 
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1. ISCAPBIL is modeled as a finite-state Markov chain. 

2. It possesses global exploration capability and irreducibility in the solution space. 

3. The algorithm converges to the global optimum with probability 1 as 𝑡 → ∞. 

These properties provide a rigorous theoretical foundation for the global convergence of the 

ISCAPBIL algorithm. 

3.6. Economic Load Dispatch (ELD) model in power systems 

Economic Load Dispatch (ELD) is a crucial optimization problem in power systems, where the 

objective is to minimize the total generation cost while meeting the required load demand and adhering 

to system constraints. The basic ELD model can be formulated as:  

3.6.1. Objective function 

The primary objective in the ELD problem is to minimize the total fuel cost of the power 

generation units. This can be expressed as: 

𝑚𝑖𝑛𝐶 = ∑  𝑁
𝑖=1 𝑎𝑖𝑃𝑖

2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖                   (22) 

where C is the total fuel cost. Pi is the power output of the i-th generator. ai, bi, and ci are cost 

coefficients of the i-th generator. N is the number of generating units. 

3.6.2. Power balance constraint 

The total power generation must meet the load demand P load, including any losses in the system. 

This constraint is given by: 

∑  𝑁
𝑖=1 𝑃𝑖 = 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠                         (23) 

where Pload is the total load demand. Ploss is the transmission loss, which can be modeled as a function 

of the generator outputs. 

3.6.3. Generation limits 

Each power generator has its operational limits, which must be respected. These limits are   

given by: 

𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑚𝑎𝑥, ∀𝑖 ∈ {1,2, … , 𝑁}                 (24) 

where Pi,min and Pi,max are the minimum and maximum generation limits for the i-th generator. 

3.6.4. Emission constraints (optional) 

In modern power systems, environmental constraints such as emissions are often included in the 

ELD model. These can be represented by: 

𝐸𝑖 = 𝛼𝑖𝑃𝑖
2 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖                    (25) 
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where Ei is the emission of the i-th generator, and αi, βi, and γi are emission coefficients. 

3.6.5. Overall problem formulation 

Thus, the ELD problem can be formulated as: 

min C& =∑  

𝑁

𝑖=1

𝑎𝑖𝑃𝑖
2 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖 

Subject to                                 

                       

   ∑  𝑁
𝑖=1 𝑃𝑖 = 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑙𝑜𝑠𝑠                           (26) 

𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑚𝑎𝑥, ∀𝑖 

𝐸𝑖 ≤ 𝐸𝑚𝑎𝑥, ∀𝑖 

3.6.6. Relationship between the Economic Load Dispatch Model and the optimization algorithm 

The ELD model described above is a constrained optimization problem, where the objective is to 

minimize the fuel cost while satisfying the power balance, generation limits, and potentially emissions 

constraints. Solving this problem requires an efficient optimization algorithm capable of handling both 

continuous variables (the power outputs) and constraints. 

The hybrid optimization algorithm proposed in this paper, which combines the improved Sine 

Cosine Algorithm (SCA) with Population-Based Incremental Learning (PBIL), is designed to find the 

optimal generation schedule by searching for the best power output Pi for each generator. The 

relationship between the ELD model and the optimization algorithm is as follows: 

1. Algorithm’s Objective: The hybrid algorithm aims to minimize the objective function CCC of the 

ELD model. By incorporating both local and global search strategies (via the SCA and PBIL), it 

efficiently explores the solution space to find the optimal set of generation outputs. 

2. Handling Constraints: The proposed hybrid algorithm is designed to handle the constraints in the 

ELD problem. The power balance constraint and generation limits are treated as boundary 

conditions that the algorithm respects during its search. If emission constraints are considered, 

the algorithm also ensures that these constraints are not violated. 

3. Parameter Tuning: The improved SCA dynamically adjusts parameters such as the   

exploration-exploitation balance, improving the convergence rate and helping to avoid local 

optima. The PBIL mechanism is used to incrementally update the population, ensuring that the 

diversity of the solution set is maintained, which is crucial for avoiding premature convergence 

to suboptimal solutions. 

4. Solution Process: The algorithm starts with an initial population of power generation outputs, 

evaluates the objective function and constraints, and iteratively refines the solution by applying 

the SCA and PBIL techniques. The hybrid approach facilitates a better balance between 

exploration of the search space and exploitation of promising solutions, improving the overall 

optimization process. 
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By applying this hybrid algorithm to the ELD problem, we achieve a solution that not only 

minimizes the generation cost but also satisfies the system’s constraints more efficiently than 

traditional methods. 

4. Simulation experiment 

4.1. Experimental environment 

The experimental environment is Intel(R) Core(TM) i7-10750H CPU@ 2.30GHz, 16GB RAM, 

Windows 10 operating system, and the algorithms are compiled and implemented using the software 

MATLAB R 2020b simulation platform. 

4.2. Test functions and other parameters 

In this paper, 23 standard test functions are selected for performance examination. Among them, 

including single-peak dimensionality functions (F1~F7), multi-peak dimensionality functions (F8~F13), 

multi-peak fixed dimensionality functions (F14~F23), and the related function parameters and specific 

expressions are shown in literature [30,31]. The CEC2013 standard test function was used for complex 

function performance examination. Among them, including different properties such as single-peak, 

multi-peak, divisible and indivisible, single-peak dimensionality function (F1~F13), multi-peak 

dimensionality function (F14~F25), the related function parameters and specific expressions are 

shown in literature [32]. Moreover, six standard test functions for high-dimensional performance 

testing, the related function parameters, and specific expressions are shown in the literature [33]. 

Different features in the selected test functions are used to test different capabilities of the algorithms. 

Among them, the single-peak test function has one and only one local optimum, which is effective in 

testing the optimization performance, convergence speed, and convergence accuracy of the algorithm. 

The fixed-dimension multi-peak test function has multiple local optima, and the function is complex 

and diverse, which makes it more difficult to find the optimal value, and has a better effect in testing 

the algorithm's ability to search globally and avoid falling into the local optima. 

4.3. Comparative experiments with SCA and other intelligent optimization algorithms 

To validate the improved performance of ISCAPBIL, it is compared with the basic SCA and other 

intelligent optimization algorithms. Among the algorithms involved in the comparison are the sine 

cosine algorithm [30] (SCA), Whale Optimization Algorithm [10] (WOA), Salp Swarm Algorithm [34] 

(SSA), Grey Wolf Optimization Algorithm [8] ( GWO). In this experiment, the population size is set 

to N = 30, the maximum number of iterations is T = 500, and the dimensionality of the test functions 

F1~F13 is D = 30 (since the other functions F14~F23 in this test function set are of fixed dimensions, 

they are not in the setting range). To ensure the fairness of the experiment, each algorithm is run 

independently 30 times, and the average (Ave) and standard deviation (Std) are calculated; the results 

of the better ones are bolded, and the results of the experiment are shown in Table 1. For the 

comparative experiments, we analyze the results of the parameters, which are the average optimal 

value and the standard deviation. The average optimal value obtained from the simulation experiments 

presents the convergence speed and solution accuracy of the algorithm, and the standard deviation 
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reflects the stability and robustness of the algorithm. Figure 3 lists the convergence curves of some 

test functions of the four algorithms in Table 1, such as SCA, WOA, SSA, and GWO, obtained after 

running for 30 times, reflecting the convergence changes in the algorithm's optimization process. Here, 

the vertical coordinate is represented by the logarithm of the average optimal value of the function and 

the horizontal coordinate is the number of iterations. 

As seen from the results in Table 1, in terms of the comparative experiments, ISCAPBIL is 

superior to WOA in comparison with WOA, except for 4 functions such as F6, F8, F12, F13, etc., 

which are slightly inferior to WOA, and the rest of the 19 functions; ISCAPBIL is superior to GWO 

in comparison with GWO, except for 3 functions such as F11, F12, F13, etc., which are slightly inferior 

to GWO, and F16, F17, F18, F19, and F23, with other 5 functions comparable to GWO, and the 

remaining 15 functions are better than GWO; ISCAPBIL compares with SSA, except for 3 functions 

such as F15, F16, and F17, which are comparable to SSA, and the remaining 20 functions are better 

than SSA; and ISCAPBIL compares with SCA, except for the F16 function which is comparable to 

SCA, and the remaining 22 functions are better than SCA. This shows that the significant optimality 

seeking performance of ISCAPBIL. Analyzing the convergence curve in Figure 3, we found that 

ISCAPBIL completes the convergence in functions F1, F3, and F4 at about 400 iterations, and the 

convergence speed of ISCAPBIL in function F10 is remarkable, completing the convergence at  

about 100 iterations the convergence at about 200 iterations in functions F21 and F23. This again 

proves that the convergence performance of ISCAPBIL has better convergence performance. 

To further verify the improved performance of ISCAPBIL, the dimension of the test function is 

increased to 60 and 100 dimensions respectively with other parameters unchanged to further verify the 

stability of ISCAPBIL, and the experimental results are shown in Table 2. Figure 4 lists the 

convergence curves of some of the test functions, which more intuitively presents the trend change of 

algorithmic optimization search process. 

As seen from the results in Table 2, in the 60-dimensional comparison experiment, ISCAPBIL is 

superior to WOA in all 10 functions except for 3 functions such as F8, F12, F13, etc., which are slightly 

inferior to WOA; in the comparison between ISCAPBIL and GWO, ISCAPBIL is superior to GWO 

in all 11 functions except for 2 functions such as F12, F13, etc., which are slightly inferior to GWO; 

and in the ISCAPBIL Compared with SSA and SCA, the 13 functions involved in the experiment are 

all better than SSA and SCA. In the 100-dimensional comparison experiment, ISCAPBIL compares 

with WOA, except for 3 functions, such as F8, F12, and F13, which are slightly inferior to WOA, and 

the remaining 10 functions are better than WOA; ISCAPBIL compares with GWO, except for 2 

functions, such as F12 and F13, which are slightly inferior to GWO, and the remaining 11 functions 

are better than GWO; and ISCAPBIL compared with SSA and SCA, the 13 functions involved in the 

experiment are better than SSA and SCA. overall, ISCAPBIL has the best performance in optimization 

search. As the dimension of the objective function increases, ISCAPBIL maintains a better 

optimization performance. 
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Table 1. Performance comparison of ISCAPBIL with basic SCA and other algorithms. 

Function 
Evaluation 

criterion 
WOA GWO SSA SCA ISCAPBIL 

F1 
Ave 2.02E-72 1.03E-27 3.02E+02 8.10E+01 2.73E-132 

Std 1.09E-71 1.68E-27 8.75E+01 1.15E+02 3.86E-132 

F2 
Ave 2.16E-50 9.79E-17 1.22E+01 1.76E-01 3.38E-67 

Std 1.10E-49 5.86E-17 1.97E+00 2.57E-01 4.74E-67 

F3 
Ave 4.47E+04 4.22E-06 6.58E+03 1.42E+04 1.76E-131 

Std 1.53E+04 1.08E-05 2.85E+03 7.42E+03 2.30E-131 

F4 
Ave 4.64E+01 6.11E-07 1.84E+01 4.80E+01 5.50E-70 

Std 2.86E+01 6.59E-07 3.64E+00 1.01E+01 7.70E-70 

F5 
Ave 2.80E+01 2.68E+01 2.62E+04 3.43E+05 2.88E+01 

Std 4.50E-01 5.50E-01 2.91E+04 5.99E+05 1.04E-01 

F6 
Ave 3.17E-01 8.13E-01 3.20E+02 1.04E+02 3.88E+00 

Std 1.82E-01 3.82E-01 1.14E+02 1.45E+02 5.84E-01 

F7 
Ave 3.10E-03 1.88E-03 3.31E-01 3.02E-01 3.27E-04 

Std 4.58E-03 1.22E-03 1.08E-01 4.11E-01 6.95E-06 

F8 
Ave −10672.1305 −6709.0284 −6699.3213 −3785.7654 −6707.7605 

Std 1704.9911 8.88E+02 7.95E+02 273.8353 37.7944 

F9 
Ave 0.00E+00 2.21E+00 1.33E+02 5.28E+01 0.00E+00 

Std 0.00E+00 3.79E+00 2.50E+01 4.14E+01 0.00E+00 

F10 
Ave 4.44E-15 9.94E-14 6.37E+00 1.62E+01 8.88E-16 

Std 2.09E-15 1.96E-14 9.36E-01 7.34E+00 0.00E+00 

F11 
Ave 1.11E-02 4.42E-03 3.66E+00 1.60E+00 0.00E+00 

Std 6.07E-02 8.23E-03 8.74E-01 6.49E-01 0.00E+00 

F12 
Ave 1.71E-02 3.74E-02 3.61E+01 6.12E+05 4.34E-01 

Std 7.51E-03 2.04E-02 3.92E+01 1.86E+06 3.68E-01 

F13 
Ave 4.94E-01 5.72E-01 2.73E+03 1.44E+06 2.99E+00 

Std 2.51E-01 1.77E-01 1.05E+04 2.02E+06 2.75E-04 

F14 
Ave 2.57E+00 4.98E+00 3.02E+02 1.33E+00 1.66E+00 

Std 2.99E+00 4.53E+00 8.75E+01 7.50E-01 1.15E+00 

F15 
Ave 7.18E-04 2.47E-03 9.99E-04 1.21E-03 3.27E-04 

Std 5.42E-04 6.07E-03 2.84E-04 3.42E-04 9.01E-06 

F16 
Ave −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 

Std 8.63E-10 2.82E-08 3.06E-14 9.52E-05 1.6162e-05 

F17 
Ave 0.39789 0.39789 0.39789 0.39789 0.39888 

Std 1.22E-05 2.14E-03 2.16E-03 2.16E-03 8.60E-04 

F18 
Ave 3.0001 3 3.0005 3.0003 3 

Std 4.93E+00 5.05E-05 5.01E-04 3.71E-04 1.1818e-06 

F19 
Ave −3.8582 −3.8615 −3.8626 −3.8536 −3.8418 

Std 5.88E-02 2.72E-03 2.59E-04 3.10E-03 0.013541 

F20 
Ave −3.1983 −3.2541 −3.2072 −2.8409 −3.1975 

Std 9.35E-02 7.38E-02 7.48E-02 2.46E-01 0.0055334 

Continued on next page 
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Function 
Evaluation 

criterion 
WOA GWO SSA SCA ISCAPBIL 

F21 
Ave −8.4313 −8.6048 −8.3476 −1.8336 −10.1067 

Std 2.27E+00 2.46E+00 3.16E+00 1.63E+00 0.0087708 

F22 
Ave −8.1586 −9.6926 −9.4209 −3.4597 −10.3947 

Std 3.23E+00 1.62E+00 2.04E+00 1.81E+00 0.0059236 

F23 
Ave −8.4151 −10.0841 −9.3126 −3.8672 −10.5335 

Std 3.14E+00 9.79E-01 2.40E+00 1.03E+00 0.0021937 

 
         F1                                F3 

 

    F4                               F10 

 

   F21                             F23 

Figure 3. Convergence curve of benchmark functions.
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Table 2. Comparison of ISCAPBIL with SCA and other classical intelligent algorithms. 

Function Evaluation criterion 
WOA GWO SSA SCA ISCAPBIL 

60 100 60 100 60 100 60 100 60 100 

F1 
Ave 8.79E-71 9.88E-74 1.03E-27 7.23E-28 3.02E+02 3.18E+02 7.82E+01 9.23E+01 2.14E-137 2.90E-142 

Std 3.71E-70 4.30E-73 1.68E-27 9.27E-28 8.75E+01 1.14E+02 1.24E+02 1.42E+02 3.03E-137 2.13E-142 

F2 
Ave 1.29E-50 2.23E-51 9.79E-17 1.13E-16 1.22E+01 1.23E+01 2.06E-01 1.57E-01 4.07E-70 6.99E-68 

Std 4.22E-50 6.13E-51 5.86E-17 6.47E-17 1.97E+00 3.13E+00 4.10E-01 2.01E-01 5.75E-70 9.88E-68 

F3 
Ave 4.33E+04 4.72E+04 4.22E-06 3.15E-05 6.58E+03 5.94E+03 1.56E+04 1.33E+04 8.41E-130 2.93E-135 

Std 1.36E+04 1.24E+04 1.08E-05 9.29E-05 2.85E+03 2.46E+03 6.59E+03 7.85E+03 1.19E-129 4.14E-135 

F4 
Ave 5.10E+01 5.35E+01 6.11E-07 6.68E-07 1.84E+01 1.87E+01 4.61E+01 4.46E+01 5.15E-70 1.37E-72 

Std 2.94E+01 2.48E+01 6.59E-07 5.59E-07 3.64E+00 3.54E+00 1.27E+01 1.29E+01 2.08E-70 6.19E-73 

F5 
Ave 2.80E+01 2.81E+01 2.68E+01 2.69E+01 2.62E+04 2.59E+04 5.35E+05 2.66E+05 5.89E+01 9.89E+01 

Std 3.90E-01 5.13E-01 5.50E-01 6.93E-01 2.91E+04 2.22E+04 1.70E+06 4.40E+05 1.53E-02 9.31E-02 

F6 
Ave 3.84E-01 3.32E-01 8.13E-01 7.66E-01 3.20E+02 3.02E+02 1.29E+02 8.19E+01 1.26E+01 2.11E+01 

Std 2.72E-01 2.07E-01 3.82E-01 3.71E-01 1.14E+02 7.90E+01 1.74E+02 1.24E+02 3.39E-02 3.66E-01 

F7 
Ave 2.56E-03 3.19E-03 1.88E-03 2.05E-03 3.31E-01 3.25E-01 2.16E-01 3.47E-01 1.05E-04 2.04E-04 

Std 2.79E-03 4.50E-03 1.22E-03 8.65E-04 1.08E-01 1.43E-01 4.31E-01 3.00E-01 1.28E-04 1.78E-04 

F8 
Ave −1.06E+04 −1.05E+04 −6.03E+03 −5.92E+03 −6.46E+03 −6.33E+03 −3.89E+03 −3.96E+03 −6.98E+03 −8.56E+03 

Std 1.69E+03 1.61E+03 8.88E+02 9.96E+02 7.95E+02 8.14E+02 2.45E+02 2.66E+02 5.32E+02 2.23E+03 

F9 
Ave 1.89E-15 0.00E+00 2.21E+00 2.55E+00 1.33E+02 1.30E+02 5.44E+01 6.79E+01 0.00E+00 0.00E+00 

Std 1.04E-14 0.00E+00 3.79E+00 3.34E+00 2.50E+01 2.07E+01 4.35E+01 4.15E+01 0.00E+00 0.00E+00 

F10 
Ave 3.85E-15 4.32E-15 9.94E-14 1.08E-13 6.37E+00 6.37E+00 1.42E+01 1.60E+01 8.88E-16 8.88E-16 

Std 2.81E-15 2.72E-15 1.96E-14 2.07E-14 9.36E-01 8.91E-01 8.09E+00 7.21E+00 0.00E+00 0.00E+00 

F11 
Ave 5.91E-03 1.25E-02 4.42E-03 3.06E-03 3.66E+00 3.60E+00 1.81E+00 1.89E+00 0.00E+00 0.00E+00 

Std 3.24E-02 4.79E-02 8.23E-03 5.85E-03 8.74E-01 9.60E-01 1.10E+00 1.63E+00 0.00E+00 0.00E+00 

F12 
Ave 2.25E-02 1.86E-02 3.74E-02 5.16E-02 3.61E+01 2.27E+01 1.94E+06 4.08E+05 9.27E-01 8.59E-01 

Std 1.78E-02 1.34E-02 2.04E-02 3.00E-02 3.92E+01 1.33E+01 9.39E+06 1.16E+06 1.84E-01 1.05E-01 

F13 
Ave 5.56E-01 5.31E-01 5.72E-01 5.71E-01 2.73E+03 1.23E+03 1.57E+06 1.81E+06 5.99E+00 9.98E+00 

Std 2.20E-01 2.90E-01 1.77E-01 2.24E-01 1.05E+04 2.63E+03 2.78E+06 3.87E+06 6.01E-03 1.09E-02 
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     F1 (D = 60)                           F4 (D = 60) 

  
       F10 (D = 60)                         F1 (D = 100) 

  

         F4 (D = 100)                             F10 (D = 100) 

Figure 4. Convergence curve of benchmark functions. 
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4.4. Comparative experiments with other improved SCAs 

To further verify the effectiveness of the improvement of ISCAPBIL, it is subjected to 

comparison experiments with other improved SCAs. The algorithms involved in the comparison 

experiments are the positive cosine algorithm based on elite chaotic search strategy (COSCA) [35], 

Memory-Guided Sine-Cosine Based Algorithm (MGSCA) [36], Sine Cosine Algorithm Based on 

Differential Evolution (SCADE) [37], and Cloud Model Based Sine Cosine Algorithm (CSCA) [25]. 

In this experiment, the population size is set to N = 30, the maximum number of iterations is T = 500, 

and the dimensionality of the test functions F1~F13 is D = 30 (the other functions F14~F23 in this test 

function set are not included in the setting because they have fixed dimensions). In addition to SCADE, 

CSCA, and ISCAPBIL, the experimental data of other algorithms are taken from various studies, and 

the better results are indicated by bolding, and the experimental results are shown in Table 3. 

As seen from Table 3, ISCAPBIL outperforms all other improved SCA algorithms in the 

comparison experiments with other improved SCA algorithms. This is because ISCAPBIL adopts an 

incremental learning strategy to make individual corrections to the population, which ensures that the 

algorithm constantly approaches the global optimal solution and avoids splitting and reorganization of 

individuals, which enhances the algorithm solution accuracy. 

Table 3. Performance comparison of ISCAPBIL with modified SCA. 

Function 
Evaluation 

criterion 
COSCA MGSCA SCADE CSCA ISCAPBIL 

F1 
Ave 2.44E-78 7.62E-23 9.58E-95 7.49E-02 2.73E-132 

Std 3.21E-94 1.67E-22 4.92E-94 1.93E-01 3.86E-132 

F2 
Ave 1.52E-44 1.92E-17 6.14E-63 5.09E-07 3.38E-67 

Std 1.94E-60 4.63E-17 2.73E-62 8.73E-07 4.74E-67 

F3 
Ave 1.78E-15 2.80E-03 1.93E-04 5.83E+03 1.76E-131 

Std 1.45E-30 8.78E-03 9.81E-04 5.29E+03 2.30E-131 

F4 
Ave 5.27E-35 8.11E-03 2.85E-09 1.26E+01 5.50E-70 

Std 1.91E-50 2.34E-02 1.53E-08 9.50E+00 7.70E-70 

F5 
Ave 2.84E+01 2.75E+01 2.69E+01 4.17E+03 2.88E+01 

Std 7.94E-16 7.07E-01 1.47E-01 1.80E+04 1.04E-01 

F6 
Ave 3.82E+00 1.39E+00 7.54E-05 5.09E+00 3.88E+00 

Std 7.94E-16 5.59E-01 9.46E-05 9.42E-01 5.84E-01 

F7 
Ave 3.21E-04 3.87E-03 8.44E-03 7.74E-02 3.27E-04 

Std 6.06E-21 2.65E-03 7.37E-03 5.34E-02 6.95E-06 

F8 
Ave −3.31E+03 −6.36E+03 −1.20E+04 −3.37E+03 −6.71E+03 

Std 2.64E-12 6.41E+02 2.53E+02 2.95E+02 3.78E+01 

F9 
Ave 0.00E+00 2.86E-01 0.00E+00 4.63E+01 0.00E+00 

Std 0.00E+00 8.88E-01 0.00E+00 4.93E+01 0.00E+00 

F10 
Ave 2.48E-15 7.39E+00 2.13E-15 2.89E-02 8.88E-16 

Std 7.05E-31 9.88E+00 1.76E-15 7.60E-02 0.00E+00 

F11 
Ave 0.00E+00 1.01E-02 0.00E+00 4.78E-01 0.00E+00 

Std 0.00E+00 1.85E-02 0.00E+00 3.69E-01 0.00E+00 

Continued on next page 
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Function 
Evaluation 

criterion 
COSCA MGSCA SCADE CSCA ISCAPBIL 

F12 
Ave 3.68E-01 1.00E-01 3.45E-05 9.39E+00 4.34E-01 

Std 1.73E-16 4.78E-02 1.66E-04 4.22E+01 3.68E-01 

F13 
Ave 2.04E+00 1.46E+00 8.13E-03 6.35E+02 2.99E+00 

Std 1.20E-15 3.20E-01 2.29E-02 3.21E+03 2.75E-04 

F14 
Ave 3.56E+00 1.13E+00 9.98E-01 2.26E+00 1.66E+00 

Std 5.95E-16 5.03E-01 5.00E-16 2.48E+00 1.15E+00 

F15 
Ave 7.87E-04 6.98E-04 7.52E-04 6.69E-04 3.27E-04 

Std 7.75E-19 3.45E-04 1.54E-04 2.44E-04 9.01E-06 

F16 
Ave −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 

Std 1.09E-16 2.04E-08 4.44E-16 3.05E-05 1.62E-05 

F17 
Ave 3.98E-01 3.98E-01 3.98E-01 4.00E-01 3.99E-01 

Std 0.00E+00 4.36E-06 0.00E+00 2.84E-03 8.60E-04 

F18 
Ave 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 

Std 7.94E-16 4.99E-06 3.18E-07 1.19E-04 1.18E-06 

F19 
Ave −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.84E+00 

Std 1.39E-15 3.85E-03 7.64E-13 3.33E-03 1.35E-02 

F20 
Ave −3.16E+00 −3.11E+00 −3.31E+00 −3.12E+00 −3.20E+00 

Std 9.93E-16 1.80E-01 3.05E-02 7.41E-02 5.53E-03 

F21 
Ave −9.85E+00 −7.37E+00 −9.75E+00 −4.23E+00 −1.01E+01 

Std 6.35E-15 2.91E+00 8.91E-01 1.14E+00 8.77E-03 

F22 
Ave −1.03E+01 −8.39E+00 −1.04E+01 −4.46E+00 −1.04E+01 

Std 4.36E-15 3.21E+00 1.45E+00 8.68E-01 5.92E-03 

F23 
Ave −1.05E+01 −8.77E+00 −1.05E+01 −4.57E+00 −1.05E+01 

Std 3.97E-15 3.04E+00 3.45E-14 1.34E+00 2.19E-03 

4.5. CEC2013 test function comparison experiment 

We further validate the performance of ISCAPBIL in solving complex functions. Thus, in this 

section, we select the CEC2013 function test set [38]. The 28 single-objective test functions in it are 

examined for performance. Among them are different properties such as single-peak, multi-peak, 

separable, and non-separable. The algorithms involved in the comparison experiments are Sine Cosine 

Algorithm (SCA), Whale Optimization Algorithm (WOA), Grey Wolf Algorithm (GWO), and Bottle 

Sea Sheath Algorithm (SSA), and the parameters of the algorithms involved in the comparison 

experiments are set identically, with the population size set to N = 30, the maximum number of 

iterations set to T = 500, and the dimension of the test function set to D = 30. To ensure the fairness of 

the results of the experiments, the algorithms involved in the comparison experiments are run 

independently. To ensure the fairness of the experimental results, the algorithms involved in the 

comparison are run independently for 30 times and the mean (Ave) and standard deviation (Std) are 

calculated, and the experimental results are shown in Table 4 (See Figure 5). From Table 4, ISCAPBIL 

is comparable to the results of WOA, GWO, and SCA except for the function F17 and is superior to 

the results of SSA. The results of F19 are comparable to the results of WOA, GWO, and are superior 

to the results of SSA, and SCA. The results of F20 are comparable to the results of WOA and GWO. 
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In function F23, comparable to WOA, GWO, and SSA. The experimental results of ISCAPBIL 

algorithm in the rest of the functions are better than the other algorithms. The experimental analysis 

shows that ISCAPBIL has higher optimization accuracy, can effectively overcome the shortcomings 

of other algorithms and has higher optimization performance. 

  
F2                         F4 

 

     F6                             F8 

 

    F24                           F28 

Figure 5. Convergence curve of benchmark functions. 
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Table 4. CEC2013 single objective test function comparison experiment. 

Function Evaluation criterion WOA GWO SSA SCA ISCAPBIL 

F1 
Ave 9.61E-78 1.40E-27 2.72E+02 3.08E+01 2.3372e-140 

Std 1.36E-77 1.86E-27 6.99E+00 2.65E+01 3.3037e-140 

F2 
Ave 3.45E-73 7.67E-25 5.07E+07 6.70E+02 8.3147e-123 

Std 4.81E-73 7.93E-28 2.28E+07 9.35E+02 1.1759e-122 

F3 
Ave 5.22E-81 2.87E-29 8.60E+01 1.24E-01 1.1688e-134 

Std 7.29E-81 6.11E-30 2.49E+01 1.73E-01 1.6431e-134 

F4 
Ave 3.06E-108 9.13E-92 2.08E+03 7.46E+00 1.6208e-158 

Std 4.33E-108 7.08E-92 2.90E+03 9.93E+00 2.2815e-158 

F5 
Ave 9.89E-52 8.58E-17 1.26E+01 1.10E-01 5.7408e-71 

Std 5.69E-52 1.67E-17 2.80E-01 1.47E-01 4.1107e-71 

F6 
Ave 4.10E+01 1.41E-06 2.43E+01 2.04E+01 9.381e-69 

Std 5.35E+01 1.03E-06 7.75E+00 1.03E+01 1.3267e-68 

F7 
Ave 0.00E+00 0.00E+00 2.42E+02 7.00E+00 0.00E+00 

Std 0.00E+00 0.00E+00 8.91E+01 0.00E+00 0.00E+00 

F8 
Ave 2.26E-116 2.21E-51 1.11E-02 1.43E-02 1.9181e-270 

Std 2.93E-116 2.99E-51 4.29E-03 1.75E-02 0.00E+00 

F9 
Ave 5.24E-03 1.77E-03 2.87E-01 2.26E-01 0.00013842 

Std 6.38E-03 3.42E-04 1.00E-01 5.83E-02 0.0001026 

F10 
Ave 2.82E+01 2.82E+01 8.29E+02 3.56E+02 28.8793 

Std 8.02E-01 4.27E-01 3.88E+02 4.37E+02 0.071664 

F11 Ave 0.00E+00 1.71E+00 1.38E+02 4.57E+01 0.00E+00 

 Std 0.00E+00 2.41E+00 2.25E+01 5.75E+01 0.00E+00 

F12 
Ave 0.00E+00 1.20E+01 1.58E+02 1.46E+02 0.00E+00 

Std 0.00E+00 1.42E+00 5.13E+00 3.39E+00 0.00E+00 

F13 
Ave 5.85E-02 8.89E-03 3.90E+00 1.06E+00 0.00E+00 

Std 8.28E-02 1.26E-02 7.15E-01 8.12E-02 0.00E+00 

F14 
Ave 1.20E+03 6.22E+03 5.05E+03 8.77E+03 7310.6527 

Std 1.12E+03 7.54E+02 1.72E+03 2.06E+02 534.7036 

F15 
Ave 4.44E-15 1.00E-13 6.38E+00 1.01E+01 8.88E-16 

Std 0.00E+00 0.00E+00 2.49E-01 1.43E+01 0.00E+00 

F16 
Ave 4.00E+06 1.11E-01 3.56E+01 3.61E+00 0.58181 

Std 5.65E+06 9.25E-02 1.38E+01 2.42E+00 0.12945 

F17 
Ave 4.08E-01 6.29E-01 8.59E+03 4.55E+01 2.8855 

Std 3.15E-01 2.78E-02 5.03E+03 3.92E+00 0.0064338 

F18 
Ave 1.59E-52 3.30E-04 1.15E+01 7.76E-01 1.3893e-69 

Std 2.04E-52 4.67E-04 3.55E+00 1.09E+00 1.9646e-69 

F19 
Ave 3.18E+00 7.14E+00 2.42E+01 2.20E+01 24.0338 

Std 4.11E-01 1.58E-01 3.98E+00 1.55E-02 6.8474 

F20 
Ave −1.50E+01 −1.50E+01 −2.20E-01 −2.91E+00 −1.50E+01 

Std 0.00E+00 2.51E-15 1.34E+00 1.35E+01 0.00E+00 

Continued on next page 
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Function Evaluation criterion WOA GWO SSA SCA ISCAPBIL 

F21 
Ave 2.35E-02 3.72E-02 4.80E-01 1.03E-01 0.00E+00 

Std 1.95E-02 9.57E-11 7.24E-07 3.45E-02 0.00E+00 

F22 
Ave −6.98E+01 −5.92E+01 −6.84E+01 −4.04E+01 −49.7116 

Std 8.91E+00 3.97E+00 7.79E-01 6.51E+00 0.081216 

F23 
Ave −1.03E+01 −1.47E+01 −1.29E+01 −7.72E+00 −11.6872 

Std 2.67E+00 9.02E-01 1.09E+00 6.73E-01 0.072432 

F24 
Ave 6.53E-76 1.60E-27 4.15E+02 6.53E+01 2.6943e-143 

Std 9.23E-76 2.05E-27 7.01E+01 9.24E+01 3.5307e-143 

F25 
Ave 0.00E+00 0.00E+00 1.02E+02 3.37E+01 0.00E+00 

Std 0.00E+00 0.00E+00 6.90E+00 4.09E+01 0.00E+00 

F26 
Ave 0.00E+00 1.78E-02 3.29E+00 1.02E+00 0.00E+00 

Std 0.00E+00 2.51E-02 5.31E-01 3.96E-03 0.00E+00 

F27 
Ave 2.66E-15 7.73E-14 6.49E+00 1.05E+01 8.8818e-16 

Std 2.51E-15 2.51E-15 1.14E-01 1.40E+01 0.00E+00 

F28 
Ave 1.01E-51 4.10E-04 3.32E+00 2.16E+00 4.5976e-73 

Std 1.43E-51 4.27E-04 1.26E+00 5.19E-01 4.6512e-73 

4.6. Test function comparison experiments for large-scale dimensions 

To verify the stability and superiority of ISCAPBIL and to further demonstrate that the improved 

algorithm can solve optimization problems with high dimensions, we the literature [33]. The six 

benchmark test functions in the literature are used for high-dimensional function testing, including 

single-peak function (F1, F2, F5) and multi-peak function (F15, F16, F17). Among them, the    

single-peak function is aimed at the convergence speed and convergence accuracy detection of the 

algorithm, and the multi-peak function is aimed at the global search ability detection of the algorithm. 

The parameters and specific expressions of the test functions are shown in the literature [33]. These 

are compared with other improved algorithms proposed in recent years for large-scale optimization 

function problems. The algorithms involved in the comparison are the Comprehensive Learning 

Particle Swarm Optimization (CLPSO) algorithm [39], Adaptive Covariance Matrix Evolutionary 

Strategies Algorithm (CMAES) [40], Adaptive Strategy Difference Evolution (SaDE) [41],  

Dynamic Dimensional Harmonic Search Algorithm (DIHS) [42], and Improved Whale Optimization 

Algorithm (IWOA) [43]; the maximum fitness function calculation time of these algorithms is 5 × 106. 

The data of the participating comparison algorithms are taken directly from each literature. The better 

results are shown in bold, and the experimental results are shown in Table 5. It can be seen from  

Table 5 that ISCAPBIL is better than the other algorithms in the comparison with other improved 

algorithms for the large-scale optimization function problem, except for F1, F5, F15, F16, F17, and 

other functions, which are comparable to the IWOA algorithm. The experimental results, demonstrate 

the remarkable performance of ISCAPBIL in solving optimization problems of high dimensionality. 
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Table 5. Experimental comparison of test functions in large scale dimensions. 

Function Evaluation criterion CLPSO CMAES SaDE DIHS IWOA ISCAPBIL 

F1 
Ave 3.14E-21 7.06E-01 2.22E-01 1.98E-23 0.00E+00 1.87E-137 

Std 7.35E-23 3.23E-01 2.29E-01 3.76E-25 0.00E+00 0.00E+00 

F2 
Ave 7.73E-02 1.78E+00 1.57E-02 5.24E-12 9.90E+02 1.18E-68 

Std 9.92E-02 1.80E+00 5.71E-03 1.56E-14 1.73E-01 0.00E+00 

F5 
Ave 7.45E+02 3.26E+03 3.05E+03 1.21E+03 0.00E+00 9.99E+02 

Std 1.04E+02 8.07E+01 2.81E+02 2.76E+01 0.00E+00 2.61E-02 

F15 
Ave 4.96E+03 3.60+02 8.22E+02 2.34E+02 0.00E+00 0.00E+00 

Std 2.21E+02 2.39E+01 3.31E+01 3.31E+02 0.00E+00 0.00E+00 

F16 
Ave 1.95E+01 2.13E-01 1.21E+01 4.02E-13 8.88E-16 8.88E-16 

Std 1.09E-02 2.44E-02 1.44E-01 0.00E+00 0.00E+00 0.00E+00 

F17 
Ave 2.78E-15 4.94E-01 9.25E-01 2.50E-15 0.00E+00 0.00E+00 

Std 3.14E-16 1.73E-01 9.27E-01 7.85E-17 0.00E+00 0.00E+00 

4.7. Numerical examination of algorithms 

To verify the authenticity of the results of the comparison between ISCAPBIL and other 

algorithms, the Wilcoxon rank sum test with a significance level of 0.05 is used for the analysis to 

determine whether there is a significant difference in the results, and the results of the rank sum test 

decision (+/=/-)indicate that the compared algorithms are “better than, comparable to, or inferior to” 

the number of functions of ISCAPBIL. Friedman test is also performed, and the average ranking of 

the algorithms is calculated. These experimental results were obtained in the professional statistical 

software IBM SPSS Statistics 21. 

Table 6. Performance comparison of ISCAPBIL with basic SCA and other algorithms. 

Algorithms WOA GWO  SSA SCA ISCAPBIL 

Wilcoxon 1.49E-03 6.00E-06 2.60E-03 1.21E-04  

(-/=/+) 0/2/21 0/0/23 0/0/23 0/1/22  

Rankings 2.45 2.70 4.48 3.87 1.50 

Wilcoxon (D = 60) 8.78E-03 8.78E-03 1.47E-03 1.47E-03  

(-/=/+) 0/0/13 0/0/13 0/0/13 0/0/13  

Rankings 2.62 2.62 4.23 4.38 1.15 

Wilcoxon (D = 100) 3.86E-02 3.42E-03 2.44E-04 2.44E-04  

(-/=/+) 0/2/11 0/0/13 0/0/13 0/0/13  

Rankings 2.50 2.62 4.15 4.46 1.27 

In Table 6, p = 1.49E-03 < 0.05 for the comparison of ISCAPBIL with WOA, indicating that 

there is a significant difference between ISCAPBIL and WOA. p = 6.00E-06 < 0.05 for the comparison 

of ISCAPBIL with GWO, indicating that there is a significant difference between ISCAPBIL and 

GWO. p = 2.60E-03 < 0.05 for the comparison of ISCAPBIL with SSA, indicating that there is a 

significant difference between ISCAPBIL with SSA. of p = 2.60E-03 < 0.05, indicating a significant 

difference between ISCAPBIL and SSA. p = 1.21E-04 < 0.05 for comparison of ISCAPBIL with SCA, 
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indicating a significant difference between ISCAPBIL and SCA. p = 2.45 for WOA, 2.70 for GWO, 

4.48 for SSA, and 4.48 for SSA, in Friedman's test. SSA is 4.48, SCA is 3.87, and ISCAPBIL is 1.50. 

The mean rank order is ISCAPBIL > WOA > GWO > SCA > SSA. When D = 60 dimensions, the p = 

8.78E-03 < 0.05 comparing ISCAPBIL with WOA indicates that there is a significant difference 

between ISCAPBIL and WOA is significantly different. p = 8.78E-03 < 0.05 for comparison of 

ISCAPBIL with GWO indicates that ISCAPBIL is significantly different from GWO. p = 1.47E-03 < 

0.05 for comparison of ISCAPBIL with SSA indicates that ISCAPBIL is significantly different from 

SSA. The p = 1.47E-03 < 0.05 for comparison of ISCAPBIL with SCA indicates that there is a 

significant difference between ISCAPBIL and SCA. in Friedman's test, WOA is 2.62, GWO is 2.62, 

SSA is 4.23, SCA is 4.38 and ISCAPBIL is 1.15. the mean rank order is ISCAPBIL > (WOA, GWO) > 

(SCA, SSA). When D = 100 dimensions, p = 3.86E-02 < 0.05 for the comparison of ISCAPBIL with 

WOA, indicating that there is a significant difference between ISCAPBIL and WOA. p = 3.42E-03 < 

0.05 for the comparison of ISCAPBIL with GWO, indicating that there is a significant difference 

between ISCAPBIL and GWO. p = 3.42E-03 < 0.05 for the comparison of ISCAPBIL with SSA 

comparison of p = 2.44E-04 < 0.05, indicating a significant difference between ISCAPBIL and SSA. 

p = 2.44E-04 < 0.05 for ISCAPBIL compared to SCA, indicating a significant difference between 

ISCAPBIL and SCA. p = 2.44E-04 < 0.05 for ISCAPBIL compared to SCA, indicating a significant 

difference between ISCAPBIL and SCA. p = 2.50 for WOA in Friedman's test, 2.60 for GWO, 4.00 

for GWO, 4.00 for SCA and 4.00 for GWO. 2.62, SSA was 4.15, SCA was 4.46, and ISCAPBIL   

was 1.27. The mean rank order was ISCAPBIL >GWO >WOA >SSA > SCA. 

Table 7. Performance comparison of ISCAPBIL with modified SCA. 

Algorithms COSCA MGSCA SCADE CSCA ISCAPBIL 

Wilcoxon 7.91E-03 6.36E-03 9.20E-03 2.60E-04  

(-/=/+) 0/3/20 0/4/19 0/8/15 0/2/21  

Rankings 3.02 3.41 2.07 4.54 1.98 

In Table 7, p = 7.91E-03 < 0.05 for the comparison of ISCAPBIL with COSCA indicates that 

there is a significant difference between ISCAPBIL and COSCA. p = 6.36E-03 < 0.05 for the 

comparison of ISCAPBIL with MGSCA indicates that there is a significant difference between 

ISCAPBIL and MGSCA. The p = 9.20E-03 < 0.05 for comparison of ISCAPBIL with SCADE 

indicated that there is a significant difference between ISCAPBIL and SCADE. p = 2.60E-04 < 0.05 

for comparison of ISCAPBIL with CSCA indicated that there was a significant difference between 

ISCAPBIL and CSCA. in Friedman's test. COSCA was 3.02, MGSCA was 3.41, SCADE was 2.07, 

CSCA was 4.54 and ISCAPBIL was 1.98. the mean rank order was ISCAPBIL > SCADE > COSCA > 

MGSCA > CSCA. 

Table 8. Performance comparison of ISCAPBIL with other algorithms CEC2013. 

Algorithms WOA GWO SSA SCA ISCAPBIL 

Wilcoxon 1.10E-05 1.90E-05 2.00E-06 3.35E-07  

(-/=/+) 1/6/21 2/3/23 1/0/27 0/0/28  

Rankings 2.29 2.70 4.57 4.41 1.30 
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In Table 8, p = 1.10E-05 < 0.05 for the comparison of ISCAPBIL with WOA, indicating a 

significant difference between ISCAPBIL and WOA. p = 1.90E-05 < 0.05 for the comparison of 

ISCAPBIL with GWO, indicating a significant difference between ISCAPBIL and GWO.          

p = 2.00E-06 < 0.05 for the comparison of ISCAPBIL with SSA, indicating a significant difference 

between ISCAPBIL and SSA. p = 3.35E-07 < 0.05 for the comparison of ISCAPBIL with SSA. of   

p = 2.00E-06 < 0.05, indicating a significant difference between ISCAPBIL and SSA. p = 3.35E-07 < 

0.05 for ISCAPBIL compared to SCA, indicating a significant difference between ISCAPBIL and 

SCA. p = 2.29 for WOA, 2.70 for GWO, 4.57 for SSA, and 4.57 for SSA, in Friedman's test. SSA  

was 4.57, SCA was 4.41, and ISCAPBIL was 1.30. The mean rank order was ISCAPBIL > WOA > 

GWO > SCA > SSA. 

Table 9. Experimental comparison of test functions in large scale dimensions. 

Algorithms CLPSO CMAES SaDE DIHS IWOA ISCAPBIL 

Wilcoxon 3.13E-02 3.13E-02 3.13E-02 3.13E-02 6.55E-01  

(-/=/+) 0/0/6 0/0/6 0/0/6 0/0/6 1/1/4  

Rankings 4.50 5.00 4.83 3.00 1.50 2.17 

In Table 9, p = 3.13E-02 < 0.05 for comparison of ISCAPBIL with CLPSO indicates that there is 

a significant difference between ISCAPBIL and CLPSO. p = 3.13E-02 < 0.05 for comparison of 

ISCAPBIL with CMAES indicates that there is a significant difference between ISCAPBIL and 

CMAES. The p = 3.13E-02 < 0.05 for the comparison of ISCAPBIL with SaDE indicates that there is 

a significant difference between ISCAPBIL and SaDE. p = 3.13E-02 < 0.05 for the comparison of 

ISCAPBIL with DIHS indicates that there is a significant difference between ISCAPBIL and DIHS.  

p = 3.13E-02 < 0.05 for the comparison of ISCAPBIL with IWOA Comparison of p = 6.55E-01 < 0.05 

indicates that there is no significant difference between ISCAPBIL and IWOA. In Friedman's test, 

CLPSO is 4.50, CMAES is 5.00, SaDE is 4.83, DIHS is 3.00, IWOA is 1.50, and ISCAPBIL is 2.17. 

The mean ranking order is IWOA > ISCAPBIL >DIHS > CLPSO > SaDE > CMAES. 

In summary, ISCAPBIL is significantly different from other algorithms in all comparison 

experiments, demonstrating the significant performance of ISCAPBIL in solving different function 

optimization problems and for large-scale function optimization problems. 

5. Application of ISCAPBIL in power systems 

Optimal Load Dispatch (OLD) [44] (See Figure 6) is a key problem in power system optimization, 

aiming to satisfy the power demand in a specific time by rationally allocating the output power of 

generating units while minimizing the generation cost. This process not only involves detailed analysis 

and calculation of the fuel cost curve of the generating units to ensure that the total generation is equal 

to the sum of the total power demand and generation losses, but also covers a variety of engineering 

optimization problems. 

In the context of engineering optimization, optimal load dispatch needs to consider the operational 

constraints of the generating units, such as power output limitations, start/stop times, and maintenance 

intervals. In addition, the stability and reliability requirements of the grid need to be considered, which 

involves factors such as voltage levels, frequency control, and safe operation of transmission lines. 

Traditional solution methods include iterative methods, gradient methods and dynamic programming 
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methods, but these methods usually only find locally optimal solutions and require calculating 

derivatives and checking the derivability and continuity of the function. 

To overcome these shortcomings, meta-heuristic algorithms are proposed to be widely used in 

optimal load scheduling problems. Nature-inspired swarm intelligence-based algorithms can find the 

global optimal solution more efficiently, improve the economy and reliability of the power system, 

and perform well in solving complex engineering optimization problems. Through these methods, the 

power system can not only minimize the cost, but also ensure the safe and stable operation of the 

system while satisfying various engineering constraints. 

 

Figure 6. With three gensets and a microgrid. 

5.1. Minimize the cost of power generation 

The need to minimize the cost of power generation for the OLD problem under different 

constraints is satisfied and the minimization objective function is formulated as follows: 

where F (Pg) denotes the total fuel cost (Rs/h); ai, bi and ci denote the fuel cost coefficients of the ith 

generator in Rs/MW2, Rs/MW and Rs/h, respectively; n is the number of generators; and Pgi denotes 

the power generation capacity of generator i. 

Total generator output is equal to total electricity demand (without considering electricity losses). 

where Pd denotes the electrical energy demand in MW. 

The generation of each generator is controlled within its minimum and maximum generation 

ranges. 
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where, Pmin gi denotes the minimum power generation of generator i, and Pmax gi denotes the 

maximum power generation of generator i. 

ISCAPBIL is used to solve the optimal power scheduling problem, to explore the application 

scenarios of ISCAPBIL and to compare it with the Sine Cosine Algorithm (SCA), where the objective 

function is constrained within the power range of the generating units and transmission losses are also 

considered. The maximum number of iterations in the experiment is 500 and the number of searching 

individuals is 30. The input data of the generating units are shown in Table 10, visual data can be seen 

in Figure 7. 

Table 10. Input parameters for 6 generator sets. 

Flight crew (on a plane) a b c Pmax Pmin 

1 0.15240 38.53973 756.79886 10 125 

2 0.10587 46.15916 4513.2513 10 150 

3 0.02803 40.39655 1049.9977 35 225 

4 0.03546 38.30553 1243.5311 35 210 

5 0.02111 36.32782 1658.5596 130 325 

6 0.01799 38.27041 1356.6592 125 315 

The optimized dispatch results of ISCAPBIL for 6 generating units are better than SCA and the 

optimized results are shown in Table 11, visual data can be seen in Figure 8. The optimized results of 

ISCAPBIL for total power demand of 600 MW are (p1 = 22.41, p2 = 10, p3 = 85.906, p4 = 89.783,   

p5 = 186.81, p6 = 186.47), respectively. In case of total electricity demand of 700 MW ISCAPBIL 

optimization results are (p1 = 23.32, p2 = 10, p3 = 105.63, p4 = 120.70, p5 = 208.77, p6 = 208.21) 

respectively. The optimization results of ISCAPBIL for total power demand of 800MW are (p1 = 27.08, 

p2 = 10, p3 = 124.60, p4 = 125.31, p5 = 246.32, p6 = 233.20) respectively. 

Table 11. Optimal load dispatch optimization results of GWOA and ALO for 6 genset system. 

Electricity demand (MW) 
ISCAPBIL SCA 

600 700 800 600 700 800 

P1 22.41 23.32 27.08 22.36 23.41 27.20 

P2 10 10 10 10 10 10 

P3 85.906 105.63 124.60 86.59 103.56 123.80 

P4 89.783 120.70 125.31 95.76 120.41 121.7 

P5 186.81 208.77 246.32 232.36 243.71 251.79 

P6 186.47 208.21 233.20 194.60 221.09 247.32 

Cost (Rs/hr) 31345.374 36704.781 435456.435 34682.913 37342.314 46532.071 
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Figure 7. Convergence curve of electricity demand (MW) and cost (Cost Rs/hr). 

 

Figure 8. The variation curve of power demand (MW) and P1~P6. 

5.2. Test Case 1: Simple 3-Unit system 

We first test the proposed algorithm on a 3-unit system, which represents a basic power system 

model. The system consists of three power generators with the following cost functions: 

𝐶1(𝑃1) = 0.02𝑃1
2 + 10𝑃1 + 100 

           𝐶2(𝑃2) = 0.025𝑃2
2 + 8𝑃2 + 80                         (30) 

𝐶3(𝑃3) = 0.03𝑃3
2 + 12𝑃3 + 120 

where P1, P2, and P3 are the power outputs of the three units. The total power demand is set to 550 MW. 

Numerical results: 

• ISCAPBIL: Total cost = $1200.54. 

• Other Algorithms (e.g., Genetic Algorithm, PSO, Standard SCA): 

o Genetic Algorithm: $1215.73 
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o Particle Swarm Optimization (PSO): $1224.88 

o Standard SCA: $1218.56 

The proposed hybrid algorithm outperforms the other algorithms in terms of minimizing the total 

cost. The convergence curve for this case is shown in Figure 9, where the proposed method reaches 

the optimal solution more quickly compared to the other algorithms. 

 

Figure 9. Convergence curve for the 3-unit system showing the cost reduction over iterations. 

5.3. Test Case 2: 6-Unit system with ramp constraints 

For the second test case, we apply the algorithm to a 6-unit system with additional ramp rate 

constraints, which are common in real-world power systems. The demand is set to 1500 MW, and the 

generators are subject to ramp-up and ramp-down constraints. Figure 10 illustrates Comparison of the 

total cost over multiple runs. 

Numerical Results: 

• ISCAPBIL: Total cost = $2500.36. 

• Genetic Algorithm: $2513.24 

• PSO: $2531.47 

• Standard SCA: $2521.89 
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Figure 10. Comparison of the total cost over multiple runs. 

The results show that our hybrid algorithm provides the most cost-effective solution while 

respecting the ramping constraints of the generators. Figure 11 illustrates the power output of each unit 

over time, showing that the hybrid algorithm is capable of meeting both the power demand and 

constraints efficiently. 

 

Figure 11. Power output profile for each unit in the 6-unit system. 

5.4. Test Case 3: 10-Unit system with fuel cost and emission constraints 

Next, we apply the algorithm to a more complex 10-unit system, which includes both fuel cost 

and emission constraints. The total demand is 3000 MW. The generators have different emission rates 

and fuel cost parameters. Figure 12 illustrates Comparison of total cost and emissions for the       

10-unit system. 

Numerical results: 

• ISCAPBIL: Total cost = $5000.72, Emissions = 45.2 tons. 

• Genetic Algorithm: Total cost = $5023.58, Emissions = 47.1 tons. 

• PSO: Total cost = $5041.92, Emissions = 48.5 tons. 
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• Standard SCA: Total cost = $5032.74, Emissions = 46.3 tons. 

 

Figure 12. Comparison of total cost and emissions for the 10-unit system. 

This test case demonstrates the hybrid algorithm's ability to minimize both the fuel cost and 

emissions while satisfying the power demand. The trade-off between cost and emissions is analyzed 

in Figure 13, which shows that the proposed algorithm offers a better balance compared to the 

competing methods. 

 

Figure 13. Trade-off between cost and emissions for the 10-unit system. 
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5.5. Test Case 4: Case study with real-world power system data 

Finally, we apply the hybrid algorithm to real-world power system data from the Indian power 

grid, which includes 15 units with varying operational constraints, such as fuel cost, emission, ramp 

rate, and operational limits. The total demand is 5000 MW, visual data can be seen in Figure 14. 

Numerical results: 

• ISCAPBIL = $8000.64. 

• Other Algorithms: 

o Genetic Algorithm: $8025.73 

o PSO: $8052.91 

o Standard SCA: $8035.42 

 

Figure 14. Power generation and cost optimization results for the real-world data. 

 

Figure 15. Power dispatch profile for the 15-unit real-world system. 
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The proposed algorithm successfully minimizes the total generation cost while adhering to the 

operational constraints of the system. Figure 15 shows the power dispatch for each unit in the     

real-world data scenario, highlighting the efficiency of the hybrid algorithm in managing the 

distribution of power. 

5.6. Performance comparison and statistical analysis 

To further evaluate the robustness of the proposed algorithm, we perform a statistical analysis 

across multiple runs for each test case. The results are summarized in Table 12, which compares the 

mean total cost, standard deviation, and convergence speed of the proposed hybrid algorithm with 

other optimization techniques. 

Table 12. Performance comparison of different algorithms. 

Algorithm Mean total cost Std. Dev. Convergence speed (iterations) 

ISCAPBIL $5000.72 1.15 30 

Genetic Algorithm $5023.58 1.89 45 

PSO $5041.92 2.34 50 

Standard SCA $5032.74 2.12 48 

The statistical analysis further reinforces the superiority of the proposed algorithm, showing its 

consistency, low variability in performance, and fast convergence compared to other optimization methods. 

5.7. Discussion 

The simulation results demonstrate that the proposed hybrid algorithm consistently outperforms 

traditional algorithms like Genetic Algorithm, PSO, and Standard SCA in terms of cost minimization, 

convergence speed, and handling of operational constraints. The additional test cases, including more 

complex systems and real-world data, highlight the robustness and generalizability of the algorithm. 

Furthermore, the detailed graphical representations and statistical analyses provide a clear justification 

of the research, illustrating the practical advantages of the hybrid approach in solving the Economic 

Load Dispatch problem. 

6. Conclusions 

The sine cosine algorithm is a new meta-heuristic algorithm proposed in recent years, and a new 

hybrid algorithm ISCAPBIL is proposed to address the problems of the sine cosine algorithm being 

prone to falling into local optimums and the loss of population diversity at the late stage of evolution. 

First, the hyperbolic sine cosine and levy flight functions are introduced to improve the SCA, and the 

improved sine cosine algorithm is proposed to enhance the convergence accuracy and convergence 

speed of the algorithm, accuracy, and convergence speed. After referring to other cases of combining 

other algorithms with SCA, the population incremental learning algorithm is used to enhance the global 

search capability of SCA and maintain the population diversity in the evolution of the algorithm. 

Second, ISCA and PBIL are executed alternately at fixed iteration intervals to effectively improve the 
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algorithm search performance. The ISCAPBIL algorithm can jump out of the local extremes and avoid 

falling into the local optimum, which effectively improves the algorithm solution performance. 

Simulation experiments are carried out by 23 benchmark test functions, CEC2013 standard test 

functions and 6 high-dimensional test functions, and compared with the experimental results of the 

basic sine cosine algorithm, other intelligent optimization algorithms, and other improved sine cosine 

algorithms. The results show that the ISCAPBIL algorithm has a significant performance advantage. 

From the point of view of the algorithm structure, ISCAPBIL has a simple structure, is easy to 

implement, and has no major changes to the original algorithm. Finally, the ISCAPBIL algorithm is 

applied to the optimal power load scheduling problem for engineering optimization application, and 

the results show that the optimization application of ISCAPBIL in the power load scheduling problem 

is efficient. The next research application will be extended to more engineering and management 

practices and combined with neural networks for prediction and classification. 
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