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Abstract: In the context of sustainable energy development to reduce carbon emissions, the 

application of new energy sources and smart grid technologies in power systems is becoming more 

widespread. However, current research results on power system technology strategies for carbon 

emission reduction are not satisfactory. To address this problem, a model for optimal power system 

operation and scheduling based on the prediction error mechanism and synthetic fuel technology is 

proposed. The model used the carbon trading mechanism to further reduce carbon emissions and the 

carnivorous plant algorithm to optimize the scheduling strategy. The results indicate that the model 

demonstrates significant advantages in terms of carbon emission, total operating cost, prediction 

accuracy, and energy utilization efficiency, respectively, at 60.8 kg, 2517.5 yuan, 96.5%, and 90.2%, 

indicating that it utilizes energy more fully and helps to enhance the overall energy efficiency of the 

system. The calculation time of the optimized power system was only 12.5 s, the stability was as high 

as 98.7%, and the satisfaction rate was 95.6% in terms of user satisfaction. Compared to other 

contemporary designs, the proposed model can successfully reduce the system's carbon emissions 

while increasing energy efficiency. The model has positive implications for smart grid and 

sustainable development. 

Keywords: sustainability; carbon emission reduction; smart grid; operation optimization; new energy; 

carbon trading 

 

Abbreviations: CE: carbon emission; PG: power generation; IES: integrated energy system; RE: 

renewable energy; PS: power system; SOAs: swarm optimization algorithms; CPA: carnivorous plant 

algorithm; OS: optimization strategy; CT: carbon trading; EB: electric boiler; GSHP: ground source 
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heat pump; MMV: maximum and minimum values; OF: objective function 

1. Introduction 

With the increasing global concern about climate change and environmental protection, the 

development of sustainable energy with carbon emission (CE) reduction has become an important 

issue for countries around the world. In this context, the importance of smart grid technology as a key 

tool to promote energy system transformation has become more and more prominent [1].       

Priyanka E B et al. proposed an oil transportation monitoring system in an attempt to explore the 

application of smart grid technology in oil transportation. The system deliberately placed sensors, 

measurements, and instrumentation on a long transportation pipeline to locate the areas that needed to 

be cleaned for oil transportation through wireless communication combined with smart grid and the 

introduction of cloud computing technology. The method achieved 90% localization accuracy [2].  

Pal R et al. addressed the rising cost of energy consumption and greenhouse gas emissions in the 

automotive industry by proposing an energy management strategy based on smart grid technology. To 

achieve the best scheduling for charging and discharging electric vehicles, the strategy made use of 

several intelligent systems and various integration strategies in a smart grid. The results indicated that 

the method was able to manage energy efficiently using sensor technology as well as communication 

technology [3]. Lopez J et al. suggested a network fault prediction and detection method considering 

context-aware capabilities and simulation techniques for protecting network security issues in smart 

grid systems. At the same time, it applied the digital twin technique to the formulation of access control 

policies. The results indicated that the method could realize long-term autonomous and self-learning 

grid security protection [4]. 

In recent years, governments worldwide have been actively taking measures to significantly 

improve the global energy structure. The world may achieve green development by utilizing an 

integrated energy system (IES) that is safe, secure, and efficient, which can be achieved through the 

organic combination of various energy sources [5]. With the rapid development of wind and solar 

power generation (PG) technologies, they have become an important part of renewable energy (RE). 

However, due to their high cost, they are also becoming more and more difficult to apply in    

practice [6]. Energy waste resulting from the unpredictable, erratic, and irregular character of solar and 

wind energy can be efficiently addressed by implementing the proper energy reserve technology [7]. 

To present the advantages as well as the performance of energy storage technologies utilizing hydrogen 

and metal hydrides, Tarasov B P et al. statistically analyzed the existing literature in the related field. 

The outcomes revealed that AB5-type and ab2-type intermetallic compounds have better storage in the 

hydrogen system. Moreover, it utilized this property to develop hydride-based energy storage 

components [8]. Diaz I U et al. suggested a methodology to ascertain the best way to choose and 

schedule distributed energy sources in order to evaluate their operational viability as an energy storage 

system in a microgrid. The findings showed that introducing hydrogen into microgrids was not 

practical due to the high investment costs at the moment. Microgrids may be made more affordable if 

environmental costs and commercial prospects are taken into account [9]. While new energy 

integration can mitigate CEs to some extent, an IES will optimize and co-manage fossil fuels to protect 

the demand for electricity and improve the quality of PG of the new energy grid-connected     

system [10]. Hydrogen, as a renewable, non-polluting, and sustainable energy source, has a very high 

energy efficiency and does not produce carbon dioxide. Abomazid A M et al. applied the method of 
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water electrolysis to generate renewable hydrogen to the grid energy management system in an attempt 

to increase the utilization of RE. By incorporating a hydrogen production system, the strategy 

decreased the cost of producing hydrogen and achieved optimal scheduling of photovoltaic and battery 

storage systems. The results demonstrated that the method reduced the system operating costs by more 

than 10% [11]. In an integrated power and hydrogen system, Shao C et al. suggested a PHS optimal 

operation method that uses hydrogen tube trailers for transportation to increase the efficiency of 

hydrogen supply. The power system (PS), transportation system, and variable RE constraints were also 

combined to propose a strategic coordinated hydrogen generation scheme. The results indicated that 

the method could effectively coordinate hydrogen generation, transportation, and demand [12]. With 

the development of the Internet of Things, its application in the smart grid is becoming more and more 

extensive. To further explore the intelligent authorization based on B5G technology in the smart grid, 

Qays Moo et al. proposed the use of digital twin technology to enhance the safety and efficiency of the 

system. By simulating and analyzing the operating state of the power grid, the real-time monitoring 

and management of power grid devices were realized. The experimental results showed that the 

application of this technology was helpful to improve the reliability and security of the smart grid, and 

at the same time provided new ideas and methods for smart authorization [13]. In summary, the 

application of Internet of Things technology to smart energy systems will further improve the planning 

effect. Although hydrogen has high cleanliness and high efficiency, it still faces many challenges in 

production, storage, transportation, conversion, and utilization in practical applications [14]. 

To address this situation, the study uses synthetic fuel technology and swarm optimization 

algorithms (SOAs) to design the energy allocation and CE reduction methods in the smart grid. The 

study aims to overcome the further enhancement of the sustainable CE reduction energy capability of 

the PS. The novelty of the study lies in the mathematical modeling of CE reduction and equipment 

operation principles. An SOA is used to further optimize the operation of the PS. In addition, a new 

approach to CE reduction is proposed by introducing synthetic fuel technology from both economic 

and environmental perspectives. It further reduces the CE from the PG process while ensuring the 

stability of the PS. The novelty and contribution of this study are as follows: Based on a SOA, a model 

for reducing CEs in a smart grid is proposed. The objective is to optimize the operation of the PS, 

reduce CEs, and improve energy utilization efficiency. The introduction of synthetic fuel technology 

provides a new idea and method for CE reduction in smart grids. By comprehensively considering 

economic and environmental protection factors, an innovative CE reduction method is proposed, 

which provides a new solution for the sustainable development of smart grids. The specific research 

gaps are shown in Table 1. 

The research is broken up into four parts. The first part is the introduction, which provides an 

overview of the direction and state of the research as well as a list of issues and potential paths for 

further investigation. The second part is the methodology section, which realizes CE reduction and 

energy management in the smart grid system by building mathematical models and artificial 

intelligence algorithms. The third part is the experimental section, which analyzes the performance of 

the designed methods. The fourth part is the conclusion section, which synthesizes the research 

methodology and experimental results, summarizes the research content, and proposes an outlook for 

future research work. 
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Table 1. Research gap. 

Research field Existing problems 

Smart grid technology application 

Accuracy needs to be improved, energy management methods need to be 

further optimized, and cybersecurity protection technologies need to be 

more autonomous and self-learning. 

New energy grid-connected system 

The power generation quality of grid-connected new energy systems is 

unstable, and the optimization and collaborative management of fossil 

fuels needs further research. 

Hydrogen energy application and energy 

storage technology 

Hydrogen production, storage, transportation, conversion, and utilization 

are facing challenges. 

The application of Internet of Things 

technology in smart grid 

The application of IoT technology in smart grids still needs to improve 

reliability and security. 

2. Methods and materials 

In the context of sustainable CE reduction energy development, the study proposes an integrated 

energy PS to further reduce CEs from fossil fuels. Based on this, the study introduces a prediction error 

mechanism and carnivorous plant algorithm (CPA) to optimize the energy system operation. The CE 

profile of the PS is then further optimized based on the synthetic fuel model. 

2.1. Operational optimization strategy for introducing prediction error mechanism and improving CPA 

New energy PG is very different from traditional thermal and gas PG in that its output is highly 

intermittent and random. This results in uncertainty surrounding network regulation, which in turn 

causes the issue of growing scheduling complexity and prediction difficulty in PS [15,16]. To address 

this problem, the study suggests an IES operation optimization strategy (OS) based on prediction error 

mechanism and CPA. To ensure the environmental friendliness of the IES, the study also takes the carbon 

trading (CT) mechanism into account in the OS. Figure 1 depicts the IES's organizational structure. 
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Figure 1. The proposed integrated energy system structure. 
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The research uses smart grid technology to track real-time PG in the IES in Figure 1 and then 

uses the tracking information to inform the operation optimization plan. In addition, the study takes 

wind, photovoltaic, and geothermal energy as non-primary power supply units based on the 

consideration of time-sharing tariffs, battery life, and other factors. Therefore, the PS's running costs 

are further decreased. The ground source heat pump (GSHP) and the electric boiler (EB) are the two 

components in the IES that the study suggests require regulation. Therefore, the study develops 

mathematical models for these two devices as well as a model for the prediction error mechanism. The 

energy conversion model of the EB is shown in Eq (1). 

eb eb

min max

eb eb eb

H P

H H H

=


 
           (1) 

In Eq (1), ebH  is the heat produced by the EB. ebP  is the input electric power of the EB. max

ebH  

and min

ebH  are the maximum and minimum values (MMV) of heat produced by the EB, respectively. 

  is the electric heat conversion rate, which is set to 0.92 for this study. The calculation of the output 

electric energy and heat recovery energy of the GSHP is shown in Eq (2). 
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In Eq (2), gtP  and geP  are the output electrical energy and heat recovery energy of the GSHP, 

respectively. max

gtP  and min

gtP  are the MMV of output energy. hCOP  is the heating efficiency ratio of 

the GSHP. gtZ   is the cooling and heating state of the GSHP. h   is the heat recovery efficiency. 

Numerous factors influence the PG efficiency of RE including photovoltaics and wind power. 

Additionally, there are some mistakes in the expected output. Therefore, the study will segment the 

exponential distribution to represent its prediction error. The distribution probability density function 

is shown in Eq (3). 
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In Eq (3), 0  is the standardized error value corresponding to the maximum probability density 

point of the probability density sequence. 1b   and 2b   are both shape parameters. ( )F x   is the 

segmented exponential distribution probability. The study models the new energy-generating units 

based on the error values. Energy is lost when the real output power of RE exceeds the estimate. 

Therefore, the study introduces the deviation penalty cost, which is calculated as shown in Eq (4). 
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In Eq (4), 1   and 2   are the overestimation and underestimation penalty cost coefficients, 

respectively, which are taken to be 0.58 in this study. plan

newP  and newP  are the predicted and actual 

outputs of RE sources, respectively. devC  is the deviation penalty cost. Furthermore, to constrain the 

CEs, the study incorporates the CT mechanism into the objective function (OF). Equation (5) illustrates 

the CT cost calculation process. 

( ) price

ctc buy c T cC P C p=  −          (5) 

In Eq (5), ctcC  is the cost of CT. TC  is the free carbon credits allocated by the government. c  

is the CE coefficient of purchased electricity, which is taken as 0.285 in this study. buyP  is the amount 

of purchased electricity in the system. price

cP  is the price of carbon credits. The OF as well as the 

constraints of the optimization operation designed by the study are shown in Figure 2. 
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Figure 2. Objective function and constraints on the optimal operation of the research design. 

In Figure 2, the study takes the energy balance constraints as well as the energy storage constraints 

as the constraints for the optimized operation strategy. Moreover, the minimization of operating cost 

by introducing the CT mechanism is taken as the optimization objective of the model [17,18]. In the 

weighting of operating cost, energy storage battery usage cost, and CT cost, the study adopts the 

combination of analytic hierarchy process (AHP) and expert scoring method. First, the relative 

importance of each cost item is determined through expert consultation or analysis of historical data. 

Each cost item is then assigned a weighting factor based on these rankings. Then, AHP is used to create 

a judgment matrix, and the rationality of the judgment is ensured by a consistency test. AHP 

decomposes complex problems into multiple component factors by pairwise comparison and ranks 

and quantifies the relative importance of these factors. After determining the weight coefficients of 

each cost item, the research multiplies these weight coefficients by the corresponding cost items to 

obtain the weighted cost value. The study uses the CPA to determine the optimization of the model's 

scheduling scheme after creating the IES's optimal scheduling model. By attracting, catching, and 

breaking down prey, the CPA heuristic optimization algorithm mimics the actions of carnivorous plants, 

based on the predatory nature of these plants. The algorithm first initializes the possible solutions to 

the problem to be solved and sets these solutions as the positions of the carnivorous plants and prey 

individuals. The CPA then enters an iterative process that simulates the three phases of the predatory 

behavior of carnivorous plants: luring, capturing, and digesting. In the luring phase, the algorithm 

guides the prey to the carnivorous plant using specific strategies. Entering the capture phase, the 
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algorithm then focuses on the screening and retention of high-quality solutions. In the digestion phase, 

the algorithm further processes the captured solutions to extract useful information from them and use 

it to guide the subsequent search [19]. However, the initial population of CPAs is highly uncertain due 

to its random generation within a specific range. Therefore, to enhance the optimization and 

convergence of the algorithm, it needs to be improved so that it can achieve better performance in both 

local exploitation and global exploration. To increase the algorithm's search efficiency and prevent 

local optimization, the study presents two new search strategies: reverse learning and adaptive search. 

The computation of the reverse solution is shown in Eq (6). 

i , j j j i , jIndividual a b Individual = + −         (6) 

In Eq (6), i , jIndividual  and i , jIndividual  are the inverse and forward solutions, respectively. ja  

and jb  are the upper and lower limits of the solution range, respectively. The study is carried out to 

adaptively regulate the growth rate of CPA through an adaptive search strategy, which is calculated as 

shown in Eq (7). 

( ) ( )
2

1 2

max max mingrowth growth growth growth N / N= − −       (7) 

In Eq (7), 1N  and 2N  are the current and maximum iteration numbers, respectively. maxgrowth  

and mingrowth  are the MMV of the growth rate. growth  is the solution result of growth rate. The 

improved CPA process is shown in Figure 3. 
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Figure 3. The improved CPA flow. 

2.2. Carbon emission reduction method for power system based on synthetic fuel modeling 

After developing an operational OS for the IES, the study finds that the system still produces a 

high amount of CEs. To further deal with this, the study considers the chemical synthesis of captured 

carbon dioxide and hydrogen energy. Its ability to produce zero-carbon synthetic materials further 

reduces the CEs in the PG system. The study is conducted by regulating the proportion of wind power 

and photovoltaic power used to provide the electrical load for the electrolysis of water to produce 

hydrogen. The oxygen produced during the electrolysis of hydrogen is then used for coal gasification, 

reducing the electricity consumption of the oxygen generator and further reducing electricity costs. 
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The obtained oxygen is applied to the combustion system, and the carbon dioxide and hydrogen energy 

from combustion are combined to make a synthetic fuel. The flow of the proposed CE reduction 

method for PS based on the synthetic fuel model is shown in Figure 4. 

Purchased 

oxygen

Purchased 

carbon dioxide

Purchased 

hydrogen
Power grid

Rechargeable 

battery

Electrolysis of 

water

Oxygen-rich 

combustion 

power plant

Wind power 

generation

Hydrogen 

storage tank

Electric boiler

Carbon storage 

tank

Heat storage 

tank

Methanol 

synthesis

Oxygen 

storage tank

 

Figure 4. Carbon emission reduction method for power systems based on synthetic fuel modeling. 

In Figure 4, the study modifies the conventional power to gas (P2G) process by coupling it with 

oxygen-enriched combustion technology and renewable fuel synthesis. The study then replaces the air 

by a mixture of oxygen and recycled carbon dioxide, applied in combustion chambers. In the oxygen-

enriched combustion chamber, the introduction of an air-split oxygen generation unit with a carbon 

capture and compression purification unit is evaluated to further improve the gas flow in the chamber. 

Hydrogen energy from electrolytic hydrogen production is then combined with the remaining carbon 

dioxide to obtain a new fuel. The study uses zinc oxide-zirconium dioxide bimetallic solid solution 

oxide as a catalyst to prepare methanol from hydrogen. The methanol synthesis system synthesizes 

methanol under a catalyst by complementing the strengths and weaknesses between the new 

technologies, using green hydrogen, hydrogen from coal gasification, and captured CO2. On the one 

hand, it can be supplied locally to chemical companies in the park. On the other hand, since methanol 

is a relatively stable chemical, it can utilize the current mature oil and gas storage and transportation 

system. Combined with the above, the study introduces a synthetic fuel model to optimize the IES. 

The structure of the optimized scheduling model introduced synthetic fuel model designed by the study 

is shown in Figure 5. 
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Figure 5. Optimized scheduling model structure for synthetic combustion models. 

In Figure 5, the study establishes a two-layer optimization scheduling model. The upper layer 

optimization result of this model mainly combines the weighted annual cost of equipment initial 

investment discounted annual cost as well as fuel cost to obtain the annual cost index of the system, 

which is used as the OF. The operating cost used in the lower layer optimization structure is an 

operating cost function that considers the CT mechanism and the forecast error penalty cost. Based on 

this, the lower-tier equipment capacity is optimally allocated. CT schemes provide economic 

incentives for the integration and utilization of RE sources in the electricity system by establishing a 

price on CEs. CT schemes establish a market environment conducive to the reduction of greenhouse 

gas emissions. This is achieved by establishing a cap on CEs and facilitating the purchase and sale of 

CE rights. To reduce the cost of CEs, companies will tend to invest in cleaner and more efficient energy 

technologies. This economic incentive drives companies to seek alternatives to fossil fuels, thereby 

driving the development and deployment of RE technologies. Second, CT indirectly reduces the 

relative cost of renewable electricity generation by increasing the cost of fossil fuel generation. As a 

result, the share of RE in the electricity market will gradually increase, contributing to the 

transformation of the energy structure. 

Nevertheless, it is possible that CT schemes may present certain challenges to the advancement 

of RE. For instance, if the initial distribution of carbon permits is excessively lenient or if the cost of 

carbon is set at an unduly low level, the motivation for CT schemes to diminish CEs will be 

significantly diminished. In addition, the CT market can be subject to speculation, leading to 

fluctuations in the price of carbon, which in turn affects the expected return on investment for RE 

projects. The CT mechanism is considered as an important object in the scheduling optimization 

process, and it is introduced into the OF of the lower tier. Figure 6 illustrates the CT principle as well 

as the connection between trading volume and CT pricing. 
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Figure 6. The principle of carbon trading and the relationship between carbon trading price 

and trading volume. 

In Figure 6(a,b), the government usually provides an initial carbon allowance. However, if firms’ 

actual emissions are lower than this limit, they have the option to sell the remainder to the market. If 

firms’ actual emissions exceed the limit provided by the government, they have to buy additional 

carbon allowances in the CT market. The amount of CT increases as the price of CT rises. The 

calculation method of the transaction model in Figure 6(b) is shown in Eq (8). 
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    (8) 

In Eq (8),   is the increase coefficient of carbon price in each ladder.   is the carbon price in 

the CT market. d  is the length of each CE interval. 
pC  and lC  are the total CE and system CE 

quota respectively. CO2C  is the CT cost. To address this, the study constructs a stepped CT model, 

which categorizes the difference between CEs and carbon allowances into a number of levels. This 

method can regulate the CT market. To summarize the above, the study introduces the prediction error 

mechanism and CPA to propose an integrated energy PG system to further reduce the CE of fossil fuels. 

Subsequently, the synthetic fuel model is utilized to further enhance the PS's CE profile. Finally, the 

study establishes a stepped CT model based on CT characteristics to further regulate the CT market. 

The overall process of researching and proposing the method is shown in Figure 7. 
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Figure 7. The overall process of the proposed method. 

As shown in Figure 7, the research first predicts the PG efficiency of RE sources such as 

photovoltaic and will segment the exponential distribution to represent its prediction error. Based on 

this, an improved CPA algorithm is used to optimize the operation of the IES, which could minimize 

the carbon footprint while maintaining or improving energy efficiency. The synthetic material is then 

synthesized from the captured carbon dioxide and hydrogen produced by electrolysis of water using 

RE sources such as wind and solar power. The oxygen produced in the electrolysis process is employed 

in the gasification process, which not only diminishes the energy consumption associated with oxygen 

production but also contributes to the comprehensive carbon reduction strategy, integrating synthetic 

fuel models into optimized planning models that balance initial investment costs and operating costs, 

including those associated with CT. The final stage of the approach is to create a tiered CT model that 

divides the difference between CEs and allowances into different tiers. This model aims to provide a 

structured approach to CT, making the market more controlled and predictable. In conclusion, the study 

proposes a comprehensive approach to reduce CEs from PSs by combining predictive error 

mechanisms, optimization algorithms, synthetic fuel production, and structured CT models. 

3. Results 

To examine the application value of the proposed method in CE reduction and optimal scheduling 

of PS operation, the study designs a series of experiments to analyze its performance. 

3.1. Prediction error mechanism and CPA application rationalization analysis 

The study uses simulation software to model the experiments in order to verify the reasonableness 

and superiority of the method proposed. This study introduces the prediction error mechanism and 

CPA in the optimal scheduling of the IES. To test the reasonableness of the method in the optimal 

scheduling strategy, the study compares the changes in the prediction accuracy of each unit in the 
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system before and after the introduction of the prediction error mechanism. The details are shown    

in Figure 8. 
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Figure 8. The change of prediction accuracy of each unit in the system before and after 

the introduction of prediction error mechanism. 

In Figure 8(a,b), after the introduction of the prediction error mechanism, the prediction accuracy 

of the units in the system is significantly improved for both typical winter and summer days. The 

prediction accuracy of each unit is improved by about 10% on average for typical winter days, while 

it is improved by about 8% on average for typical summer days. This suggests that the introduction of 

a forecast error mechanism can more accurately predict the load demand of the system, thereby 

reducing energy waste and CEs due to inaccurate forecasts.  

Further, the study utilizes CPA for optimization of the running scheme and introduces the inverse 

solving strategy and adaptive search strategy to improve the CPA. To check the improvement effect of 

the algorithm, the study compares the fitness value of the algorithm before and after the improvement 

as well as the training of the solution accuracy. Figure 9 presents the findings. 
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Figure 9. Fitness value and solving accuracy of CPA before and after improvement. 
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In Figure 9(a), before the improvement, the fitness value of CPA fluctuates greatly and converges 

slowly, which means that the algorithm is less efficient in the process of finding the optimal solution. 

After the improvement, the fitness value of CPA becomes significantly more stable, and the 

convergence speed is significantly improved, which starts to converge after only 18 iterations. In 

Figure 9(b), the solution accuracy of the improved algorithm rises rapidly at the beginning of training 

and remains at a high level. 

To test the reasonableness of the study in applying the CT cost as well as the deviation penalty 

cost to the OF in the model, the study compares the CE situation and energy consumption of the scheduling 

only applying the deviation penalty cost (Scenario 1) and considering the CE cost (Scenario 2), as well as 

applying the two at the same time (Scenario 3). The results are shown in Figure 10. 
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Figure 10. Effect analysis of carbon trading cost and deviation penalty cost in the objective function. 

In Figure 10(a), Scenario 3 also shows significant superiority in terms of energy consumption. 

Since both CT cost and deviation penalty cost are taken into account, the system is able to allocate 

various energy resources more reasonably, ensuring efficient utilization and maximizing energy 

consumption. In Figure 10(b), among the three scenarios, the CE content of Scenario 3 is significantly 

lower compared with Scenario 2 and Scenario 1, and the difference between Scenario 3 and   

Scenario 2 is relatively small. The total CE of Scenario 3 is 455 kWh. 

3.2. Improved training of optimized scheduling models for integrated energy systems 

In order to further reduce CEs in the IES and to ensure lower operating costs, a system scheduling 

balance is achieved. The study introduces a synthetic fuel model to optimize the scheduling of the PS. 

To test the performance of the improved CE reduction and scheduling optimization model, the study 

takes a typical industrial park in A as an example and inputs its parameters into the simulation model 

for simulation analysis. To examine the reasonableness of introducing the synthetic fuel model into the 

improved model, the study compares the capacity optimization results of the model before and after the 

improvement. The details are shown in Figure 11. 
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(a) Carbon storage capacity
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Figure 11. The capacity optimization results are compared before and after the improvement. 

In Figure 11(a), the pre-improved model has a higher carbon storage tank capacity because it is 

not able to consume carbon dioxide in the system since it does not introduce the synthetic fuel model. 

In Figure 11(b,c), the improved model fully utilizes the carbon dioxide and oxygen produced in the 

system after introducing the synthetic fuel model. This produces more electrical and thermal energy, 

so the electrical and thermal capacity is higher. This indicates that the improved optimized dispatch 

model of the IES achieves effective utilization of carbon dioxide and oxygen in the system by 

introducing the synthetic fuel model. This significantly improves the electrical and thermal energy 

production capacity of the system. The results of the operation in the system before and after the 

introduction of the synthetic fuel model improvement are compared in Table 2. 

Table 2. Comparison of operation results of the model before and after improvement. 

Project 
Total cost 

(yuan) 

Wind power 

consumption (kWh) 

Photoelectric 

consumption (kWh) 

Power to 

gas input 

power 

(kWh) 

Carbon 

emission (kg) 

Before 

improvement 
3065.4 15947.2 5798.2 6853.4 2058.0 

After improvement 2517.5 16898.4 7377.3 5188.4 60.8 

Decline range −547.9 +951.2 +1579.1 −1665.0 1997.2 
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In Table 2, the total cost of the system decreases significantly by 17.8% after the introduction of 

the synthetic fuel model. Meanwhile, wind and photovoltaic power consumption increased        

by 951.2 kWh and 1579.1 kWh, respectively, showing the higher acceptance of RE in the system. The 

power to natural gas input decreased by 1665.0 kWh. This may be attributed to the fact that the 

production process of synthetic fuels directly utilizes carbon dioxide and oxygen in the system, 

reducing the dependence on the power of the natural gas conversion process. The CE of the system 

plummeted from 2058.0 to 60.8 kg, a reduction of 97.0%. This result demonstrates the great potential 

of the synthetic fuel model in reducing CEs. 

To further examine the performance of the PS optimization model (Model 1) proposed in the 

study, the study compares it with several more popular models. The comparison model includes the 

model in [20] (Model 2), the model in [21] (Model 3), the model in [22] (model 4), the model       

in [23] (model 5), and the model in [24] (model 6). The comparison metrics include CE, total operating 

cost, prediction accuracy, and energy utilization efficiency. Table 3 displays the outcomes of       

the comparison. 

Table 3. Performance comparison between the proposed model and existing models. 

Model 
Carbon emission 

(kg) 

Total operating cost 

(yuan) 

Prediction accuracy 

(%) 

Energy utilization 

efficiency (%) 

Model 1 60.8 2517.5 96.5 90.2 

Model 2 1200.0 2800.5 92.0 85.0 

Model 3 850.4 2650.2 93.8 87.4 

Model 4 900.5 2699.9 93.5 86.0 

Model 5 610.7 2600.3 93.9 88.0 

Model 6 928.5 2712.6 92.1 85.4 

As shown in Table 3, Model 1 performs particularly well in terms of CE, which is only 60.8 kg, 

which is about 53.3%, 92.8%, 93.2%, 54.6%, and 93.5% lower than the other five models, respectively. 

This indicates that Model 1 has significant advantages in reducing CE during PS operation. In terms 

of total operating cost, Model 1 also performs well, with a cost of 2,517.5 yuan, which is        

about 10.1%, 5.4%, 6.8%, 3.6%, and 7.6% lower than Model 2, Model 3, Model 4, Model 5, and   

Model 6, respectively. This shows that Model 1 also has certain advantages in terms of economy. In 

terms of prediction accuracy, Model 1 is 96.5%, higher than Model 2, Model 3, Model 4, and    

Model 6, and only slightly lower than Model 5, at 96.7%. This indicates that Model 1 has a high 

accuracy in predicting future electricity demand and supply. Finally, in terms of energy use efficiency, 

Model 1 has an efficiency of 90.2%, which is higher than the other five models by 5.2%, 2.8%, 4.2%, 2.2%, 

and 4.8%, respectively. This shows that Model 1 also has obvious advantages in improving energy 

efficiency. In summary, Model 1 is superior to the other comparison models in terms of CEs, total cost 

of ownership, prediction accuracy, and energy utilization efficiency, demonstrating its superior 

performance in PS optimization. 

To further highlight the advantages of the proposed method (Method 1), the method in   

reference [25] (Method 2) and the method in reference [26] are added. The comparison metrics include 

calculation speed, system stability, user satisfaction, and scalability. The results of the comparison are 

shown in Table 4. 
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Table 4. Performance comparison between the proposed method and existing methods. 

Method Calculation speed (seconds) System stability (%) User satisfaction (%) Scalability 

Method 1 12.5 98.7 95.6 Excellent 

Method 2 25.3 95.4 90.2 Good 

Method 3 18.6 97.1 93.4 Good 

As shown in Table 4, in terms of calculation speed, Method 1 has the best performance, and its 

calculation time is only 12.5 s, which is 50.6% and 32.8% higher than Method 2 and Method 3, 

respectively. This shows that Method 1 is more efficient when dealing with large amounts of data. In 

terms of system stability, Method 1 also performs well, with a stability of 98.7%, which is higher than 

the 95.4% and 97.1% of Methods 2 and 3, respectively. This shows that Method 1 can maintain high 

stability over a long period of time. In terms of user satisfaction, Method 1 also achieved a high rating, 

with a satisfaction rate of 95.6%, higher than Method 2 and Method 3 (90.2% and 93.4%). This 

indicates that users are more satisfied with the experience of using Method 1. Finally, in terms of 

scalability, Method 1 is rated “excellent”, better than the “good” ratings for both Methods 2 and 3. This 

indicates that Method 1 is more adaptable to system expansion and upgrades. 

4. Discussion and conclusions 

Aiming at the poor energy utilization and high CE in the current PS, the study proposed a PS 

dispatch optimization model based on the prediction error mechanism and CPA and synthetic fuel 

technology. The model aimed to improve energy utilization in the PS, maintain the stability of the PS, 

and reduce the CE. The experimental results indicated that with the introduction of the prediction error 

mechanism, the prediction accuracy of each unit in the system was significantly improved for both 

typical winter and summer days. The introduction of the synthetic fuel model in the improved model 

fully utilized the carbon dioxide and oxygen produced in the system. It produced more electrical and 

thermal energy, resulting in higher electrical and thermal capacity. The improved IES optimal dispatch 

model achieved effective utilization of carbon dioxide and oxygen in the system by introducing the 

synthetic fuel model. With the introduction of the synthetic fuel model, the total cost of the system 

decreased significantly by 17.8%. Meanwhile, the consumption of wind power and photovoltaic power 

increased by 951.2 and 1579.1 kWh, respectively. In addition, the CE of the system decreased 97.0%, 

from 2058.0 to 60.8 kg. Compared with other existing models, the CE, total operating cost, prediction 

accuracy, and energy utilization efficiency of Model 1 were 60.8 kg, 2517.5 yuan, 96.5%, and 90.2%, 

respectively. The calculation time of Method 1 was only 12.5 s, and the system stability reached 98.7%. 

The integration of PS with other energy systems such as heat and cold energy could achieve 

comprehensive utilization and optimal allocation of energy. To further enhance the performance and 

sustainability of PSs, future research could investigate the development of a multi-energy system 

integration framework to optimize the efficiency and sustainability of the overall energy system. 
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