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Abstract: Partial discharge (PD) is a significant electrical fault in gas-insulated switchgear (GIS), with 
various types posing different risks to insulation. Accurate identification of PD types is essential for 
enhancing GIS management and ensuring the reliability of electrical grids. This study proposes a novel 
approach for PD identification in GIS integrating completed local binary pattern (CLBP) feature 
extraction, feature engineering, and an optimized support vector machine (SVM). PD faults were 
simulated in GIS and phase-resolved pulse sequence (PRPS) data for four different forms of PD were 
gathered. CLBP was used to extract image features, and then the support vector machine recursive 
feature elimination (SVM-RFE) algorithm was used to evaluate feature importance. Then, linear 
discriminant analysis (LDA) was used to fuse the selected features and reduce redundancy. The 
fused features were classified using a bald eagle search algorithm combined with differential 
evolution (IBES)-optimized SVM, achieving a recognition accuracy of 99.38%. The results indicate 
that the proposed method effectively distinguishes between different PD PRPS patterns in GIS. 

Keywords: phase-resolved pulse sequence; gas-insulated switchgear; support vector machine; 
intelligent optimization algorithm; local binary patterns 
 

1. Introduction  

Gas-insulated switchgear (GIS) has the advantages of large capacity, high reliability, and 
environmental friendliness, making it widely used in modern power systems [1]. During manufacturing, 
transportation, assembly, and operation of GIS, insulation defects may arise due to human factors and other 
variables, which can worsen under high voltage conditions and lead to partial discharge (PD) [2,3]. 
Detecting partial discharge enables timely identification of insulation defects within GIS equipment, 
preventing serious equipment failures [4]. 
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The ultra-high frequency (UHF) method uses UHF sensors to detect electromagnetic waves 
emitted during the PD processes for efficient detection [5]. The UHF method characterizes high 
sensitivity and strong resistance to electromagnetic interference. However, the ultra-high frequency 
signals are complex and require a combination of signal processing and pattern recognition techniques 
to enhance the recognition accuracy of partial discharge categories [6]. 

The commonly used recognition models currently include machine learning models such as 
support vector machines [7,8], extreme learning machines [9,10], and deep learning models such as 
convolutional neural networks (CNN) [11–13]. In [14] the phase-resolved pulse sequence (PRPS) 
image of partial discharge pulse signals was enhanced using contrast-limited adaptive histogram 
equalization. Then, uniform local binary mode was used to extract features from the enhanced PRPS 
image. Finally, it is fed into the Adaboost classifier, improving recognition accuracy and training 
efficiency. Considering single PD data and noisy PD data, authors in [15] used the SURF algorithm to 
extract PRPS grayscale image features combined with K-means to extract visual word frequency 
features and finally input the extracted image features into the bacterial foraging algorithm-improved 
support vector machine (BFO-SVM) model to achieve partial discharge type recognition. In [16], the 
authors proposed a method for GIS partial discharge identification combining Zernike and improved 
SVM. By extracting PRPS image features using Zernike moment and employing an optimized SVM, an 
identification accuracy of 91.23% was achieved. In [17], authors introduced a UHF data preprocessing 
method based on projection, using PRPS images, partial discharge pattern detector (PRPD) images, and 
projection images as input data for CNN, achieving good identification results. In [18], a GIS partial 
discharge identification method was proposed, based on a histogram of oriented gradient (HOG) 
image features and a naive Bayes classifier, which has a relatively simple preprocessing and training 
process. In [19], a GIS partial discharge identification method based on deep convolutional neural 
networks was introduced, which improved model recognition performance by constructing complex 
datasets. In [20], authors proposed a novel hybrid meta-learning method for insulation defect diagnosis 
in small sample GIS, which can achieve good recognition performance even under small sample 
conditions. In [21], a metric-based meta-learning approach was proposed, which significantly 
improves over traditional methods under a few sample conditions. 

A significant issue in GIS partial discharge model training is the lack of training data. SVM is 
highly applicable in small sample scenarios. However, the recognition accuracy of SVM models is 
influenced by the parameters c and g. Manual parameter tuning is inefficient, and using intelligent 
optimization algorithms to search for parameters can effectively improve model recognition accuracy. 

To reduce the cost of model training, it is necessary to extract features from PRPS images. 
However, extracted features may have a weak correlation with the category of partial discharge, which 
may affect the recognition accuracy. Therefore, it is necessary to evaluate the importance of features 
and select the most important ones. In addition, to reduce redundancy in feature data, the selected 
features should be fused before inputting into the recognition module. 

The main contributions of this paper are as follows: 
(1) To address the issue of redundancy in image features, this paper proposes a feature processing 

method combining support vector machine-recursive feature elimination (SVM-RFE) with linear 
discriminant analysis (LDA). This method effectively eliminates redundant features, significantly 
reducing the complexity of the model and lowering computational cost. 

(2) Proposes an improved bald eagle search algorithm combined with differential evolution (IBES), 
enhancing the search process’s performance. The IBES-SVM model demonstrates superior recognition 
performance compared to other benchmark methods. 

(3) Through partial discharge simulation experiments, PRPS spectrograms for various types of 
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GIS partial discharges were collected. The experimental results show that the proposed method can 
effectively identify different types of partial discharges, providing a novel approach for GIS partial 
discharge diagnosis. 

2. Methods 

2.1. Feature extraction of PRPS images based on CLBP 

The CLBP [22] extracts image features by comparing the values of the center pixel and domain 
pixels after image segmentation. If the domain value is larger than the center point, it is 1; otherwise, 
it is 0. The three operators CLBP-C, CLBP-S, and CLBP-M reflect the grayscale value, sign 
information, and amplitude information of the central pixel in the image. The expressions for these 
three operators are: 
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In the formulas, gc represents the center pixel of a certain point, cI represents the average grayscale 
value of image pixels, and c is the adaptive threshold represented by the mean of mp in the entire image. dp 
is a local difference vector between a central pixel and P neighboring values, where sp and mp are the 
sign and amplitude values of dp, respectively. 

2.2. PRPS image feature selection based on SVM-RFE 

The high dimensionality of image features leads to feature redundancy, so it is necessary to rank 
the importance of these features and select the most important ones to improve the accuracy and speed 
of GIS partial discharge recognition models. 

SVM-RFE [23,24] is a feature selection method combining SVM with RFE, where the weight of 
each feature reflects its impact on the classification results. SVM-RFE ranks features based on their 
weights and iteratively eliminates less important features while retaining important ones. The detailed 
steps for selecting features from GIS partial discharge images using SVM-RFE are as follows: 

Step 1: Input feature data  1 2, , ,
T

nF f f f  and label data  1 2, , ,
T

nL l l l  . 

Step 2: Initialize feature importance  1 2, , , nW w w w   and reordered feature importance

* * * *
1 2, , NW w w w    . 

Step 3: Train the input data using an SVM classifier to obtain the weights of the features. 
Step 4: Calculate the cost function of the features: 

     1 1

2 2
T Tf x F U x F U x           （4） 
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In the equations, U is a matrix with elements  ,i j i jl K x x ,  U x is the matrix after eliminating x 
features, and K is the kernel function representing the correlation between xi and xj.  

Step 5: Reorder the features based on the weights
* * * *

1 2, , NW w w w    . 

Step 6: Select the final subset of features 
* * * *

1 2, , nW w w w     based on the SVM 

classification accuracy. 

2.3. Image feature fusion based on LDA 

To further reduce the dimensionality of features, we use LDA [25] to fuse the selected features. 
The specific steps of the LDA dimensionality reduction method are as follows:  

(1) Calculate the n-dimensional mean vectors for each class from the dataset. 
(2) Compute the scatter matrices. 
(3) Calculate the eigenvectors  1 2, , , ne e e  and their corresponding eigenvalues  1 2, , , n  

of the scatter matrices. 
(4) Arrange the feature vectors in descending order based on their eigenvalues, and select the top k 

feature vectors with the largest eigenvalues, forming a d × k dimensional matrix M. 
(5) Map the samples to different subspaces using matrix M and obtain the LDA-reduced feature 

vector matrix Z through matrix multiplication, where Z = X × M and X is the given data matrix. 

2.4. Classifier based on IBES-SVM 

The inspiration for the BES optimization algorithm [26] comes from the hunting behavior of bald 
eagles. The search parameter process includes three stages: defining the search space, searching for 
prey, and capturing prey. To enhance the robustness and global search capability of the BES, this study 
introduces a differential evolution strategy during the iterative process. The specific steps for 
optimizing the IBES algorithm are as follows: 

(1) Determine the search scope. The bald eagle selects the search area, and at this stage, the bald 
eagle updates according to the following formula: 

, ( )i n ew b est m ea n iP P P P           （5） 

In the formula, ,i n ewP  represents the new search position generated for the i-th time, bestP
 is the 

currently determined best search position, meanP
 is the average distribution position of the previous i-1 

searches,   is the control gain [ 1 . 5 , 2 ]  , and is a random number [ 1 , 1 ]   . 
Step 2: Search for prey. The bald eagle searches for prey in the search space, and the formula for 

updating the bald eagle’s position is as follows: 

, 1( ) ( )i n ew i i i i i i m ea nP P y P P x P P            （6） 

In the formula, ( )x i , ( )y i  are the position of the bald eagle in polar coordinates after the i-th update. 
Step 3: Capture prey. During this stage, the bald eagle, who is in the optimal position, and other 

individuals in the population simultaneously attack the prey. The changes in the bald eagle’s position 
during this process are as follows: 

, 1( ) ( 2 ) 1( ) ( 1 )i n ew b est i b est i m ea nP ra n d P y i P c P x i P c P            （7） 
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In the equation, x1i and y1i are the polar coordinates of the bald eagle at this stage; rand is random 
numbers between (0,1); c1 and c2 are the optimal positions for bald eagles to move toward, with the 
intensity of motion at the center position taken as [1,2]. 

Step 4: Differential evolution mainly includes three processes: mutation, crossover, and selection. 
In this article, the specific formula for differential evolution is as follows: 
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In the formula, ,i jV   is the mutated individual, ,b e s t jP   is the j-th dimension of the optimal 
individual, F is the scaling factor, CR is the crossover probability, and f is the fitness function. 
Differential evolution selects individuals with low fitness after cross-mutation to replace the optimal 
solution, bringing the algorithm closer to the global optimal solution. 

2.5. GIS partial discharge diagnosis method based on image feature fusion and IBES-SVM 

This section presents a GIS partial discharge recognition method based on image feature fusion 
integrated with IBES-SVM. The identification process is illustrated in Figure 1. 

PRPS

CLBP_MCLBP_S

Image feature fusion based on 
LDA

Feature data

Start

Initialize BES algorithm 
parameters

Search and update the optimal 
fitness value

Reached maximum number of iterations?

Optimal 
parameters

Identification 
results

Data preprocessing

End

IBES-SVM 
recognition 

model

YES

NO

Feature 
extraction 

Feature selection based on 
SVM-RFE

 

Figure 1. Algorithm flowchart. 
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(1) Extract features from PRPS images using CLBP_M and CLBP_S. 
(2) Employ SVM-RFE with threshold selection to identify the ten most significant features from 

CLBP_S and CLBP_M. 
(3) Apply the LDA algorithm to fuse the image features and eliminate redundant data.  
(4) Normalize and randomly partition it into training and testing sets with a 3:2 ratio. 
(5) Initialize the IBES-SVM model parameters and train the model using the training set. 
(6) Input the test set data into the trained model, then output the recognition results. 

3. GIS partial discharge experiment and map collection 

To demonstrate the superiority of the proposed method in diagnosing GIS PD, four typical 
insulation defects were simulated on the GIS testing platform in the laboratory, and corresponding PD 
signals were collected. A UHF sensor detects the signals and converts them into data through an 
oscilloscope. Faults were simulated in the XD5936 GIS partial discharge simulation device, as shown 
in Figure 2. 

 

Figure 2. GIS experimental device. 

Four types of PD models—needle, surface, suspension, and gap—were sequentially placed in the 
chamber. An ultra-high frequency sensor, connected to an oscilloscope, was positioned in the external 
slot of the chamber and applied voltage to the GIS. As the voltage increased, the local fault models 
began to discharge, enabling the collection of UHF signals. For each fault type, 100 PRPS images were 
collected. Figure 3 presents the measured PRPS spectra, demonstrating significant differences in the 
peak values of the four PD signals across the quadrants. 
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（a）Needle discharge (b) Surface discharge 

(c) Gap discharge (d) Suspension discharge 

Figure 3. Four types of partial discharge signals. 

4. Experiment and analysis 

4.1. Feature selection based on SVM-RFE 

To accurately classify different types of partial discharges in various GIS systems, extracting features 
from PRPS images is essential. Considering the practical applicability of the method, this study used 
CLBP_S and CLBP_S operators to extract PRPS image features, both of which generate 59-dimensional 
features. The SVM-RFE algorithm was applied to select the most relevant features, effectively 
reducing the risk of gradient explosion. The feature importance ranking is presented in Figure 4. 
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(a) CLBP_S feature extraction 

 

(b) CLBP_M feature extraction 

Figure 4. SVM-RFE feature importance ranking. 

Analysis of Figure 4 reveals significant differences in feature importance. For instance, the 
features extracted by the CLBP_S operator have weights of approximately 0.02 in the 3rd and 7th 
dimensions, while the weight in the 35th dimension exceeds 0.12. Including features with lower 
weights in the recognition process may decrease the accuracy of partial discharge type classification. 
Therefore, selecting relevant recognition features is essential. 
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(a) Important features extracted using CLBP_S. 

 

(b) Important features extracted using CLBP_M. 

Figure 5. The top 10 most important features. 

To effectively select significant features, we set the weight threshold at 0.08 and configured the 
target feature count for SVM-RFE to 10, as illustrated in Figure 5. The results reveal differences in the 
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dimensions and weights of the important features extracted by the two operators, suggesting that the 
features obtained from the two methods are complementary. 

4.2. IBES algorithm 

To verify the effectiveness of IBES, this study compared IBES, BES, artificial bee colony 
optimization (ABC), and dandelion optimization (DO) algorithms. The four test functions are shown 
in Table 1, with all algorithm iterations set to 100 and population size set to 50. The test results are 
shown in Figure 6. 

Table 1. Objective function. 

Objective function Range Dim
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From Figure 6, BES demonstrates the best convergence, while IBES outperforms ABC in 
convergence. Additionally, the optimization ability of the IBES algorithm is the strongest among the 
methods compared. This indicates that, although the convergence of the IBES algorithm has decreased 
after introducing differential evolution, its optimization effectiveness has significantly improved, 
making it more suitable for partial discharge recognition. 

 

(a) F1 
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(b) F2 

 
(c) F3 

 
(d) F4 

Figure 6. Results of objective functions. 
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4.3. Comparison of recognition performance across different classifiers 

This study utilized the 10-dimensional CLBP_S features, 10-dimensional CLBP_M features, 
and 20-dimensional mixed features extracted in the previous section as inputs for the recognition 
models. The classifiers selected for evaluation include IBES-SVM, BES-SVM, artificial bee colony 
optimization SVM (ABC-SVM), and dandelion optimization SVM (DO-SVM).  

The experimental results are shown in Table 2. The recognition model based on a single CLBP_S 
feature achieved accuracy higher than 80%, outperforming the model based on a single CLBP_M 
feature. When classifying using the three types of features, the IBES-SVM model demonstrated 
superior overall recognition performance. The recognition performance of the CLBP_S and CLBP_M 
mixed feature models was better than the other two single-feature models, with the recognition 
accuracy of all four classification models exceeding 90%. 

Table 2. Three types of feature value feature recognition results. 

Method CLBP_S CLBP_M CLBP_S+CLBP_M 

IBES-SVM 91.88% 81.88% 93.75% 

BES-SVM 87.5% 78.75% 93.13% 

ABC-SVM 84.38% 75% 90% 

DO-SVM 85% 79.38% 92.5% 

4.4. Comparison of different data fusion methods 

To further enhance the model’s accuracy in identifying discharge categories of GIS equipment, 
mixed features were subjected to data fusion using LDA, KPCA, and PCA. The visualization of the 
fusion results is presented in Figure 7. After data fusion, samples of the same category are more 
concentrated in feature space, while samples of different categories are more dispersed. Among the 
methods, LDA data fusion yielded the best results, whereas PCA fusion showed the poorest 
performance, with some overlap observed between needle discharge and gap discharge, as well as 
between surface discharge and gap discharge. 

 

(a) LDA data fusion 
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(b) PCA data fusion 

 

(c) KPCA data fusion 

Figure 7. Visualization of results from three types of data fusion. 

Some mixed samples of different categories remain in the feature space. In order to further 
improve the classification performance, we chose IBES-SVM, which had the best classification 
performance in the previous section, as the recognition model. The confusion matrix of the recognition 
results is shown in Figure 8, and the classification accuracy is shown in Table 3. 

Table 3. Recognition results of different feature fusion models. 

Method Accuracy 

LDA-IBES-SVM 99.38% 

KPCA-IBES-SVM 98.13% 

PCA-IBES-SVM 95.63% 
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(a) LDA-IBES-SVM classification results (b) KPCA-IBES-SVM classification results

 

(c) PCA-IBES-SVM classification results 

Figure 8. Confusion matrix for different data fusion methods. 

The LDA-IBES-SVM model misclassified one surface sample as gap discharge, while the KPCA-
IBES-SVM model misidentified two needle samples as surface and another as gap. The PCA-IBES-
SVM model classified six surface samples as gap and one gap sample as surface. The analysis indicates 
that recognition errors between surface and gap samples are frequent. The PRPS spectral image 
features of these two types are similar, and the image features of the suspended samples do not show 
significant differences in recognition errors compared to the other three types of partial discharge. 
Compared to the other three fusion methods, LDA data fusion more effectively eliminates redundant 
data and achieves complementarity between the two image features. Although the dimensionality 
reduction effect of KPCA is superior to PCA, it remains less effective than LDA. 

 
 



1110 

AIMS Energy  Volume 12, Issue 6, 1096–1112. 

5. Conclusions 

This paper proposes a new method for partial discharge recognition to address the low accuracy 
in GIS partial discharge identification. First, the image features of PRPS are extracted, followed by 
feature selection and fusion. Finally, the fused features are input into an improved recognition model 
to classify partial discharge types. The main conclusions are as follows: (1) The recognition performance 
of fused features is superior to the individual CLBP-M and CLBP-S features. (2) Combining feature 
selection with data dimensionality reduction eliminates redundant information, reduces feature 
dimensionality, improves model training efficiency, and enhances recognition accuracy. (3) Introducing 
differential evolution to enhance the BES algorithm has improved the optimization algorithm’s search 
performance. Compared to the BES-SVM, ABC-SVM, and DO-SVM models, the IBES-SVM model 
achieves higher recognition accuracy. 
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