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Abstract: The application of machine learning techniques for monitoring and diagnosing faults in 

photovoltaic (PV) systems has been shown to enhance the reliability of PV power generation. This 

research introduced a novel machine learning classifier for fault diagnosis in PV systems, utilizing an 

ensemble algorithm known as extra trees (ETC). The study initially proposed a system with two PV 

modules and developed a low-cost Arduino-based data logger to gather data from the PV system in 

free-fault and faulty conditions. Subsequently, the study evaluated six other advanced classifiers for 

fault diagnosis in PV systems, namely logistic regression (LR), k-nearest neighbor (kNN), support 

vector machine (SVM), decision tree (DT), AdaBoost, and random forest (RF) models using the 

collected data from the proposed PV system. The assessment of the various models' performance 

indicated that the extra trees model exhibits superior classification capabilities for partial shading (PS), 

open circuit (OCF), partial shading with bypass diode disconnected (PSBD), and combined partial 

shading with bypass diode disconnected plus open circuit (PSBDOC) faults. The results demonstrated 

that the new ETC classifier achieves an accuracy of 92%, surpassing the 91%, 87%, 7%, and 59% 

accuracy of the RF, DT, kNN, and LR classifiers, respectively. This highlights the effectiveness of the 

extra trees model in enhancing fault detection and classification by distinguishing between open 

circuits and twin faults. Consequently, these results can be utilized to develop advanced diagnostic 

tools for photovoltaic systems, thereby improving the reliability of solar technology and accelerating 

the rate of installation. 

mailto:tochetchio@univ-lome.tg
mailto:odsanoussi@gmail.com


728 

AIMS Energy  Volume 12, Issue 4, 727–750. 

Keywords: photovoltaics; diagnosis; extra trees; fault; data acquisition system 

 

Abbreviations: PV: photovoltaics; LR: logistics regression; KNN: k-nearest neighbor; RF: random 

forest; DT: decision tree; PS: partial shading; NF: no-fault; PSBD: partial shading with bypass diode 

disconnected; PSBDOC: partial shading with bypass diodes disconnected plus open circuit; OCF: open 

circuit fault; ETC: extra trees classifier 

1. Introduction 

1.1. Motivation  

In recent decades, photovoltaic installations have become a reliable and popular way to produce 

renewable electricity. The International Energy Agency (IEA, 2023) predicts that the installed capacity 

of photovoltaic systems could reach 167.3 GW in 2024 [1]. This increased development of 

photovoltaic installations is driven by factors such as energy independence, government support 

policies, reduced production costs, reliability, and environmental friendliness of photovoltaic 

installations [2]. However, due to their exposure to harsh environmental conditions, photovoltaic 

systems are prone to anomalies and malfunctions that can reduce productivity or even lead to complete 

system shutdown if not detected in time [3]. For example, a study conducted by Firth et al. demonstrated 

that faults lead to an annual decline of 18.9% in the power generated by PV systems [4]. In light of these 

findings, it is evident that effectively addressing the growing energy demands of the modern world, 

while sustaining the rate of photovoltaic installations and their dependability, is a crucial concern for 

the photovoltaic community [5]. As a result, current research is focused on detecting and eliminating 

faults to maintain productivity, reduce maintenance costs, and extend the lifespan of photovoltaic (PV) 

systems [6]. A number of approaches to detecting and diagnosing faults in PV systems have become 

increasingly popular in recent decades, as shown in the literature [7,8]. 

1.2. literature review  

Considering the extant literature, several methods for detecting and classifying faults in 

photovoltaic (PV) installations have been proposed. These methods vary in terms of their speed of 

execution, computational complexity, and effectiveness in identifying different types of faults. These 

fault diagnosis methods are typically classified into two main categories [7]. The first approach 

involves using diagnostic tools such as infrared cameras and transducers to identify defective panels. 

However, this technique requires additional investment in detection tools, which can reduce the 

profitability of the PV system [9]. The second technique utilizes operational data from solar panels and 

is categorized into three groups: methods based on the reference model [10] and methods for the 

statistical analysis of data from solar panels [11], which necessitate an understanding of the distribution 

properties of the analyzed objects, which can often be challenging to obtain [12]. The third category is 

based on artificial intelligence techniques. This method addresses the complex processes of previous 

methods through its straightforward implementation based on training models derived from a 

collection of data [11,13]. An analysis of these different diagnostic methods reveals that intelligent 

methods have been increasingly employed in recent decades due to their flexibility and reliability in 
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detecting and classifying faults. For instance, Pula et al. employed a novel methodology based on 

artificial neural networks (ANNs) to identify and categorize eight distinct fault types in a 

photovoltaic (PV) field with remarkable precision [14]. Similarly, the ANN algorithm is employed to 

identify short-circuit and bypass diode, open-circuit faults within a PV system. The experimental results 

of the ANN model developed yielded an average accuracy of 96.4% and a sensitivity of 92.6% [15]. In 

addition, Kumar et al. proposed a novel application of neural networks for the prediction of the power 

produced in a photovoltaic field with an installed capacity of approximately 2.7 kW in mountainous 

areas. The results obtained using the two parameters of temperature and irradiation demonstrate that 

this approach provides a more accurate prediction [16]. Madeti et al. [17] proposed the k-nearest 

neighbors (kNN) algorithm to detect open circuit, line-to-line, and partial shading faults in a 

photovoltaic system. The results yielded an accuracy of 98.7%. Furthermore, an SVM classifier 

optimized using the grid search method and k-fold cross-validation was employed to identify 

short-circuit, line-to-line, open-circuit, and irradiation faults in the PV system, with an 

accuracy of 97% [18,19]. Harrou et al. [20] proposed an unsupervised monitoring procedure to detect 

open circuit, short circuit, and partial shading faults using one-class SVM. Furthermore, some authors, 

such as Harrou et al. and Mellit et al., have proposed an intelligent approach based on ensemble 

learning algorithms to detect and classify faults in a PV system [21,22]. Benkercha et al. [23] 

developed a C4.5 decision tree model for diagnosing open circuit and line-to-line faults in a                 

grid-connected photovoltaic (PV) array. The proposed model demonstrated 99.8% accuracy in detecting 

and classifying the simulated PV array. These results were obtained using a 10-fold cross-validation 

approach, with a 99% classification accuracy. Additionally, Gong et al. proposed random forest (RF) 

models for detecting open circuit, line-to-line, and partial shading faults in a PV system. A 

comparative study between the kNN, SVM, DT, and RF models showed that the RF model exhibited 

superior performance [24]. Another ensemble learning method based on the AdaBoost model was 

able to detect and classify short-circuit, open-circuit, and degradation faults in a PV array with an 

accuracy of 97.84%. The same AdaBoost model proposed by Ghoneim et al. [25] was able to detect 

string, string-to-string, and string-to-ground faults in a grid-connected PV array with an accuracy           

of 95%. In various research studies, it is clear that machine learning is being used in diagnosing PV 

systems and in other engineering fields. For example, Kumar et al. proposed the ANFIS, SVM, and 

Gaussian algorithms to evaluate the flexural strength of concrete containing marbles [26]. They also 

used neural networks, M5P, and random forest to predict water quality aeration. The results obtained 

showed the effectiveness of the ANN with a correlation coefficient of 0.9823, an MAE of 0.0098, 

and an RMSE of 0.0123 [27]. This paper introduces a novel learning ensemble classifier, extra trees, 

for the fault diagnosis of photovoltaic systems. To the best of the authors' knowledge, this model has 

not yet been adopted for photovoltaic system diagnostics. Additionally, Toche et al. demonstrated that 

the proposed model has been successfully applied in various fields such as medicine [28], economics [29], 

civil engineering [30], and telecommunications [31], outperforming models like kNN, DT, SVM, RF, 

and AdaBoost [32]. The main reasons for choosing the extra trees classifier are (1) the widespread use 

of artificial intelligence-based classifiers in recent decades, especially in machine learning and deep 

learning applications, making them faster and more efficient than traditional methods, and (2) the 

ability of ensemble algorithms like extra trees to handle noisy data and variance.  
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1.3. Contribution  

The aim of this paper is to contribute to the advancement of fault detection and classification 

methodologies to enhance the reliability and safety of photovoltaic (PV) installations.  

This study makes a significant contribution to the field of fault diagnosis in photovoltaic (PV) arrays. 

• It introduces a new classifier called extra trees or extremely randomized trees (ETC), which has 

not been used in this context before. 

• The experiment involves a simultaneous or accumulated partial shading fault with a disconnected 

bypass diode and a PV module open circuit (PSBDOC). 

• The model's performance is evaluated using a number of metrics, including accuracy, precision, 

recall, F1 score, and calculation time.  

• This evaluation is conducted in order to facilitate a comparison with the other models selected. 

The proposed model is robust to noise and significantly reduces bias and variance errors 

compared with the other models selected [33]. Section 2 of this paper presents the proposed PV system, 

including an overview of its various components and the faults studied. Section 3 outlines the 

methodology for diagnosing the PV system using the proposed model, with the results and discussions 

reserved for Section 4. Finally, the conclusion is presented in Section 5. 

2. Description of the PV system and its defects 

2.1. Description of the PV system 

The proposed photovoltaic system (Figure 1) comprises two parallel-mounted photovoltaic 

panels, a PWM charge controller, and a 12 V/9 Ah battery. The system operates at 12 V and includes 

two 12 V/50 W PV modules, the technical specifications of which are provided in Table 1. The PV 

modules convert sunlight into electricity using the photoelectric effect. The controller regulates the 

charge and discharge level of the battery and powers the load. Excess energy is stored in the battery 

for later use when there is no sunlight. 

 

Figure 1. PV system wiring diagram. 

The proposed PV module is a BLD SOLAR brand monocrystalline silicon module whose 

technical specifications are given in Table 1. 
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Table 1. Electrical parameters of a BLD SOLAR panel in STC conditions. 

Electrical parameters Values 

Nominal power (𝑷𝒎𝒑) 50 W 

Open circuit voltage (𝑽𝑶𝑪) 22.1 V 

Short circuit current (𝑰𝑺𝑪) 2.81 A 

Voltage at maximum power (𝑽𝒎𝒑) 18.1 V 

Current at maximum power (𝑰𝒎𝒑) 2.76 A 

Number of cells 36 

The fault detection and classification of the PV system described in this work was based on the 

electrical and meteorological parameters collected using an Arduino acquisition system. Four types of 

faults were created and physically tested, as described in the following section. 

2.2. Description of defects 

During operation, photovoltaic installations may experience various types of faults, including 

environmental factors such as shading, physical degradation, and electrical issues like open circuits. 

Multiple faults can occur simultaneously on a PV field. This study focuses on four specific types of 

faults that were intentionally created on one of two photovoltaic modules. 

▪ Partial shading defects (PS) 

Shading is the primary cause of PV system failure. It can be either permanent or temporary, 

depending on the source of obstruction, such as adjacent buildings, passing clouds, trees, or other 

objects [34]. A shading defect is considered partial when only part of the cells or modules are exposed 

to solar radiation, resulting in a significant decrease in current output. It is important to note that shading 

should be avoided as much as possible to ensure optimal performance of the PV system [35]. Furthermore, 

shading is considered uniform or total when all cells or modules receive uniform but low-intensity 

radiation. This type of shading leads to a constant reduction in the output current and voltage of 

individual cells in a string [36]. To create a partial shading defect in the proposed PV system, a panel 

was obscured for 3 h, resulting in half of the PV panel being affected. Figure 2 illustrates the various 

occultation processes of the module and cell that occurred throughout the day on October 20, 2023, 

from 8:30 a.m. to 5:30 p.m. The collected data was stored on a SD card. 

                                          

(a)                                             (b)                                                   

Figure 2. (a) Partial shading of a PV module; (b) Total shading of a PV module. 
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▪ Bypass diode fault with partial shading (PSBD) 

The bypass diode is a protective device that limits reverse voltages in partially shaded cells. 

Photovoltaic (PV) modules typically integrate two to four bypass diodes in the junction box, with each 

connected in parallel to a group of cells in a solar panel [37]. The two main faults that can damage the 

bypass diode are short circuits and open circuits [38]. The short circuit fault of the bypass diode causes 

a significant decrease in power output as the voltage chain is absent. On the other hand, in the case of 

an open circuit, the diode breaks down completely and prevents power from passing through [37]. The 

origin of the fault may be linked to the non-functioning of the diode, reversed diodes during assembly, 

poor connection of diodes and/or disconnection, or corrosion of the junction boxes. Such a fault can 

cause hot spots, electric arcing, and the risk of fire if the diode is in an open circuit [39]. An open 

circuit bypass diode fault is only noticeable in the event of at least 5% shading [38]. This fault was 

obtained by disconnecting one of the two bypass diodes 𝐹1 from the shaded module; the data was 

collected on October 22, 2023, from 8:52 a.m. to 4:50 p.m. on a storage medium. Figure 3 is an 

illustration of the partial shading fault with the bypass diode disconnected. 

 

Figure 3. Bypass diode disconnected. 

▪ Open-circuit fault (OCF) 

The open-circuit fault (𝐹2)  is typically caused by accidental breakage of connection wires 

between cells or strings of PV modules, faulty diodes, and deterioration of connection cables [40]. 

Additionally, an open-circuit fault results in a drastic drop in short-circuit current [41]. However, this 

type of fault can cause more damage than a short-circuit fault due to the increased current flow. A 

consequence of this fault is the line-to-line fault [42]. The open-circuit fault in this work was created 

by disconnecting the connecting wire between the positive terminal of module 1 and the positive 

terminal of module 2. Data from various sensors were automatically recorded and stored on the SD card 

on October 21, 2023, from 8:06 a.m. to 4:34 p.m. Figure 4 illustrates the open-circuit fault (𝐹2) on a PV 

system module. 
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Figure 4. Experimental test of open-circuit fault of PV system. 

▪ Partial shading with bypass diode disconnected and open circuit (PSBDOC) 

A twin fault is a combination of two or more faults occurring simultaneously in a circuit. This 

type of fault results in a significant drop in the current and heating of the module if not addressed 

promptly. The impact of this fault is similar to that of an open-circuit fault in the case of two panels in 

parallel over a relatively short period. To avoid damaging the panel, the bypass diode on the partially 

shaded module was disconnected, and the open-circuit fault was introduced. The data was 

automatically collected on October 23, 2023, from 8:18 a.m. to 12:00 p.m. Figure 5 illustrates the twin 

fault 𝐹3. 

 

Figure 5. Experimental testing of partial shading faults with bypass diode disconnected 

and open circuit. 

After reviewing the proposed PV system and identifying various faults, we used a low-cost 

acquisition system based on the Arduino IDE to collect data from the sensors detecting these faults. 

The collected data was used to train the selected models. Figure 6 shows the data collection process 
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for training the models. The next section will provide a detailed description of the fault diagnosis 

procedure for the proposed PV system. 

 

Figure 6. Framework of applied model for PV fault diagnosis. 
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3. PV system diagnostic methodology 

The process of diagnosing faults in a photovoltaic system using a digital approach involves two 

important phases: acquiring and processing raw data and using a model for fault prediction [43]. The 

fault diagnosis process is given by the diagram in Figure 7. 

 

Figure 7. Diagram of the proposed fault diagnosis program. 

3.1. Acquisition of data 

A test bench for data acquisition using dedicated sensors is implemented in the data acquisition 

phase. To accommodate budgetary constraints, a low-cost acquisition system based on Arduino was 

developed to collect data from both healthy and faulty panels using sensors. Current, voltage, 

irradiation, and temperature data are used for PV fault diagnosis. Figure 8 shows the simplified 

diagram of the developed acquisition device. 

 

Figure 8. Structure of the proposed acquisition system. 
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The data was collected over a period of five days at one-minute intervals, corresponding 

successively to no fault (NF), partial shading fault (PS), open circuit fault (OCF), partial shading with 

bypass diode disconnected (PSBD), and bypass diode disconnected fault with partial shading and open 

circuit (PSBDOC). The data was saved as a text file on the micro-SD card and then converted into an 

Excel file for pre-processing purposes. The data collected at the output was obtained through a program 

that converts the analog outputs of the sensors into their digital equivalents using the Arduino Uno 

microcontroller, following the flowchart in Figure 9. 

 

Figure 9. Flowchart Arduino ADC conversion of PV system data acquisition. 
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3.2. Development and application of the extra trees model 

3.2.1. Model development 

The extra trees algorithm, also known as extra trees randomized, is an ensemble learning 

algorithm based on a decision tree forest. It was first proposed and implemented in 2006 by Geurst et 

al. and can be used for both classification and regression [33]. Similar to random forest (RF), the extra 

trees (ET) model relies on a large number of decision trees to build a group of unpruned decision trees 

to reduce the risk of overfitting [44]. However, the ET algorithm differs from the RF algorithm in that 

it uses the entire training sample to train each tree, rather than a Bootstrap sample. Additionally, the 

ET algorithm randomly selects cutoff points, whereas the RF model uses an optimal distribution. The 

execution algorithm for the ET model is based on the training dataset (T) and three main 

hyperparameters: 

• The number of trees (M) to train based on the number of training samples T. 

• The number of attributes (K) to be randomly selected and used in each node for each trained 

ensemble tree. 

• The minimum number of samples/instances (𝑛𝑚𝑖𝑛 ) needed to split a node of each trained 

ensemble tree. 

After training the trees, the final prediction of the algorithm is made based on test data by majority 

voting for classification or by calculating the arithmetic mean for regression [29]. The procedure for 

implementing the model proposed in this work is represented in Figure 10. 

 

Figure 10. ETC model construction procedure for diagnosis. 

The extra trees algorithm proposed in this work is an ensemble learning method that generates a 

decision function from a collection of decision trees [31]. 
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3.2.2. Extra trees (ETC) ensemble model application 

▪ Data preparation 

Python was used for data pre-processing and implementing the model using the JupyterLab 

toolkit. After correcting the values, data were ready for analysis. During pre-processing, missing data 

was observed due to various causes such as sensor defects, incorrect storage of input data, and others. 

After correcting the outliers, we harmonized the data size for each defect case. A total of 2380 data 

points and a column of five defect classes were recorded, with an average of 476 data points per class. 

Figure 11 shows the distribution of data for each defect class. 

 

Figure 11. Data distribution for each class. 

The data were divided into training and test data following the 80/20 principle, with 1904 (80%) 

of the data allocated for training and 476 (20%) for testing. The distribution of all training data is 

shown in Table 2. The different faults are represented by class numbers (0, 1, 2, 3, 4) corresponding 

to cases without fault (NF), open circuit fault (OCF), partial shading (PS), partial shading with 

bypass diode disconnected (PSBD), and partial shading with bypass diode disconnected and open 

circuit (PSBDOC). 

Table 2. Distribution of training data for each fault class. 

Description Data proportion Percentage Class 

NF 380.8 20% 0 

OCF 380.8 20% 1 

P.S. 380.8 20% 2 

PSBD 380.8 20% 3 

PSBDOC 380.8 20% 4 

Total 1904 100% 05 
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After the data splitting process, the MinMaxScaler function was used for data normalization, 

followed by hyperparameter optimization using the GridSearchCV function. To evaluate the 

performance of the proposed model, six other models capable of detecting various types of defects were 

selected: random forest (RF), decision tree (DT), logistic regression (LR), k-nearest neighbors (KNN), 

AdaBoost, and support vector machine (SVM). The performance of each model was improved using 

the GridSearchCV function. Each model was trained on the training data with a specific range of 

parameters. The optimal parameters were identified using the best parameters function and the best 

score function, which returned the highest corresponding score. The hyperparameters listed in 

Table 3 are those that achieved the best performance of each model. 

Table 3. Hyperparameters used for machine learning models. 

Models Hyperparameters tuning  

Extra trees n_estimator = 100, max_depth = 20, min samples split = 2 

Random forest n_estimator = 100, max_depth = 15, min samples split = 3  

Decision tree Criterion = Gini, max_depth = 15, min samples split = 2 

Adaboost n_estimators = 200, learning rate = 0.1, algorithm = SAMME 

KNeighbors Default  

SVM C = 1,kernel = rbf, gamma = scale 

Logistic regression C = 0.1, max_iter = 150, intercept scaling = 1 

The models were chosen based on their superior performance and implementation speed for 

diagnosing faults in photovoltaic systems [23,45]. The main reasons for choosing the extra trees 

classifier were (1) the widespread use of artificial intelligence–based classifiers in recent decades, 

especially in machine learning and deep learning applications, making them faster and more efficient 

than traditional methods, and (2) the ability of ensemble algorithms like extra trees to handle noisy 

data and variance. Table 4 provides a summary of the advantages of the extra trees model. 

Table 4. Advantages of extra trees model. 

Models Advantages 

ETC 

Improve robustness 

Reduce bias 

Reduce variance 

Reduce overfitting 

Improve accuracy 

Faster and easier to implement 

▪ Evaluation of performances 

To evaluate and analyze any classification model, it is crucial to select appropriate metrics such 

as the confusion matrix, accuracy, precision, recall, and f1_score. The choice of relevant metrics 

depends on the distribution of available data. When data is balanced, the accuracy metric is appropriate 

for evaluating the performance of a classification model [43]. Furthermore, the evaluation of the 

performance of a model on the basis of accuracy is not feasible when there is data imbalance [43]. In 



740 

AIMS Energy  Volume 12, Issue 4, 727–750. 

this paper, we use the classification report function to evaluate different metrics. These metrics are 

defined by the following equations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                    (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                               (2)  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                    (3) 

𝑓1_𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                               (4) 

where 𝑇𝑃 𝑒𝑡 𝑇𝑁 represents true positives and true negatives while 𝐹𝑃 𝑒𝑡 𝐹𝑁 represents false positives 

and false negatives. 

4. Results  

Using the acquisition device implemented, a total of 2543 data was collected in five days, 

including one day where the two modules were in healthy operation and four days where four faults 

were successively created. Figure 12 is an overview of the testbed developed for data collection. 

 

Figure 12. Experimental setup. 

After filtering, 2380 data points were used to construct the proposed diagnostic model. The 

distribution of the different classes of defects according to the attributes was visualized using the 

heatmap function of the seaborn library of Python (see Figure 13). 
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Figure 13. Distribution of each fault class based on attributes. 

Upon analysis of Figure 14, it is evident that the current and voltage at the maximum power point 

exhibit a normal distribution. In addition, these dimensions allow a clear distinction between the fault-

free class and the other classes, as indicated by the visible separation of the orange color. To further 

visualize the relationship between the attributes and the fault class, refer to Figure 14a, which employs 

the heatmap function. 
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(a) (b) 

Figure 14. (a) Correlation matrix between the different attributes; (b) Distribution of 

observations in order of importance. 

Examining Figure 14(a), it is evident that the defect is strongly correlated with the parameter that 

appears to have the least correlation with the other parameters in the dataset. Specifically, there is a 

strong correlation of approximately 54% between current and irradiation, and a correlation of  58% 

between voltage and temperature. Figure 14(b) confirms the strong correlation observed in             

Figure 14(a), indicating that the variables of current and temperature are the most significant. It is 

important to note that all statements made are objective and supported by the data presented. The 

correlation matrix confirms that irradiation has an influence on the current value, and temperature 

affects the voltage. 

The performance of the model was obtained by evaluating the confusion matrices of the different 

selected models (see Figures 15 and 16), accuracy, precision, recall, and f1_score. For the confusion 

matrix, the values shown on the diagonal represent the correctly classified data. 

 

Figure 15. Confusion matrix of the developed extra trees model. 
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Figure 16. Confusion matrix. (a) Random forest; (b) decision tree; (c) k-nearest neighbors; 

(d) logistic regression; (e) AdaBoost; (f) SVM. 

Figure 16 illustrates that the ETC model proposed in this work achieves a higher data 

classification rate than other models. The accuracy of each model is calculated by dividing the sum of 
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the diagonal elements by the total number of samples. Table 5 presents the performance of the selected 

models in training data. 

Table 5. Performance summary of different algorithms on training data. 

MODELS  Training time (S) Accuracy (%) Precision (%) Recall (%) f1_score (%) 

ETC 0.3 100 100 100 100 

RF 0.373 100 100 100 100 

DT 0.015 100 100 100 100 

KNN 0.019 75 75 75 75 

LR 0.091 59 58 59 58 

AdaBoost 0.557 55 52 55 48 

SVM 0.22 32 21 32 24 

The analysis of the table indicates that the ETC, RF, and DT classifiers achieved the highest 

scores, with 100% accuracy. It can be observed that the training time for these three algorithms is 

relatively low, with the DT model exhibiting the shortest training time and the ETC and RF models 

exhibiting similar training times. In summary, the time taken for the testing process is relatively brief 

for the majority of the models. 

Table 6. Performance summary of different algorithms on testing data. 

MODELS  ACCURACY (%)  PRECISION (%) RECALL (%) F1_SCORE (%) 

ETC 92 92 92 92.2 

RF 91 92 91 91 

DT 87 88 88 88 

KNN 64 63 64 63 

LR 56 55 56 56 

AdaBoost 52 51 52 46 

SVM 30 21 31 23 

A comparison of Table 6 reveals that the ETC model outperforms the RF, DT, KNN, LR, 

AdaBoost, and SVM models with an average accuracy of 92%, 91%, 87%, 64%, 56%, 52%, and 30%, 

respectively. Additionally, the LR, KNN, and DT models have shorter training times compared with 

the RF and ETC models. In summary, the extra trees model has the best performance with a high 

classification rate compared to the other selected models. Table 7 summarizes the classification rate 

of each fault class provided by the proposed ETC model. 

Table 7. Data point classification rate by fault class. 

Class of fault Well ranked points Misclassified points Total points Prediction rate (%) 

NF 88 0 88 100 

OCF 90 8 98 91.83 

PS 97 0 97 100 

PSBD 86 14 100 86 

PSBDOC 79 14 93 84.94 
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In order to assess and compare the effectiveness of the proposed ETC model in classifying various 

fault conditions, we conducted an evaluation using the receiver operating characteristic (ROC) curve. 

This curve shows the trade-off between correctly classified points and those that are incorrectly 

classified. Figure 17 shows the ROC curve, which demonstrates the probability of correctly classified 

points (TPR) in relation to incorrectly classified points (FPR). 

 

Figure 17. ROC function of the developed ETC model. 

Upon examination of the ROC curve in Figure 17, it is evident that the proposed model has a high 

capacity for detecting and accurately classifying defects, with an AUC (area under curve) of 98% 

representing the model's overall performance. 

5. Discussion 

The effectiveness of the proposed new classifier for identifying faults in photovoltaic systems has 

been assessed by comparing it with several other approaches. These include basic supervised learning 

models like logistic regression (LR), k-nearest neighbor (kNN), and support vector machines (SVM), 

as well as ensemble algorithms such as decision trees (DT), random forests (RF), and AdaBoost. To 

ensure a fair and thorough comparison of the different models, the execution steps were carefully 

monitored. The internal hyperparameters of each model were adjusted using the GridSearchCV 

function to identify the best values, as indicated in Table 5. An evaluation of the different metrics 

based on the aforementioned hyperparameters revealed that the ETC, RF, and DT models 

demonstrated excellent learning performance on the training dataset, with an overall score of 100%. 

Conversely, the KNN, LR, AdaBoost, and SVM models demonstrated limited learning on the training 

dataset, with accuracy scores of 75%, 59%, 55%, and 32%, respectively, as shown in Table 5. In 

comparison, the SVM model exhibited the lowest accuracy, being below 50%, specifically 32%. A 

review of the confusion matrix for the SVM model reveals that the majority of points in each class 

were poorly classified. For instance, only one point in class 2 (PS) was classified correctly, and none 

of the points in class 3 (PSBD) were classified correctly, resulting in a success rate of 0%. In terms of 

calculation time, the DT classifier was the fastest, with a training time of 0.015 seconds. However, an 

analysis of the training times of the three ensemble algorithms, ETC, RF, and AdaBoost, reveals that 
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the ETC model has the lowest execution time, at 0.3 s, compared with 0.337 s and 0.557 s for the RF 

and AdaBoost models. The speed of the ETC model can be attributed to its decision tree-based 

structure, which does not consider the errors of previous trees. In contrast, the RF model allocates time 

to identifying the optimal node, whereas the AdaBoost model has a high computation time due to the 

complexity of processing data to adjust weights and correct errors. Following the training phase, the 

models were tested on the test set to assess their ability to detect and classify the various faults. The 

results obtained and shown in Table 6 reveal that during the test phase, the deployed ETC model 

outperformed all the other models. In fact, we recorded an accuracy of 92% for the ETC model, 

followed by an accuracy of 91% for RF. In comparison with the other metrics like precision, recall, 

and F1 score, the DT model's accuracy was 87%, which was lower by 1%. This could be due to the 

DT classifier being either too selective or too lenient, leading to a significant number of false negatives 

being accepted. In our evaluation, we prioritized accuracy as the main performance measure due to the 

balance between classes and tasks performed. As a result, the ETC model outperformed the other 

models we considered. The model's validity is supported by its high AUC score of 0.98, indicating 

a 98% probability of correctly distinguishing between well-classified and poorly classified points when 

identifying defects. However, in the event of a tie, the model will randomly assign points to the "well-

classified" or "misclassified" categories. In such cases, the AUC will be 50%, represented by the first 

broken bisector. 

6. Conclusions 

The study introduces a new classifier called extra trees set (ETC) for identifying faults in a system 

comprising two photovoltaic panels. The defects were intentionally created, and data was collected 

using a low-cost Arduino-based recording system. The collected data was used to train seven 

classifiers: logistic regression (LR), k-nearest neighbor (KNN), decision tree (DT), random forest (RF), 

AdaBoost, and extra trees set (ETC). A comparative study was conducted to evaluate the performance 

of these classifiers, with the ETC model proving to be highly effective in accurately detecting and 

classifying various defects. The ETC model outperformed the other classifiers, achieving 92% 

accuracy compared to 91%, 87%, 64%, 56%, 52%, and 30% for RF, DT, KNN, LR, AdaBoost, and 

SVM, respectively. 

These results highlight the importance of choosing an optimal model for fault detection in 

photovoltaic installations. The ETC model also shows promise for practical monitoring of the health 

of a photovoltaic system, suggesting its potential for developing advanced diagnostic tools for 

photovoltaic systems, thereby improving the reliability of solar technology and accelerating the 

installation rate. Although the ETC model produced satisfactory results, further analysis revealed 

certain limitations that underscore the need for additional research. One of the identified constraints is 

the failure to consider environmental variables such as humidity and wind speed, which can affect the 

performance of solar modules. Additionally, low data values due to the power of the proposed PV 

module and the limited number of usable parameters, such as current and voltage values, are specific 

to the type of photovoltaic system developed. Therefore, future research should explore the 

effectiveness of different classifiers on large-scale photovoltaic installations to enhance the reliability 

of the models. This could involve applying the model to fault diagnosis in a grid-connected 

photovoltaic system with numerous input parameters and conducting a similar study on a four-panel 

solar array, incorporating humidity and wind speed data. It would also be prudent to test the model on 
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degradation faults and accumulated faults on the direct current and alternating current sides in the 

diagnosis of photovoltaic systems. 
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