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Abstract: Considering the problem of time scale differences among subsystems in the integrated 
energy system of a park, as well as the increasing complexity of the system structure and number of 
control variables, there may be a deep reinforcement learning (DRL) “curse of dimensionality” 
problem, which hinders the further improvement of economic benefits and energy utilization efficiency 
of park-level integrated energy systems (PIES). This article proposes a reinforcement learning 
optimization algorithm for comprehensive energy PPO (Proximal Policy Optimization) in industrial 
parks considering multiple time scales for energy management. First, PIES are divided into upper and 
lower layers, the first containing power and thermal systems, and the second containing gas systems. 
The upper and lower layers of energy management models are built based on the PPO; then, both layers 
formulate the energy management schemes of the power, thermal, and gas systems in a long (30 min) 
and short time scale (6 min). Through confirmatory and comparative experiments, it is shown that the 
proposed method can not only effectively overcome the curse of dimensionality in DRL algorithms 
during training but can also develop different energy system management plans for PIES on a 
differentiated time scale, improving the overall economic benefits of the system and reducing 
carbon emissions. 
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1. Introduction  

With the continuous growth of China’s energy demand and carbon emissions, environmental issues 
are becoming increasingly prominent, constraining the development of China’s economy and society [1]. 
Economy and low carbon have become the trends of future energy development [2]. Park-integrated 
energy systems (PIES) have the characteristics of multi-energy coupling and joint scheduling [3], 
becoming an important lever for efficient and clean energy utilization and achieving the “dual carbon” 
goal [4]. PIES couple multiple types of energy, and through complementary operation, the efficient 
utilization and flexible conversion of various types of energy can be greatly improved [5]. 

Compared with traditional energy systems, PIES have three types of energy: Electrical, thermal, 
and gas. These systems have more complex structures and include multiple energy sources and energy 
conversion equipment [6]. There are multiple uncertainties, as both photovoltaic and wind power 
generation included in the system have inherent uncertainty [7]. PIES also show flexibility, allowing 
them to adjust energy supply to meet the system’s supply and demand [8]. Additionally, PIES have 
complex profit-seeking characteristics; the system can use gas turbines and other equipment to convert 
gas into electricity when the electricity price is high, reducing the consumption of electricity and 
lowering costs [9]. In order to improve the economic benefits and energy coupling ability of PIES, 
many scholars have conducted research based on multi-time scale models. In [10], authors developed 
a multi-time scale hierarchical rolling optimization scheduling model based on the time difference of 
energy consumption and load of different equipment during the intraday scheduling stage, and adjusted 
the unit output by perceived load changes. In [11], the system was divided into three time scales, day 
ahead long-time scale, day ahead predictive control, and real-time scheduling, to perform rolling 
optimization and reduce operating costs. In [12], an intraday procurement plan was developed based 
on the bilateral game mechanism of operators, as well as a dynamic scheduling model during the 
intraday management phase based on the differences in time scales of electricity, heat, and gas energy 
equipment. In [13], the problem of scheduling time scale differentiation in heterogeneous energy 
subsystems was solved using a double-layer scheduling time scale. In [14], authors utilized a multi-
time scale coordinated optimization method to establish PIES scheduling strategies for three-time 
scales—day ahead, day in, and real-time—and analyzed the impact of multiple energy storage devices 
on the economic benefits of the system. From the above, it can be seen that multi-time scale models 
are beneficial for solving the problem of time scale differences in PIES, but the scheduling decision of 
the system still mainly relies on an accurate prediction of source load storage. With the increasing 
variety of energy equipment in PIES, the difficulty of prediction has increased, affecting the 
optimization of energy management in the system. 

In recent years, some scholars have attempted to use deep reinforcement learning (DRL) methods 
of artificial intelligence to solve the energy management of PIES. In [15], the energy management of 
generator sets and gas turbines in PIES was optimized based on a deep deterministic strategy gradient 
algorithm. In [16], the differential evolution deep Q-network (DQN) algorithm was used to improve the 
overall economic benefits of PIES and the utilization rate of energy storage equipment. Authors in [17] 
proposed a load scheduling and energy management strategy based on Q-learning algorithm for 
distributed energy management in microgrids. In [18], a real-time energy management system for 
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microgrids was designed based on the DQN algorithm, achieving the goal of minimizing operating 
costs. The energy management method based on DRL effectively reduces the dependence on accurate 
prediction of new energy output and source load storage. However, the increasingly complex 
structure and increasing variety of energy and equipment in PIES may lead to a “dimensionality 
disaster” problem. At the same time, reinforcement learning requires agents to execute actions with 
the same dimensionality [19].  

In order to address the time scale differences in PIES and the “curse of dimensionality” of DRL 
methods, this paper proposes a multi-time scale PPO reinforcement learning optimization algorithm 
for comprehensive energy management in PIES, which includes three types of energy sources: Electric, 
heat, and gas. The main contributions of this article are as follows: 

(1) To solve the problem of time scale differences among energy subsystems in the PIES, this 
article divides the PIES into two layers: The upper layer, which includes the power system and the 
thermal system, and the lower layer, which includes the gas system. The upper and lower layers are 
coupled and cooperate with each other to meet the energy supply and demand balance in the PIES. 

(2) Compared with traditional strategy gradient optimization algorithms, the PPO algorithm in 
reinforcement learning has the advantages of being insensitive to update step size and not requiring 
resampling during updates, making it suitable for PIES containing continuous data such as photovoltaic 
and load. Therefore, this article applies the PPO algorithm to train the upper and lower layers of PIES 
separately, reducing the difficulty of model training, to set corresponding management time scales for 
different energy systems in the upper and lower layers, and developing management plans for different 
energy systems within PIES. Simulation examples show that this method can effectively reduce the 
operating cost of PIES while meeting the differences in time scales for managing different energy systems. 

2. Park-integrated energy system 

2.1. The structure of the park-integrated energy system 

PIES mainly include three types of energy—electrical, heat, and gas—and manage the energy 
transmission, conversion, and storage to meet energy loads demands, integrating different components: 
energy supply side, energy conversion side, energy storage side, and energy load side. The system 
structure is shown in Figure 1. 

 

Figure 1. Park-integrated energy system structure. 
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2.1.1. Energy supply side 

The energy supply side provides energy to PIES. The energy supply side mainly includes 
electricity purchased from the power grid, natural gas purchased from natural gas stations, and new 
energy equipment for photovoltaic power generation. 

(1) Electricity grid 
The electricity grid is responsible for providing electricity to PIES, and the constraints for 

purchasing power from the grid are shown in Eq (1). 

     Ele Ele
max0 tP P            (1) 

In the equation above, Ele
tP  is the power purchased from the external power grid at time t; Ele

maxP  

is the maximum transmission power of the external power grid interconnection line. 
(2) Natural gas station 
The natural gas station is responsible for providing natural gas to PIES, and the constraint 

conditions for purchasing gas power are shown in Eq (2). 

Gas Gas
max0 tG G           (2) 

Gas
tG  is the gas purchasing power of the natural gas station at time t; Gas

maxG is the maximum power 

output of the natural gas station. 

2.1.2. Energy conversion side 

The energy conversion side includes GT (gas turbine), GB (gas boiler), EB (electric boiler), and 
P2G (electric to gas) equipment, which are used to convert energy between electricity, natural gas, and 
heat energy. 

(1) Gas turbine 
The GT equipment is a device that converts natural gas into electrical and heat energy. The 

relationship between the consumption of natural gas and the generation of heat and electrical energy 
by GT equipment at time slot t is shown in Eqs (3) and (4), respectively. 

GT GT GT-E
t tP G           (3) 

 GT GT GT-E GT lossH 1t tG             (4) 

GT
tP  is the power output of the GT equipment; GTH t  is the heat generation power of the GT 

equipment; GT
tG  is the gas consumption power of the GT equipment, and GT-E  is the power 

generation efficiency of the GT equipment; GT loss   is the gas loss rate of GT equipment. 

The constraint conditions for GT operating power and climbing power are shown in Eqs (5) 
and (6), respectively. 

                GT GT GT
min maxtG G G             (5) 
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 GT GT GT
1 max0 t tG G G              (6) 

GT
minG  is the minimum operating power of GT; GT

maxG  is the maximum operating power of GT; 
GT
maxG  is the upper limit of GT climbing power. 

(2) Gas boiler 
The GB is a device that converts natural gas into heat energy. Under time slot t, the relationship 

between the consumption of natural gas and the generation of heat energy by GB devices is shown in 
Eq (7). 

GB GB GB GB lossH (1 )t tG             (7) 

GBH t  is the heat generation power of the GB device; GB
tG  is the gas consumption power of GB 

equipment; GB  is the gas-to-heat conversion efficiency of GB equipment; GB loss   is the gas loss rate 

of GB equipment. 
The constraint conditions for GB operating power and climbing power are shown in Eqs (8) 

and (9), respectively. 

GB GB GB
min maxtG G G           (8) 

  GB GB GB
1 max0 t tG G G            (9) 

GB
minG  is the minimum operating power of GB; GB

maxG  is the maximum operating power of GB; 
GB
maxG  is the upper limit of GB climbing power. 

(3) Electric boiler 
The electric boiler is a device that converts electrical energy into heat energy. The relationship 

between the electrical power consumed by the EB device and the generated heat energy at time slot t 
is shown in Eq (10). 

 EB EB EB EB-loss1t tH P           (10) 

EB
tH  is the heat production work of the EB equipment; EB

tP  is the power consumption of the EB 
device; EB  is the electric heating conversion efficiency of the EB equipment; EB-loss  is the electrical 

energy loss rate of the EB device. 
The constraints on EB operating power and climbing power are shown in Eqs (11) and (12), respectively. 

EB EB EB
min maxtP P P           (11) 

 EB EB EB
1 max0 t tP P P            (12) 

EB
minP  is the minimum operating power of EB; EB

maxP  is the maximum operating power of EB; 
EB

maxP  is the upper limit of EB climbing power. 

 
 



644 

AIMS Energy  Volume 12, Issue 3, 639–663. 

(4) P2G equipment 
The P2G is a device that converts electrical energy into natural gas [20]. The P2G device first 

decomposes water into oxygen and hydrogen through electrolysis, and then reacts to synthesize 
methane from carbon dioxide and hydrogen [21]. The relationship between the electrical power 
consumed by the P2G device and the amount of gas generated at time slot t is shown in Eq (13). 

   P2G P2G P2G P2G-loss1t tG P            (13) 

P2G
tG  is the gas production power of the P2G equipment; P2G

tP  is the power consumption of the 
P2G device; P2G  is the electrical conversion efficiency of the P2G equipment; P2G-loss  is the 

electrical energy loss rate of the P2G device. 
The P2G operating power and climbing power constraints are shown in Eqs (14) and (15), respectively. 

 P2G P2G P2G
min maxtP P P           (14) 

 P2G P2G P2G
1 max0 t tP P P            (15) 

P 2G
minP  is the minimum operating power of P2G; P2G

maxP  is the maximum operating power of P2G; 
P 2G

maxP  is the upper limit of P2G climbing power. 

2.1.3. Energy storage side 

A battery is an efficient energy storage element that primarily stores and releases electrical energy 
through the conversion of electrical and chemical energy. Lithium, sodium sulfur, and lead-acid 
batteries are currently the most widely used. Although lead-acid batteries have the advantages of low 
cost and large storage capacity, they have short life cycles and low energy density and result in 
significant environmental pollution, not being suitable for application in PIES. The technology of 
sodium sulfur batteries is not yet mature and is not suitable for widespread application at present. 
Lithium batteries have the characteristics of low self-discharge rate, low energy density, high charging 
and discharging efficiency, and long battery life cycle [22]. This article will use lithium batteries as 
storage components for PIES. 

Thermal storage devices are divided into sensible thermal energy storage and latent thermal 
energy storage. Latent thermal energy storage has the advantages of high energy storage density and 
temperature stability but has the drawbacks of high cost and complex energy storage. Explicit heat 
storage has the advantages of simplicity, low cost, and long lifespan but low energy storage density, 
large equipment volume, and unstable temperature [23]. This article considers that PIES have lower 
requirements for high energy storage density and temperature stability. Therefore, explicit energy 
storage devices are selected as the thermal storage components of PIES to further reduce the operating 
cost of PIES. 

Natural gas storage technology includes gas tank, underground gas, liquefied natural gas, pipeline 
gas, and hydrate gas storage, as well as other related storage technologies. In this article, the storage 
of natural gas is carried out by the widely used gas storage tanks. 

The energy storage side includes three types of equipment: batteries, gas storage tanks, and heat 
storage tanks, which are responsible for storing or releasing electrical energy, gas, and heat, 
respectively. The mathematical model of energy storage equipment is shown in Eq (16). 
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   
X,dis

X X-loss X X,ch X,ch X,ch X,ch
1 X,dis

1 1 t
t t t t t

P
S S P t   



 
      

 
     (16) 

X represents the energy category; ES, HS, and GS represent the battery, heat storage tank, and air 
storage tank, respectively; X

tS and X
1tS   represent the energy storage at time slot t and at time slot t + 1; 

X-loss  is the loss coefficient of energy storage device X . X,ch
tP  and X,dis

tP  are the energy storage 
power and discharge power of energy storage device X at time slot t; X,ch  and X,dis  are the energy 
storage efficiency and release efficiency of energy storage device X ; X,ch

t  is a 0–1 variable that 

represents the energy storage status of the energy storage device X  at time slot t; t  is the unit time 
slot length. 

The state constraints, capacity constraints, and energy storage and discharge power constraints of 
energy storage device X  are shown in Eqs (17–19), respectively. 

  X,ch X,ch1 1t t                (17) 

 X X X
min maxtS S S            (18) 

 

X,ch/dis X,ch/dis
max

X,ch X,ch
X,ch/dis

X,dis X,ch

0

 1

 0

t

t t
t

t t

P P

P
P

P





 

  


，

，

        (19) 

X
minS and X

maxS  are the lower and upper capacity limits of the energy storage device X ; X,ch/dis
tP  is 

the maximum energy storage or discharge power of the energy storage device X . 

2.1.4. Energy load side 

The energy load in PIES mainly includes electricity, gas, and heat loads, all of which have the 
characteristics of temporal uncertainty. 

2.2. Objective function of PIES 

The goal of PIES energy management is to adjust the output of each unit in the energy system 
while ensuring the safe operation of the system, so as to minimize the operating cost of the system. 
The system operating cost includes the cost of purchasing electricity from the power grid EleC , the 
cost of purchasing gas from natural gas stations GasC , the cost of operating energy storage equipment RCC , 
and the cost of carbon emissions from the system CC . The objective function is shown in Eq (20). 

               Ele Gas RC cminF C C C C           (20) 

The calculation methods for electricity purchase cost and gas purchase cost are shown in Eqs (21) 
and (22), respectively. 
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 Ele Ele Ele

1

T

t t
t

C c P t


           (21) 

 
Gas Gas GasPH

1 HV

T

t t
t

G
C c G t

G

         (22) 

EleC and GasC  are the electricity and gas prices at time slot t; Ele
tP  and Gas

tG  are the electricity and 
gas purchasing power at time slot t; PHG  is the equivalent power and heat energy conversion 
coefficient of gas; HVG  is the high calorific value of gas combustion. 

The operating cost RCC  of energy storage equipment includes the operating cost ESC  of the 
battery, the operating cost HSC  of the heat storage tank, and the operating cost GSC  of the air storage 
tank. The representation of each cost is shown in Eqs (23–26). 

                               RC ES HS GSC C C C            (23) 

   ES

ES ES
R capeES

ES ES ES1
R max

t

T

n q Et
t

P tC
C

D S m E e
  





       (24) 

  HS HS HS,ch HS,ch/dis

1

1
T

t t
t

C c t P


          (25) 

  GS GS GS,ch GS,ch/dis

1

1
T

t t
t

C c t P


          (26) 

ES
RP  is the rated charging and discharging power of the battery; ES

capeC  is the investment cost of 

building batteries; ES
RD  is the rated discharge depth of the battery; m, n, and q are the fitting curve 

parameters for converting the irregular charging and discharging process of the battery into the 
standard cycle usage times [24]; ES

tE  is the state of charge of the battery; HSC and GSC  are the unit 

operating costs for the service life of heat and gas storage tanks. 
The carbon emission cost of the system is shown in Eq (27). 

 
2

Ele GT P2G
Ele GT P2G

1

T
c

co t t t
t

C c P P P t  


         (27) 

Ele  is the carbon emission coefficient of power grid purchasing; GT  is the carbon emission 
coefficient of GT equipment; P2G  is the carbon absorption coefficient of P2G equipment operation; 

2coc  is the carbon price. 
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3. PIES energy management model based on PPO algorithm 

3.1. Markov decision process 

The Markov decision process is the mathematical foundation for reinforcement learning. The 
Markov decision process (MDP) consists of ( , , , )S A R  elements, where S represents the set of states 
of the environment, A represents the set of actions of the agent, R represents the return function,  is 
the discount factor, and (0,1]  . The state transition process is at time t. The intelligent agent selects 
action ta to interact with the environment based on the current environmental state ts , obtains a reward

tr , and enters the next state 1ts  . The agent receives a reward for interacting with the environment at 
each time step until the end of the state. tG represents the long-term benefits of the intelligent agent, 

as shown in Eq (28). 

2
1 2

0

T t
T t i

t t t t T t i
i

G r r r r r   



  



          (28) 

T  is the length of the decision sequence. 
Using the action value function Q  to evaluate the quality of action a  in state s  and using the 

state value function V to evaluate the quality of the state, the value of the Q  value function can be 

used to calculate the V value function, as defined in Eqs (29) and (30). 

                     , ,t t tQ s a E G S s A a           (29) 

 
     ,

a A

V s a s Q s a 


 
        (30) 

( | )a s represents the probability of executing action a  in the current state s , representing the 

agent’s strategy. 
 

3.2. PIES energy management method based on PPO algorithm 

Compared with traditional strategy gradient optimization algorithms, the PPO algorithm has the 
advantages of being insensitive to update step size and not requiring resampling during updates. It is 
suitable for PIES containing continuous data such as photovoltaic and load and can effectively avoid 
the curse of dimensionality. 

3.2.1. Principles of PPO algorithm 

PPO is a benchmark algorithm for reinforcement learning based on the actor critic (AC) framework 
proposed by OpenAI in 2017 [25]. The AC method includes both value-based and strategy-based 
learning methods. The AC framework consists of two networks, namely the actor network and the 
critical network. The actor network, also known as the policy network, is mainly used to generate 
policy functions. The critical network, also known as value network, is mainly used to evaluate the 
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actions taken by actors in order to improve the strategy function of the actor network. The training 
flowchart of the PPO algorithm is shown in Figure 2. 

 

Figure 2. PPO algorithm training flow chart. 

(1) Actor network training 
The actor network updates network parameter   by optimizing the loss function  CLIPJ  . The 

determination of  CLIPJ   is shown in Eq (31). 

               , min , , ,1 ,1 ,
t t old

CLIP
t t t t t ts aJ E r A s a clip r A s a     

     (31) 

 ,t tA s a  is the dominance function;  tr   is the importance sampling ratio;   is the parameter 

of the actor network;   is the pruning factor, which is a hyperparameter used to measure the degree 
of deviation between the new and old strategies. Due to the large update distance between the new and 
old strategies, the algorithm may become unstable. To avoid this situation, the importance sampling 
weight is limited to [1 ,1 ]   . 

The definition of the advantage function in Eq (5) is shown in Eq (32). 

   
 1

,t t t t

t t t

A s a y V s

y R V s



 

 

 
         (32) 

 tV s  is the output value of the critical network at time t; tR is the reward at time t;   is the 

network parameter of critical; ty  is the  tV s  estimated value for time t + 1. 

The importance sampling ratio is the ratio of the new strategy distribution function to the old 
strategy distribution function, as shown in Eq (33). 

   
 

old

t t

t

t t

s a
r

s a








          (33) 

Using the gradient ascent method to update actor network parameters  , the size of the update 
equation is shown in Eq (34). 

Critic network
Replay 
buffer

Actor network
(st,at)(st,st+1)

update 
parameter

𝜃

update 
Parameter

ω 

compute loss function 𝐿ሺ𝜔ሻ compute loss function 𝐽𝐶𝐿𝐼𝑃ሺ𝜃ሻ 

compute advantage function 𝐴ሺ𝑠𝑡 , 𝑎𝑡ሻ 

compute importance  
sampling ratio 𝑟𝑡ሺ𝜃ሻ

𝜋𝜃𝑜𝑙𝑑 ሺ𝑠𝑡|𝑎𝑡ሻ

according to 𝜃 
compute 𝜋𝜃ሺ𝑠𝑡|𝑎𝑡ሻ 

𝑅𝑡  

compute 
Vωሺstሻ,Vωሺst൅1ሻ 
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 A J              (34) 

In the equation, A  is the learning rate of the actor network. 
(2) Critical network training 
The critical network updates the network parameter   of critical by optimizing the loss 

function  L  . The definition of  L   is shown in Eq (35). 

    2

t tL E y V s             (35) 

Use the gradient descent method to update the critical network parameter  , as shown in Eq (36). 

 C L               (36) 

In the equation, C  is the learning rate of the critical network. 

3.3. Energy management model based on PPO algorithm 

The PPO algorithm is used to solve the PIES energy management model, as shown in Figure 3. 

 

Figure 3. PIES energy management model based on PPO algorithm. 

The initial input states of both the critical and the actor network are randomly sampled from the 
experience pool to obtain state ts . The advantage of randomly sampling the initial states of each 

training round of the model from the experience pool is that it can reduce the randomness of the trained 
model in obtaining PIES energy management schemes. At the same time, the output of the critical 
network is the tV  value, while the output of the actor network is the action ta . The agent interacts 
with the PIES environment according to the time slot and makes action ta  based on the current 
environment state ts . The PIES environment returns the reward value tR  to the agent, and the 
experience pool is used to save the state ts , action ta , and reward tR  for each time period. The 

Experience 
replay



tR L

tS
sample

agent

 ,t ts R

tS

tR tV

, ,t t ts a R  

PIES
environment

Actor Critic
advantage 
function
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samples used for updating network weights in intelligent agents are randomly extracted from the 
experience pool. After offline training of the DRL model based on the PPO algorithm using training 
data, the model is saved and applied to the energy management of PIES. 

4. Optimization of PIES scheduling based on PPO algorithm 

The core idea of using the PPO reinforcement learning optimization algorithm for PIES 
considering multiple time scales is to first construct upper and lower energy management models based 
on different energy management time scales. The upper energy management model includes the power 
and heat systems, and the lower energy management model includes the gas system. Then, based on 
the PPO algorithm, long-term energy management of power and heat systems is achieved at a time 
scale of 30 min, while short-term energy management of gas systems is achieved at a time scale of 6 
min, achieving differentiated energy management. 

The upper and lower PPO scheduling models are mutually coupled, and the scheduling plan for 
the power and heat systems by the upper PPO serves as the environmental state of the lower PPO 
system. Due to the relatively long update time, the upper PPO scheduling model may experience a 
shortage of heat or power supply. At this time, the lower PPO scheduling model can be fully utilized 
to provide electricity and heat supply to the upper heat and power system by utilizing the GT and GB 
equipment in the lower PPO scheduling model. At the same time, in order to avoid the situation where 
the upper PPO scheduling excessively relies on the energy supply of the lower PPO scheduling and 
the system energy state is unstable, the cumulative adjustment of GT and GB operating power in the 
lower PPO scheduling is used as the reward function penalty term for the upper PPO scheduling. The 
specific energy management model is shown in Figure 4. 

 

Figure 4. Multi-time scale park comprehensive energy PPO reinforcement learning 
optimization algorithm. 
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4.1. Upper PPO long time scale energy management 

4.1.1. Upper PPO state space 

The state space UP
ts  of the upper PPO consists of the observed states of the upper power and heat 

systems (including photovoltaic power generation), as shown in Eq (37). 

 
5 5

UP Ele GB GT load load PV GB GT

1 1

,G ,G , , , , ,t t t t t t t t i t i
i i

s c P H P G G t 
 


   


 ，      (37) 

 Ele
tc  is the electricity purchase price of the power grid; GBG t  is the gas consumption power in 

GB; GTG t  is the GT gas consumption power; load
tP  is the electrical load; load

tH  is the heat load; PV
tP  

is the photovoltaic power generation; 
5

GB

1
t i

i

G 


  is the gas consumption power of the GB device at a long 

time scale; 
5

GT

1
t i

i

G 


  is the gas consumption power of the GT equipment; t is the time slot. 

4.1.2. Improved upper PPO action space 

The action space of the upper PPO intelligent agent is shown in Eq (38). 

 UP Ele P2G EB ES,ch/dis HS,ch/dis,P , , ,t t t t t ta P P P P         (38) 

Ele
tP  represents the power purchased from the external power grid; P 2GPt  is the power 

consumption of the P2G device; EB
tP  is the power consumption of the EB device; ES,ch/dis

tP  and 
HS,ch/dis

tP  are the storage/discharge power of the battery and the storage/discharge power of the heat 

storage tank, respectively. 
By adding random disturbances in the upper action space to enhance the perception of the 

environment, the improved upper PPO action space is shown in Eq (39). 

 UP UP 1t t ta a m             (39) 

UP
ta  represents the actual action space;   represents the proportion of each component in the 

initial action space; tm  represents an increased random disturbance and the upper limit of [ 1,1]tm   , 

and   is 0.9, ensuring that the action space in the later stage of training still has perceptual ability. 

4.1.3. Upper PPO reward function 

The upper PPO reward function is used to guide the intelligent agent to select actions based on 
the current state and obtain the maximum cumulative return. The upper PPO reward function consists 
of three penalty terms. The first penalty term mainly includes the cost of power grid purchase, the 
operating cost of upper equipment, and the cost of operating power regulation. The significance of 
considering the cost of equipment operating power regulation is to prevent external power purchase or 
the fluctuation range of P2G and EB equipment operating power from being too large, causing sharp 
changes in system load and affecting system stability. The definition of U1

tC  is shown in Eq (40). 
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5
U1 EleRc P2GRc EBRc Ele ES HS

1
t t t t t i t t

i

C C C C C C C


           (40) 

5
Ele

1
t i

i

C 

  represents the cost of purchasing electricity from the external power grid over a long period of 

time; ES
tC  is the operating cost of the battery; HS

tC  is the operating cost of the heat storage tank; EleRc
tC  

is the cost of external power purchase and regulation; P2GRc
tC  and EBRc

tC  are the operating power 
regulation costs of P2G and EB devices, where EleRc

tC , P2GRc
tC , and EBRc

tC  are defined as Eqs (41–43). 

                          EleRc Ele Ele Ele
RC 5t t tC c P P          (41) 

 P2GRc P2G P2G P2G
RC 5t t tC c P P         (42) 

 EBRc EB EB EB
RC 5t t tC c P P          (43) 

Ele
RCc ， P2G

RCc , and EB
RCc  are the prices for purchasing power from the external power grid, P2G 

equipment, and EB equipment. 
The penalty term of the second part of the reward function includes the unbalanced supply and 

demand costs of electricity and heat energy, as defined in Eq (44). 

U 2 Enb Enb Hnb Hnb
t t tC c P c H           (44) 

Enbc and Hnbc  are the penalty prices for the imbalance between supply and demand of electricity 
and heat energy; Enb

tP and Hnb
tH  refer to the power with imbalanced supply and demand of electrical 

and heat energy, where Enb
tP  and Hnb

tH  are defined as Eqs (45) and (46). 

     Enb load P 2G EB ES,ch ES,ch/dis Ele PV ES,ch ES,ch/dis GT1t t t t t t t t t t tP P P P P P P P P           (45) 

     Enb EB GT GB HS,ch HS,ch/dis load HS,ch HS,ch/dis1t t t t t t t t tH H H H P H P            (46) 

The penalty term U3
tC  of the third part of the reward function includes the cumulative operating 

power regulation cost of GT equipment and GB equipment. The purpose of considering this 
regulation cost is to prevent the upper power and heat system from excessively relying on the 
electricity and heat energy supply of GT and GB equipment in the lower gas system. The definition 
of U 3

tC  is shown in Eq (47). 

5 5
U3 cpa GB GT

1 1
t t i t i

i i

C c G G 
 

     
 
         (47) 

cpac  is the penalty price for the cumulative power adjustment of GT and GB devices. 
In summary, the reward function obtained by the upper PPO after executing action UP

ta  based 
on state UP

ts  is shown in Eq (48). 
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   UP U1 U2 U3 Enb Hnb
0 0.001t t t t t tR C C C I P H r                  (48) 

 Enb Hnb
0t tI P H r        is the indicator function;   is the maximum cumulative electricity and 

heat energy supply and demand imbalance value; 0r  is a constant (which can change the cumulative 

return from negative to positive, improving the stability and convergence speed of the model). 

4.2. Short time scale energy management of lower PPO 

4.2.1. Lower PPO state space 

The state space of the lower PPO includes the observed states of the lower gas system and the 
energy parameters generated by the upper power and heat system, as shown in Eq (49). 

  Down Gas load load load Ele P2G EB ES,ch/dis HS,ch/dis, , , , , , , , ,t t t t t t t t t ts c P H G t P P P P P    (49) 

Gas
tc  is the gas purchase price of the natural gas station; load

tG  is the gas load. 

4.2.2. Lower PPO state space 

The action space of the lower PPO intelligent agent is shown in Eq (50). 

  Down Gas GT GB GS,ch/dis, , ,t t t t ta G G G P           (50) 

Gas
tG  represents the power of natural gas station to purchase gas; GT

tG  is the gas consumption 
power of the GT equipment; GB

tG  is the gas consumption power of the GB device; GS,ch/dis
tP  is the 

storage/discharge power of the air storage tank. 
Adding random disturbances to the lower action space to enhance the perception of the 

environment, the improved lower PPO action space Down
ta   is shown in Eq (51). 

 Down Down 1t t ta a m              (51) 

4.2.3. Lower PPO reward function 

The lower PPO reward function includes the first part penalty term D1
tC  and the second part penalty 

term D2
tC , which are used to guide the intelligent agent to select actions based on the current state. 

The first part of the reward function penalty term is shown in Eq (52). 

  D1 GasRc GT GB Gas GS
t t t t t tC C C C C C           (52) 

GasRc
tC  represents the cost of external gas purchase power regulation; GT

tC  and GB
tC are the 

operating power regulation costs of GT equipment and GB equipment, where GasRc
tC ， GT

tC , and GB
tC  

are defined as Eqs (53–55). 
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         GasRc Gas pur pur
Rc 1t t tC c G G            (53) 

          GT GT GT GT
Rc 1t t tC c G G            (54) 

 GB GB GB GB
Rc 1t t tC c G G            (55) 

The second part of the reward function penalty term is shown in Eq (56): 

  D2 Gnb Gnb
t tC c G           (56) 

Gnbc  is the penalty price for the imbalance between supply and demand in the gas system; Gnb
tG  

is the power of the imbalance between gas energy supply and demand, where Gnb
tG  is defined as 

shown in Eq (57). 

      Gnb Gas P2G GS,ch GS,ch/dis load GB GT GS,ch GS,ch/dis1t t t t t t t t t tG G G P G G G P            (57) 

In summary, the reward function obtained by the lower PPO after executing action Down
ta  based 

on state Down
ts  is shown in Eq (58). 

   Down D1 D2 Gnb
0 0 0.001t t t tR C C I G r                (58) 

In the equation, 0  is the maximum cumulative gas energy supply and demand imbalance value. 

5. Example simulation and result analysis 

5.1. Example simulation settings 

The electricity, heat, and gas loads, and photovoltaic power generation data in this article are 
sourced from a small domestic park. The structure is shown in Figure 1, and the system equipment 
parameters and other simulation parameters are shown in Tables 1 and 2 [26,27]. The electricity price 
of the power system is the time-of-use electricity price as shown in Table 3 [28], and the natural gas 
unit price is a fixed price of 4.2 yuan/Nm3 (Normal cubic meter). Most of the formulas in the text are 
based on references [29]. To verify the superiority of the double-layer PPO algorithm proposed in this 
article compared to the single-layer PPO algorithm in terms of runtime, it is necessary to control 
variables and ensure that the CPU and memory settings of the double-layer PPO algorithm and the 
single-layer PPO algorithm are consistent, both completed by a computer equipped with an I7-7700 
CPU and 16 GB RAM. 

This experiment was implemented on the TensorFlow platform, with five upper PPO action space 
control objects and four lower PPO action space control objects. The same actor and critical networks, 
hidden layer, and activation function are used in the upper and lower levels. The number of hidden 
layers for both the actor and the critical network is 3, each layer containing 256 neurons; the activation 
function is ReLU. The network weights are updated using the Adam optimizer. 
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Table 1. PIES equipment simulation operation parameters. 

Equipment Lower power limit/MW Upper power limit/MW 

Gas turbine 0 1 

Gas boiler 0 0.55 

Electric boiler 0 0.4 

P2G 0 0.5 

Battery 0.06 0.24 

Heat storage tank 0.04 0.2 

Gas storage tank 0.07 0.35 

Table 2. PIES remaining simulation parameters. 

Parameter Numeric value Parameter Numeric value Parameter Numeric value 
GT
maxG  0.1 MW GB

maxG  0.05 MW EB
maxP  0.1 MW 

P 2 G
maxP  0.04 MW GT E   43% GB  97% 

EB  93% P2G  85% GT loss   15% 
GB loss   5% EB loss   3% P2G loss   20% 
ES,ch/dis

maxP  0.08 MW GS,ch/dis
maxP  0.08 MW HS,ch/dis

maxP  0.03 MW 
ES,ch  90% HS,ch  80% GS,ch  90% 
ES,dis  110% HS,dis  115% GS,dis  110% 
Ele

maxP  2 MW Gas
maxG  1.5 MW Ele

RCc  1 yuan 
P2G
RCc  1 yuan EB

RCc  1 yuan Gas
RCc  1.5 yuan 

GT
RCc  1.5 yuan GB

RCc  15000 yuan HSc  6 yuan 
GSc  6 ES

capec  45 m  694 

n  1.98 q  0.016 ES
RD  0.8 

A  0.001 C  0.002  0.9 

Table 3. Time-of-use electricity price. 

Time span Time Electrovalence/(yuan/kwh) 
Valley period 23:00–morrow 07:00 0.2 

Peacetime period 
morrow 07:00–12:00 

0.6 
19:00–23:00 

Peak period 12:00–19:00 1.1 

5.2. Validation experiment and result analysis 

First, under the experimental environment and simulation parameters provided above, the upper 
and lower PPO models were trained separately, and the convergence characteristics of the upper and 
lower PPO were obtained, as shown in Figure 5. 



656 

AIMS Energy  Volume 12, Issue 3, 639–663. 

 

Figure 5. Upper and lower PPO reward function change. 

From Figure 5, it can be seen that in the initial stage of training, the decision reward values of the 
upper and lower agents are relatively small due to their unfamiliarity with the environment. With the 
continuous interaction between agents and the environment, upper and lower agents continuously 
accumulate experience to update network weights, and the reward values obtained gradually increase 
until convergence. The upper PPO converges after approximately 400 rounds of training, while the 
lower PPO converges after approximately 500 rounds of training. The upper PPO converges faster 
because the reward function of the upper PPO includes the cumulative adjustment of the operating 
power of GT and GB devices in the lower PPO. The reward functions of the upper PPO and lower 
PPO both converge quickly, effectively adjusting the energy purchase, conversion, and storage 
behavior of the power, heat, and gas systems. 

Then, PIES enters normal operation mode, and the upper PPO updates the energy management 
status of the power and heat systems at a long-term scale of 30 min, while the lower PPO updates the 
energy management status of the gas system at a short-term scale of 6 min, as shown in Figure 6: The 
upper and lower parts display the total energy supply and the total energy demand power, respectively. 

During the valley electricity price period of the power grid, the lower electricity price drives the 
increase in external power purchase, causing the GT equipment to operate at lower power, while the 
operating power of EB and P2G equipment rebounds and energy storage increases. The power system 
balance is mainly maintained by external power purchase on the grid side, as shown in Figure 6a. On 
the heating network side, due to the GT equipment adopting the “electricity and heating” mode, the 
operating power is relatively low, and the supply and demand balance of the heat system is mainly 
maintained by the GB and EB equipment, as shown in Figure 6b. On the gas network side, the balance 
of the gas system is mainly maintained by external gas purchasing power and P2G equipment, as 
shown in Figure 6c. 
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(a) Electric energy management plan developed by the upper PPO. 

 

(b) Heat energy management plan developed by the upper PPO. 

 

(c) Gas management plan developed by lower PPO. 

Figure 6. Management scheme of electric energy, heat energy, and gas output by upper 
and lower PPO. 

From Figure 6a, it can be seen that the grid side maintains a balance between supply and demand 
of the power system by flexibly adjusting external purchasing power, batteries, GT, P2G, and EB 
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equipment during the normal and peak periods of electricity prices. Due to the increase in electricity 
prices, external power purchases have decreased, resulting in a corresponding decrease in the operating 
power of P2G and EB equipment, a decrease in energy storage, and a corresponding increase in the 
operating power of GT equipment to maintain a balance between supply and demand in the power 
system. At this point, the power system mainly applies photovoltaic power generation and GT 
equipment to make up for the supply gap of external purchased power. The photovoltaic output becomes 
higher during the 10:00–13:00 period, and the output of GT equipment is higher during the 17:00–20:00 
period. The decrease in operating power of the P2G and EB equipment reduces the energy supply of 
the gas system and heat system. The gas network side compensates for the supply gap of P2G 
equipment by increasing external gas purchasing power, maintaining the balance of the gas system, as 
shown in Figure 6b. The heating network side mainly uses the GB and GT equipment to fill the supply 
gap of the EB equipment and maintain the balance of the heat system, as shown in Figure 6c. 

5.3. Comparative experiments and result analysis 

Comparative experiments were conducted on the proposed PPO reinforcement learning 
optimization algorithm for PIES considering multiple time scales, PPO algorithm, and traditional 
methods. The experimental data of the three methods were randomly selected from the test set, with a 
total scheduling period of 24 h and a time scale of 30 min. The traditional method uses the solving 
software CPLEX (a mathematical modeling tool that can help solve the optimal or feasible solution in 
the model). The operating costs of the three methods are shown in Table 4. 

Table 4. Daily operation cost of different energy management optimization methods. 

Operating cost/yuan Proposed method PPO Traditional method Effect 1 Effect 2 

Maximum value 28735 33594 35386 5.06% 14.46% 

Minimum value 22378 30391 32462 6.37% 26.3% 

Average value 25576 32358 33490 3.38% 20.9% 

Carbon emission 1169 1552 1625 4.50% 24.6% 

Training time 5973 s 13685 s ̶ ̶ 56.35% 

From Table 4, it can be seen that using the algorithm proposed in this article for energy management 
has the lowest daily average operating cost and carbon emission cost. The former is 73.5% for the PPO 
algorithm and 69.1% for the traditional method; the carbon emission cost is 75.3% for the PPO 
algorithm method and 71.9% for the traditional method. 

The traditional method relies on an accurate prediction of renewable energy and loads. To solve 
this problem, this paper adopts the PPO algorithm in reinforcement learning. Reinforcement learning 
is a model-free method that does not rely on accurate prediction and modeling of source loads and can 
effectively deal with uncertain energy supply problems such as photovoltaics. Meanwhile, compared 
to traditional methods, this article divides PIES into upper and lower parts, which can meet the 
differences in time scales of various energy subsystems. The PPO algorithm reduces operating costs 
by 3.38% and carbon emissions by 4.50%, compared with traditional methods. 

Using a dual-layer PPO management model to partition and manage the same number of control 
variables can effectively improve the training success rate and convergence speed of the PPO 
management model, thereby reducing its effective training time. This is because the double-layer PPO 
overcomes the curse of dimensionality in model training by partitioning control variables. In addition, 
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the single-layer PPO is limited by the system management time scale of 30 min, making it difficult to 
quickly adjust the three energy sources’ supply and demand situations, resulting in the overall 
economic benefits of PIES being lower than the double-layer PPO algorithm proposed in this article. 
The simulation results show that the double-layer PPO algorithm reduces operating costs by 20.9% 
and carbon emissions by 2.5% compared with the single-layer PPO algorithm. 

5.4. Analysis of energy loss results 

To verify the adaptive ability of the proposed solution to energy loss, the thermal load in the PIES 
system was incrementally increased, and the dynamic scheduling solution analysis of PIES was 
conducted again to see if it meets the energy demand of the thermal load in PIES. 

(1) The power variation of a gas turbine considering thermal energy loss is shown in Figure 7. 

 

Figure 7. Gas turbine thermal energy loss diagram. 

(2) The power variation of a gas boiler considering thermal energy loss is shown in Figure 8. 

 

Figure 8. Gas boiler thermal energy loss diagram. 

(3) The power variation of an electric boiler considering thermal energy loss is shown in Figure 9. 
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Figure 9. Electric boiler thermal energy loss diagram. 

As shown in Figures 7–9, during the valley period of the electricity price, the thermal power 
output of the electric boiler changes more significantly. During the normal and peak periods of the 
electricity price, the thermal power output of the gas turbine and gas boiler changes more significantly. 
This indicates that the gas turbine, gas boiler, and electric boiler proposed in this paper can all adapt 
to dynamic scheduling decisions and maintain the supply-demand balance of thermal energy in PIES. 

6. Conclusions 

This article proposes an integrated-energy PPO reinforcement learning optimization algorithm 
for a park-integrated energy management system that considers multiple time scales to address the 
uncertainty of photovoltaic output and load changes, as well as the differences in time scales of 
heterogeneous energy subsystem management. The method divides PIES into two layers, upper and 
lower, with the upper layer containing power and heat systems (including photovoltaic power 
generation), and the lower layer containing gas systems. The main conclusions are as follows: 

This article uses the PPO algorithm in deep reinforcement learning to establish a PIES energy 
management model, which can make real-time decisions and effectively respond to the uncertainty of 
photovoltaic output and load changes. 

The different time scales of the upper and lower layers in PIES not only meet the needs of 
heterogeneous energy subsystems for energy management time scale differences but also timely adjust 
the output of equipment in each subsystem to meet the energy supply and demand balance in PIES. 

Compared with single-layer PPO and traditional energy management methods, the method 
proposed in this article has advantages in reducing carbon emissions and improving the economic 
benefits of PIES. The PPO algorithm reduces operating costs by 3.38% and carbon emissions by 4.50% 
compared with traditional methods. The simulation results show that the double-layer PPO algorithm 
reduces operating costs by 20.9% and carbon emissions by 2.5% compared with the single-layer 
PPO algorithm. 
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