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Abstract: As distributed generation (DG) becomes increasingly integrated into the distribution 
grid, the structure of the distribution network is becoming more complex. To enhance the safety 
and cost-effectiveness of distribution systems, distribution network reconfiguration is gaining 
significant importance. Achieving optimal distribution network reconfiguration entails two key 
considerations: A feasible topology and economic efficiency. This paper addresses these challenges by 
introducing a novel approach that combines the potential island detection in undirected-graphs and the 
application of a whale optimization algorithm (WOA) for network reconfiguration optimization. To 
begin, we identified island categories based on the type of switchable-branches connected to these 
islands, allowing for the construction of potential island groups. Subsequently, unfeasible topologies 
were eliminated based on the conditions under which islands form within these potential island groups. 
Feasible topologies were then used to construct a model for network reconfiguration optimization. The 
optimal distribution network topology is determined using the WOA. In the final phase, the proposed 
method’s effectiveness was demonstrated through a case study on the IEEE-33 node distribution 
network under scenarios with and without DG integration. The results showed that the proposed method 
exhibited better performance than traditional approaches in distribution network reconfiguration. 
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1. Introduction 

As the electric power system undergoes rapid evolution, it is imperative to acknowledge that 
traditional models predominantly reliant on fossil-fueled power generation may no longer effectively 
address the escalating demand for sustainable development. This is especially evident in regions with 
limited access to fossil energy resources, underscoring the imperative to shift towards renewable 
energy sources [1–3]. A new paradigm in the form of integrating distributed renewable energy sources 
into the grid has emerged as a prominent trend in the evolution of electrical networks. However, the 
significant influx of DG into distribution grids has led to an increasingly intricate network structure. 
Although, this complexity has brought forth a set of new challenges, including increased peak-to-valley 
differentials, reverse power flows, and the heightened prominence of issues related to voltage quality 
and network losses [4–6].  

To enhance the security and cost-efficiency of distribution systems, network reconfiguration is 
gaining prominence. Network reconfiguration is an approach aimed at optimizing the operational 
performance of the electrical grid by altering its structure [7]. On one hand, network reconfiguration 
can mitigate issues such as voltage and current overloads by modifying the grid structure, thereby 
enhancing the reliability of the power system. On the other hand, it can optimize current and voltage 
distribution, leading to reduced network losses and improved economic performance in grid operations. 

In recent years, scholars have conducted extensive researches on the optimization methods for 
the distribution network reconfiguration. 

Literature [8] proposes a cyclic encoding and decoding algorithm based on the distribution 
network (DN) for effectively finding the global optimal configuration in any DN. The encoding 
algorithm, composed of cyclic searches, systematically organizes the DN and significantly reduces the 
search space for the distribution network reconfiguration problem. Literature [9] introduces an 
improved Equilibrium Optimization Algorithm (IEOA) combined with a proposed recovery strategy 
for the optimal allocation of multiple distributed generators in the distribution network. The recovery 
strategy is enhanced for more effective exploration of the solution space during iterations. Literature [10] 
compares the proposed Harris’s Hawk Optimization (HHO) algorithm with two related metaheuristic 
techniques, Particle Swarm Optimization and the Cuckoo Search algorithm, showing that HHO 
outperforms the other two optimizers in power loss minimization, voltage profile enhancement, and 
runtime. Literature [11] presents an efficient mathematical model for distribution network 
reconfiguration loss minimization that considers the system’s voltage profile. This model can be solved 
using commercially available solvers. The application of this model to multiple test systems and real 
distribution networks demonstrates its efficiency and effectiveness for distribution system 
reconfiguration. Literature [12] introduces an efficient and robust technique based on the Jellyfish 
Search Algorithm (JFSA) to minimize losses and reduce emissions to a maximum extent under typical 
daily load conditions. Literature [13] introduces a novel framework for microgrid scheduling and 
distribution feeder reconfiguration (DFR) considering load demand, market prices, and the 
uncertainties brought by renewable energy generation. Literature [14] proposes an approach based on 
the Equilibrium Optimization (EO) algorithm for the optimization integration of photovoltaics and 
Battery Energy Storage (BES) in radial distribution networks. Comparative performance analysis is 
carried out with Genetic Algorithms (GA), the EO algorithm, Particle Swarm Optimization (PSO), 
Differential Evolution (DE), and Grey Wolf Optimization (GWO). Literature [15] presents an 
improved Wild Horse Optimization algorithm (IWHO) as a novel metaheuristic approach for solving 
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power system optimization problems. It demonstrates high performance in exploration-exploitation 
balance and convergence speed, effectively handling complex problems. Literature [16] introduces an 
optimization framework for Distribution Network Reconfiguration (DNR) based on deep learning to 
enhance system reliability. The optimization problem is formulated with an objective function 
minimizing average curtailed power. Literature [17] proposes an enhanced Marine Predators 
Algorithm (IMPA) for controlling reactive power by optimizing the placement and sizing of shunt 
capacitors (SC) and determining the Power Factor (PF) of Distributed Generators (DG). The 
algorithm’s efficiency and scalability are demonstrated on standard test systems with 69 and 118 buses. 
Literature [18] introduces a Discrete-Continuous Genetic Algorithm to solve mixed-integer nonlinear 
programming models arising from classical power balance issues. Numerical validations conducted on 33 
radial feeders and meshed feeders show the method’s effective reduction of operational costs. 
Literature [19] investigates the load pattern’s impact on the sequences of the switching to show the 
load profile’s influence on minimization of energy losses in DNR. Literature [20] proposes a network 
reconfiguration and DG allocation method to reduce network losses in the presence of variable loads. 
Literature [21] presents the network reconfiguration optimization model considering the voltage 
dependency of loads, which is able to be solved by linear solvers. Literature [22] presents a distribution 
systems reconfiguration model considering load’s dependencies on environment temperature, and the 
optimization model can be solved by linear solvers in commercial optimization software. 

However, there is still room for improvement in the generation of feasible topology sets and 
solution algorithms in the above-mentioned methods. 

1) In terms of feasible topology set generation, most of the methods [1,15,23–25] employ Loop-Based 
Encoding to generate the required feasible topology sets for distribution network reconfiguration. While 
Loop-Based Encoding can, to some extent, mitigate the presence of radial networks, it cannot entirely 
eliminate islands. When infeasible topologies are introduced into the optimization model, it inevitably 
impacts both the efficiency and effectiveness of the solution. 

2) Regarding algorithmic solutions, solving the power equations in distribution networks involves 
non-linear equations, making network reconfiguration optimization a complex non-linear optimization 
problem [26]. Traditional non-linear optimization algorithms are intricate in terms of parameter tuning 
and often susceptible to getting trapped in local optima. Hence, there is a need for further algorithmic 
enhancements to address these issues. 

To address the aforementioned issues, this paper presents a distribution network reconfiguration 
optimization method that combines the identification of islanding in undirected graphs with the whale 
optimization algorithm (WOA). Leveraging the categorization of island types in undirected graphs, a 
set of feasible network topologies was established, and the WOA was employed to optimize the 
network topology. The novelties and contributions of this article can be summarized as follows: 

1) We have proposed a feasible topology set generation method based on undirected-graph 
potential island detection. The island categories were determined based on the type of switchable-branches 
connected to the islands, and potential island groups were constructed accordingly. In accordance with 
the conditions for island formation, infeasible topologies were eliminated, thus forming a feasible 
topology set. 

2) We have developed a WOA-based distribution network reconfiguration method using the 
feasible topology set. The optimal topology for the distribution network was determined using the 
WOA on the foundation of constructing the optimization model. 
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The remainder of this paper is structured as follows: Section 2 introduces the method for 
generating a feasible topology set based on potential island groups detection. Section 3 details the 
distribution network reconfiguration optimization method employing the WOA. Section 4 presents the 
case study, and Section 5 concludes the paper. 

2. A method for generating feasible topology sets based on potential island detection  

Distribution network reconfiguration entails finding the optimal topology from a set of feasible 
topologies for a distribution network. Given that distribution networks must adhere to radial constraints 
during operation, the generation of feasible topology sets should also take into account radial network 
structures. Although traditional loop-based encoding can to some extent prevent the existence of closed 
loops, it does not completely eliminate islanding. Therefore, in this paper, a feasible topology set 
generation method based on the detection of potential island groups is proposed to exclude infeasible 
topologies that contain isolated clusters, thus ensuring the feasibility of all topologies within the set. 

2.1. Overall methodology framework 

Building upon loop-based encoding, this paper incorporates a graph theory-based islanding 
detection method to eliminate all potential topologies that may result in islanding, ensuring that the 
generated set of feasible distribution network topologies strictly adheres to radial constraints. 
Specifically, this method comprises two main steps: loop-based encoding and the graph theory-based 
potential island groups detection. The overall methodology framework is illustrated in Figure 1. 
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Figure 1. Algorithm flow for generating feasible topology sets. 

2.2. Loop-based encoding 

The objective of the loop-based encoding method is to identify the fundamental loops within the 
distribution network and disconnect one branch from each loop, effectively achieving the “breaking” 
of loops and eliminating the presence of the loop network. 
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Figure 2. 7-Node example system and its corresponding fundamental loops. 

Using the 7-node example system depicted in Figure 2, the method for generating feasible 
topological sets will be explained. This system consists of a total of 7 nodes and 9 branches, labeled 
as b1–b9. Three of these branches, namely, b1, b3, and b7, are designated as non-switchable branches, 
while the remaining branches are categorized as switchable branches. Analyzing the topological 
structure presented in Figure 2 reveals the presence of three fundamental loops, as follows: 

 Loop 1: Including branches b1, b2, b3, and b4. 
 Loop 2: Including branches b3, b4, b5, b6, and b9. 
 Loop 3: Including branches b2, b5, b6, b7, and b8. 
Considering that the non-switchable branches b1, b3, and b7 do not modify the topological loop 

characteristics, these branches can be omitted from the fundamental loops under consideration. As a 
result, the three fundamental loops can be further simplified to: 

 Loop 1: Including branches b2 and b4. 
 Loop 2: Including branches b4, b5, b6, and b9. 
 Loop 3: Including branches b2, b5, b6, and b8. 
Subsequently, each fundamental loop is disrupted by disconnecting one switchable branch from 

each. Branches b2, b9, and b8 are chosen for disconnection in Loop 1, Loop 2, and Loop 3, resulting in 
the radial topology shown in Figure 3(a). 

Although the “loop-breaking” process disrupts all fundamental loops, it does not prevent the 
formation of isolated islands. For instance, disconnecting branches b2, b4, and b5 within Loop 1, Loop 2, 
and Loop 3 results in the creation of an island consisting of nodes 3 and 4, as seen in Figure 3(b). 
Alternatively, disconnecting branches b2, b4, and b6 within the same loops generates an island 
comprising nodes 3, 4, and 5, as shown in Figure 3(c). To eliminate infeasible topologies leading to 
such islands, a graph-theoretical approach for potential island groups detection must be employed. 
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Figure 3. Three scenarios of loop breaking in a 7-node system. (a) Successful loop 
breaking, resulting in a radial topology. (b) Unsuccessful loop breaking, leading to an 
island with nodes 3 and 4. (c) Unsuccessful loop breaking, resulting in an island with nodes 
3, 4, and 5. 

2.3. Detecting potential island groups in undirected graphs 

Before excluding infeasible topologies that contain islands, it is essential to find all potential 
island groups—these are sets of graphs that emerge when any combination of switchable branches is 
disconnected in the network. 
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Taking the 7-node system as an example, there are a total of four potential island groups. These 
island groups are named after the nodes they contain, namely Nodes 3-4, Nodes 3-4-5, Node 5, and 
Node 6, as illustrated in Figure 4. Disconnecting all switchable branches connected to a potential island 
will trigger the formation of that island. 
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Figure 4. Potential islands in a 7-node example system. 

However, the formation of islands is not exclusively determined by the connection of switchable 
branches to the islands but also by the type of switchable branches. The switchable branches linked to 
islands can be classified into two categories: one type comprises branches shared by adjacent pairs of 
fundamental loops, typically situated in the central region of the network. The other type comprises 
branches shared by non-fundamental loops, typically found at the network’s periphery. Depending on 
the type of switchable branches connected to potential islands, potential islands can be categorized into 
two groups: 

Type 1 potential island: All switchable branches connected to Type 1 potential islands are 
common branches shared by two fundamental loops. 

Type 2 potential island: Switchable branches connected to Type 2 potential islands include at least 
one branch that is not a common branch shared by two fundamental loops. 

Using the 7-node system as an example, the two types of potential islands have been listed in Table 1. 
Type 2 potential islands, located at the network’s periphery, have more switchable branches 

connected to them than the adjacent fundamental loops. As a result, loop-based encoding ensures that 
Type 2 potential islands do not form isolated islands. On the contrary, Type 1 potential islands cannot 
guarantee the avoidance of island formation and collectively form the potential island group. 

To obtain the set of feasible topologies, it is necessary to eliminate scenarios where Type 1 
potential islands result in island formation. This involves excluding situations where all branches 
linked to Type 1 potential islands are disconnected. Building upon the principles of loop-based 
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encoding and incorporating these conditions to prevent potential islands, a feasible set of distribution 
network reconfigurations T = {T1, T2, …, TN} is obtained. 

Table 1. Potential island groups in a 7-node distribution network. 

Potential 

island types 

Contained 

nodes 

Switchable branches connecting 

the potential islands 

Types of switchable branches connecting the 

potential islands 

Type 1 Nodes 3-4 b2, b4, b5 All the switchable branches are the common branches 

of two fundamental loops Nodes 3-4-5 b2, b4, b6 

Node 5 b5, b6 

Type 2 Node 6 b6, b8, b9 Some of the switchable branches (b8 and b9) are NOT 

the common branches of two fundamental loops 

3. Distribution network reconfiguration optimization model based on WOA 

3.1. Distribution network reconfiguration optimization model 

Distribution network reconfiguration optimization involves selecting the most suitable topology 
while ensuring optimal performance in terms of power losses, voltage constraints, and other metrics. 
Given the feasible topology set T = {T1, T2, …, TN} obtained through graph-theoretical island group 
detection, the goal of network reconfiguration is to choose an appropriate topology, Ti (i = 1, 2, …, N), 
from this set. The aim is to achieve the best possible optimization results while adhering to the specified 
constraints [27]. 
1) Constraints 

The constraints in distribution network reconfiguration mainly include power balance constraints, 
branch power limits, and upper and lower voltage deviation limit constraints. The power balance 
constraints can be expressed as: 
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where Pi and Qi are the active and reactive power injections at node i, Ui is the voltage magnitude at 
node i, δi and δj are the phase angles of the voltage at nodes i and j, and Gij and Bij are the real and 
imaginary parts of the element in the admittance matrix at row i and column j, with n representing the 
number of nodes in the distribution network. 

The branch power limit constraint can be represented as: 

 max maxij ij ijP P P                                (2) 

where Pij max is the power limit of the branch between nodes i and j, and Pij is the branch power, it can 
be represented as: 
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  cos( ) sin( )ij i j ij i j ij i jP U U G B                         (3) 

The upper and lower voltage deviation limit constraints can be represented as: 

 min maxi i iU U U                               (4) 

where Ui min and Ui max are respectively the lower and upper limits of the nodal voltage Ui. 
2) Optimization objective 

The optimization objective for distribution network reconfiguration takes into account 
minimizing the network loss cost, where the network loss cost cl can be obtained by summing the 
injected power at each node. 

 
1

n

l i
i

c P


                                  (5) 

To solve the constrained optimization problem, this paper utilizes a penalty function approach to 
establish the optimization objective. Among the constraints provided in (1)–(4), constraints (1) and (3) 
are equality constraints that have already been taken into account during the power flow calculation 
process. However, constraints (2) and (4) are inequality constraints and are incorporated into the 
objective function using a penalty function [28]. The penalty function, denoted as cp, can be expressed 
as follows: 
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where ΔUi represents the excess portion of nodal voltage Ui, ΔPij represents the excess portion of branch 
power Pij, ω1 and ω2 are weight coefficients, which are typically chosen to be relatively large values. 

ΔUi can be calculated as follows: 
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ΔPij can be calculated as follows: 
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Based on Eqs (5) and (6), the final optimization objective can be established as follows: 

Min   l pc c                               (9) 
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By introducing both network loss cost cl and penalty function cp in the optimization objective, 
both economic efficiency and operational reliability can be supported. The optimization model 
provided in Eqs (6)–(9) can be solved through the use of the WOA. 

3.2. Whale optimization algorithm 
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solutions (whales) 

P<0.5
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Compute fitness function of each whale

Update a, A, C, P
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Bubble net attack
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Compute fitness function of each whale

Prey search

Terminated?

End
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network topology Ti
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No
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Figure 5. The flowchart of the WOA. 
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WOA is a nature-inspired optimization technique that mimics the social behavior of humpback 
whales. The flowchart of the WOA is shown in Figure 5. It begins with the initialization of a population 
of potential solutions of the network topology Ti, representing the position of whales in the search 
space. Then, the fitness of each solution is evaluated using the objective function (9), and the whale 
with the best fitness is selected as the leader whale. 

During the algorithm’s iterations, whales move toward a randomly chosen “prey” position based on 
their current location and a set of predefined equations that model the whales’ encircling and bubble-net 
attacking behaviors. This process continues iteratively, gradually converging towards an optimal solution.  

The algorithm stops when a termination condition is met, such as a maximum number of iterations 
or reaching a satisfactory solution quality. Throughout the process, the best solution of the distribution 
network topology Ti is retained as the final result. 

4. Testing examples 

The IEEE 33-node distribution network system was used herein to verify the effectiveness of 
the proposed method, as shown in Figure 6. The system comprises 33 nodes, 23 non-switch branches, 
and 14 switchable branches equipped with controllable switches. The switch branches are denoted as 
b4, b7, b9, b14, b18, b20, b23, b27, b32, b33, b34, b35, b36, and b37. Nodes 6 and 33 are connected with DG. 
Distribution network reconfiguration can be achieved by controlling the switch states of these 
switchable branches [29]. 
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Figure 6. The 33-node test case system. 

4.1.  Generating feasible topology sets based on potential islanding detection. 

In the IEEE 33-node system, five fundamental loops can be identified. After excluding the non-switch 
branches from the fundamental loops, five simplified fundamental loops can be further derived. The 
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branches contained in the five complete fundamental loops and the simplified fundamental loops are 
listed in Table 2. 

Table 2. Potential island groups in a 33-node distribution network. 

 Branches 

Fundamental loops Loop 1 b3, b4, b5, b22, b23, b24, b25, b26, b27, b28, b37 

Loop 2 b6, b7, b8, b15, b16, b17, b25, b26, b27, b28, b29, b30, b31, b32, b34, b36 

Loop 3 b9, b10, b11, b12, b13, b14, b34 

Loop 4 b2, b3, b4, b5, b6, b7, b18, b19, b20, b33 

Loop 5 b8, b9, b10, b11, b21, b33, b35 

Simplified 

fundamental loops 

Loop 1 b4, b23, b27, b37 

Loop 2 b7, b27, b32, b34, b36 

Loop 3 b9, b14, b34 

Loop 4 b4, b7, b18, b20, b33 

Loop 5 b9, b33, b35 

Table 3. The classification results of switchable-branch types in the 33-node system. 

 Branches 

Common branches of fundamental loops b4, b7, b9, b27, b33, b34 

Non-common branches of fundamental loops b14, b18, b20, b23, b32, b35, b36, b37 

Table 4. The classification results of potential island types in the 33-node system. 

Potential 

island types 

Contained nodes Switchable branches 

connecting the 

potential islands 

Fundamental loops’ non-common 

branches connecting the potential 

islands 

Type 1 Nodes 5-6-7-26-27 b4, b7, b27 / 

Nodes 5-6-7-8-9-26-27 b4, b9, b27, b33, b34 

Nodes 8-9 b7, b9, b33, b34 

Type 2 Nodes 10-11-12-13-14 b9, b14, b35 b14, b35 

Nodes 15-16-17-18 b14, b34, b36 b14, b36 

Nodes 19-20 b18, b20 b18, b20 

Nodes 21-22 b20, b33, b35 b20, b35 

Nodes 24-25 b23, b37 b23, b37 

Nodes 28-29-30-31-32 b27, b32, b37 b32, b37 

Node 33 b32, b36 b32, b36 
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Figure 7. Potential islands in the 33-node test case system. 

To further identify different types of potential islands, it is necessary to distinguish the types of 
switchable branches into common branches and non-common branches of fundamental loops. The 
classification outcomes are displayed in Table 3. 

Classification of potential islands in the 33-node system can be further conducted based on the 
types of switchable branches, as illustrated in Table 4 and Figure 7. A comparison between Table 4 and 
Figure 7 indicates that all switch branches linked to Type 1 potential islands are common branches of 
the fundamental loops. By excluding situations where all branches connected to Type 1 potential 
islands are disconnected, the feasible topology set T for distribution network reconfiguration is 
obtained. This set comprises a total of 552 feasible topologies. If the proposed potential island detection 
method is not employed to eliminate infeasible topologies, there could be up to 214 = 16,384 possible 
topologies. Thus, it can be seen that the proposed method significantly reduces the solution space for 
distribution network reconfiguration, thereby achieving the goal of reducing computational workload. 

4.2. Distribution network reconfiguration optimization based on the WOA 

In the following case study, the WOA is used to optimize the topology of the 33-node system. For 
comparative analysis, four optimization methods, including PSO, SA, GA, and WOA (the proposed 
method), are considered for distribution network topology optimization, and the results are compared. 

When not considering DG integration, the results of distribution network reconfiguration 
optimization are shown in Table 5, Figures 8 and 9. Table 5 lists the switchable-branch states obtained 
using different methods, along with the statistical analysis of network loss and average voltage 
deviation. Figure 8 provides the topological structure of the distribution network under four different 
methods, while Figure 9(a) presents the iterative convergence curve of the fitness value for the WOA 
method, and Figure 9(b) offers a comparison of node voltages between the results obtained by the 
WOA and the other three methods. From Table 5, Figures 8 and 9, it can be observed that the WOA 
effectively optimizes the network topology, resulting in the best topology. The optimization results 
obtained by the WOA (the proposed method) are capable of reducing network loss and average voltage 
deviation to a greater extent when compared to PSO, SA, and GA methods. Quantitatively, the 



498 

AIMS Energy  Volume 12, Issue 2, 484–504. 

WOA (the proposed method) has a network loss that is 0.030 MW less than PSO. When computed at 
an electricity rate of 140 $/MWh, the WOA saves $100.8 in electricity costs per day compared to PSO. 

Table 5. Comparison of distribution network reconfiguration results for the four methods 
without considering DG integration. 

Method 

On/off state of the switchable branches 
Network 

loss 

(MW) 

Average 

voltage 

deviation 

(p.u.) 

b4 b7 b9 b14 b18 b20 b23 b27 b32 b33 b34 b35 b36 b37 

PSO 1  1 1 1 1 1 1 1 0 0 0 0 0 0 0.132 0.040 

SA 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0.119 0.037 

GA 1 1 1 0 0 1 1 0 1 0 1 1 0 1 0.155 0.047 

WOA 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0.102 0.029 
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Figure 8. Comparison of the 33-node distribution network topologies obtained by the PSO, 
SA, GA, and WOA methods when DG integration is not considered. 
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Figure 9. Distribution network topology optimization results without considering DG 
integration: (a) Convergence curve of the fitness value in the WOA, and (b) Voltage 
profiles of the 33-node system nodes for the four methods. 

In the subsequent analysis, DG is integrated into the distribution network, where nodes 6 and 33 
are assumed to be connected to a DG of 0.4 and 0.5 MW, and the results of distribution network 
reconfiguration optimization are presented in Table 6, Figures 10 and 11. It is evident from the 
presented data that the inclusion of DG has a discernible impact on the optimization outcomes 
compared to scenarios where DG is not considered. DG integration results in a modest elevation of 
terminal line voltages, contributing to a partial reduction in network losses and mitigating voltage 
deviations. However, it is notable that some optimization methods, notably PSO and GA, do not 
demonstrate substantial reductions in network losses and voltage deviations through distribution 
network reconfiguration, particularly in contrast to cases without DG. In contrast, the utilization of the 
WOA leads to significantly lower network losses and voltage deviations when compared to the other 
methodologies, exceeding the performance of PSO, SA, and GA. This verifies the superior efficacy of 
the WOA (the proposed method) in the context of distribution network reconfiguration, particularly 
when DG integration is a factor. In terms of quantity, WOA has a network loss that is 0.195 MW less 
than PSO. If calculated at an electricity price of 140 $/MWh, WOA saves $655.2 in electricity costs 
per day compared to PSO. This represents a significant cost reduction. 
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Table 6. Comparison of distribution network reconfiguration results for the four methods, 
taking into account DG integration. 

Method 

On/off state of the switchable branches 

Network loss 

(MW) 

Average 

voltage 

deviation 

(p.u.) 

b4 b7 b9 b14 b18 b20 b23 b27 b32 b33 b34 b35 b36 b37

PSO 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0.296 0.096 

SA 0 0 0 1 1 1 1 1 0 1 0 1 1 1 0.124 0.033 

GA 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0.163 0.049 

WOA 1 0 0 1 1 1 1 1 0 1 0 1 1 0 0.101 0.026 
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Figure 10. Comparison of the 33-node distribution network topologies obtained by the 
PSO, SA, GA, and WOA methods when considering DG integration. 
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Figure 11. Distribution network topology optimization results with DG integration: (a) 
Convergence curve of fitness value in WOA, and (b) Voltage profiles of the 33-node 
system nodes for the four methods. 

5. Conclusions 

In this paper, a distribution network reconfiguration optimization method based on undirected 
graph island type discrimination and the WOA is proposed. We have built a feasible topology set for 
distribution networks on the foundation of undirected graph island type discrimination and further 
optimized the network topology using the WOA. The key findings of this paper are as follows: 

1) Potential island detection method. The proposed potential island detection method effectively 
eliminated infeasible topologies, thereby enhancing the optimization solving efficiency of distribution 
network reconfiguration. 

2) WOA for network reconfiguration. The proposed WOA-based network reconfiguration 
optimization can better address the topological searching space of feasible topologies in distribution 
network reconfiguration optimization. By this way, the optimization process can be accelerated and 
local optima issues can be effectively avoided. 

Future work will focus on integrating the proposed topology optimization method with new 
voltage regulation techniques to further enhance the economic efficiency and reliability of distribution 
network operations. 
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