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Abstract: This paper addresses the increasingly critical issue of environmental optimization in the
context of rapid economic development, with a focus on wind farm layout optimization. As the demand
for sustainable resource management, climate change mitigation, and biodiversity conservation rises,
so does the complexity of managing environmental impacts and promoting sustainable practices.
Wind farm layout optimization, a vital subset of environmental optimization, involves the strategic
placement of wind turbines to maximize energy production and minimize environmental impacts.
Traditional methods, such as heuristic approaches, gradient-based optimization, and rule-based
strategies, have been employed to tackle these challenges. However, they often face limitations
in exploring the solution space efficiently and avoiding local optima. To advance the field, this
study introduces LSHADE-SPAGA, a novel algorithm that combines a binary genetic operator with
the LSHADE differential evolution algorithm, effectively balancing global exploration and local
exploitation capabilities. This hybrid approach is designed to navigate the complexities of wind farm
layout optimization, considering factors like wind patterns, terrain, and land use constraints. Extensive
testing, including 156 instances across different wind scenarios and layout constraints, demonstrates
LSHADE-SPAGA’s superiority over seven state-of-the-art algorithms in both the ability of jumping
out of the local optima and solution quality.

Keywords: sustainable resource management; energy optimization problems; wind farm layout;
genetic algorithms; differential evolution

1. Introduction

With rapid economic development, the issue of environmental optimization is becoming
increasingly important [1, 2]. Resolving environmental optimization problems is essential for
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achieving a harmonious balance between human activities and the natural environment [3, 4]. It is
crucial for several reasons, including sustainable resource management, climate change mitigation
and adaptation, economic and social stability, and biodiversity conservation, etc [5]. However, these
problems are very challenging in the context of managing and preserving natural resources,
minimizing environmental impact, and promoting sustainable practices. They involve finding the best
possible solutions to complex issues related to environmental management and conservation. The
overarching goal is to balance human activities with the need to protect and sustain the environment
for current and future generations [6].

Wind layout optimization problems [7] are a subset of environmental optimization problems that
focus on the efficient placement of wind turbines within a designated area to maximize energy
production and economic viability while minimizing environmental impact [8]. The goal is to find the
optimal arrangement of wind turbines to harness wind energy effectively, considering factors such as
wind patterns, terrain, and land use constraints [9]. Wind farm layout optimization poses challenges
due to site-specific factors, such as varying wind patterns and terrain, creating uncertainties in
modeling and forecasting. Balancing conflicting objectives, like maximizing energy output while
minimizing wake effects, adds complexity. This process requires a multidisciplinary approach,
integrating expertise from engineering, meteorology, economics, and environmental science, while
navigating regulatory, stakeholder, and data limitations [10, 11]. Despite these challenges, optimizing
layouts is crucial for enhancing wind energy efficiency and requires advanced computational methods
and constant adaptation to technological advancements [12–15].

Various methods have been proposed for wind farm layout optimization, which typically involve
heuristic approaches and iterative design processes based on expert knowledge and simulation
techniques [16–22]. Greedy algorithms make sequential decisions based on locally optimal choices,
and a greedy approach might involve placing turbines one by one, considering immediate benefits
without considering the overall long-term optimal solution [23]. Gradient-based optimization
methods involve iteratively adjusting the layout parameters based on the gradient of an objective
function (like power output) to reach a local optimum. However, they can get trapped in local optima
and might not find the global best solution [24]. Rule-based approaches involve applying predefined
rules or guidelines based on expert knowledge and empirical data, for instance, considering wind
direction, turbine spacing, and wake effects to manually design layouts [25]. Inspired by natural
selection, genetic algorithms involve generating a population of potential solutions (layouts),
combining and mutating them iteratively to evolve towards an optimal or near-optimal solution for the
wind farm layout [26]. These methods rely on expert knowledge, iterative processes, and simulations
to design layouts by considering factors like turbine placement, wind direction, and wake effects.
Meta-heuristic algorithms, [27–33] like simulated annealing, particle swarm optimization, or ant
colony optimization, involve exploring the search space efficiently, often by mimicking behaviors
found in nature, to find an optimal layout considering various constraints and objectives [34–36].
They often require substantial computational resources, may get stuck in local optima, and might not
capture the full complexity of wind behavior [37]. Recent advancements in computational capabilities
and machine learning have led to more sophisticated, data-driven optimization techniques that aim for
more accurate and efficient wind farm layouts by integrating traditional methods with advanced
modeling and learning algorithms [38–40].

Among the aforementioned methods, genetic algorithms are considered as the most effective ones
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to address the wind farm layout optimization problems [41]. They excel in wind farm layout
optimization by exploring a broad solution space efficiently, avoiding local optima and increasing the
likelihood of finding superior layouts. Their adaptability allows simultaneous consideration of various
constraints like turbine placement, wind patterns, and terrain limitations, ensuring flexible
optimization. With the ability to handle uncertainties robustly, genetic algorithms are adept at
accommodating real-world complexities, making them a valuable tool for wind farm layout design
despite their need for computational resources and potential convergence challenges [42].
Nevertheless, genetic algorithms suffer from inefficient search capacity due to the premature
mechanism. Recently, differential evolution (DE) algorithms have received increasing interests
because they demonstrate robustness in handling complex, nonlinear objective functions, making
them suitable for various real-world problems across different domains [43, 44]. DE’s simplicity, ease
of implementation, and ability to efficiently explore solution spaces while balancing between
exploration and exploitation make it a popular choice for optimization, especially in scenarios where
computational efficiency and reliable solutions are crucial [45–48]. To further improve the search
efficiency for wind farm layout optimization problems, this paper proposes a novel binary genetic
operator enhanced differential evolution algorithm, called LSHADE-SPAGA. By creatively
integrating a binary genetic operator into a distinguished DE variant, namely LSHADE [49] with
semi-parameter adaptation [50], LSHADE-SPAGA optimally leverages the global exploration
capabilities of the binary genetic operator alongside the local exploitation proficiency of DE
operators. This hybrid approach effectively balances search exploration and exploitation, aiming to
yield superior solutions for wind farm layout optimization challenges. To assess LSHADE-SPAGA’s
effectiveness, comprehensive experiments have been carried out. The algorithm is tested across a
variety of conditions, including four wind scenarios, twelve distinct layout constraints plus an
unconstrained layout, and three types of turbines, totaling 156 test instances (4 × 13 = 156).
LSHADE-SPAGA is benchmarked against seven other cutting-edge algorithms. The experimental
results demonstrate that LSHADE-SPAGA surpasses its competitors in terms of solution quality and
the trade-off between convergence speed and accuracy.

The remainder of this paper is organized as follows: Section 2 presents an overview of wind farm
layout optimization problems and introduces some notable optimization algorithms. Section 3 provides
a detailed exposition of the proposed LSHADE-SPAGA method. Section 4 presents a comprehensive
summary of the experimental results, encompassing comparative analyses and an ablation study of
LSHADE-SPAGA. Finally, Section 5 concludes the paper with some general remarks and conclusions.

2. Related work

2.1. Representation of wind farm layout optimization problems

Wind farm layout optimization (WFLO) problems focus on strategically positioning wind turbines
to maximize power generation while minimizing costs and environmental impacts. The core of these
problems is an objective function that aims to minimize the ratio of total construction costs to the total
power output of the wind farm. This involves optimizing the wind farm layout X and the number of
turbines N. The total construction cost is quantified using a specific function, such as Mosetti’s
function [51], which takes into account the number of turbines and their arrangement. The
optimization process also includes maximizing the total power output of the wind farm under various
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wind conditions, which simplifies to maximizing the power output when the number of turbines is
fixed. Each turbine’s power output is calculated based on factors like wind speed, direction, and the
layout configuration. Additionally, conversion efficiency is used to evaluate the wind farm’s power
generation performance, representing the efficiency of the turbine layout. A significant factor in
WFLO is the wake effect, which refers to the reduction in wind speed and alteration in wind direction
behind operating turbines. This effect can lead to decreased energy production and increased wear on
downstream turbines. Models like Jensen’s model [52] are used to estimate the wake velocity and its
impact on the power output of other turbines in the farm. These optimization problems require
balancing multiple factors to achieve an efficient and effective wind farm layout.

Mathematically, the goal of optimizing wind farm layout optimization is to enhance the power
generation of a wind farm. This is achieved by developing an objective function expressed as

g = minimize
Tcost

Wpower
(2.1)

where Tcost denotes the total construction cost of the wind farm, and Wpower signifies the cumulative
power output of the wind farm across various wind conditions. This optimization involves determining
the wind farm layout X and the total number of wind turbines D.

To calculate the construction cost, Mosetti’s function is employed, defined as

Tcost = D
(
2
3
+

1
3

e−0.00174D2

)
(2.2)

In our research, the number of wind turbines is fixed, simplifying the objective function (or fitness
function for evaluating algorithmic solutions) to maximizing the overall power output of the wind farm
under specific wind conditions ξ. This is represented as

g(X) = maximize Wpower =

D∑
i=1

∑
w,λ

p(w, λ)Pi(w, λ, X) (2.3)

where Pi(w, λ, X) is the power output of the ith turbine under wind speed w and direction λ in layout
X, and p(w, λ) is the probability distribution of wind speed and direction. Layout X is the decision
variable in WFLO.

The power generation efficiency of a wind farm is assessed using a conversion efficiency η, defined
as

η =
Wpower

D
∑

w,λPr(w, λ, X) · p(w, λ)
(2.4)

where Pr(w, λ, X), without considering wake effects, represents the rated power of a turbine under
specific wind conditions w and λ. A higher η value indicates a more efficient turbine layout.

The wake effect significantly influences a turbine’s power output. It refers to the reduction in wind
speed and directional changes caused by turbines, reducing downstream wind speed and affecting
other turbines’ efficiency in the same farm. This leads to energy production losses and increased
turbulence and fatigue on downstream turbines. To assess wake velocity, Jensen’s model is used, which
predicts wind speed reduction and increased turbulence in a turbine’s wake. This model assumes the
wake as a cylindrical region expanding downstream from the turbine, with its diameter based on the
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rotor’s diameter and length dependent on various factors like wind speed and atmospheric conditions.
The model calculates the wake’s velocity deficit, which in turn is used to estimate the power output
of downstream turbines and the overall energy production of the wind farm. Despite its simplicity,
Jensen’s model is effective in many wind farm scenarios [53–57].

2.2. Notable optimization algorithms

Several notable optimization algorithms have been developed for WFLO problems. In Grady et
al. [26], a genetic algorithm approach is employed to optimize wind turbine placement, focusing on
maximizing production capacity while reducing the number of turbines and land usage. The study
examines three wind scenarios: unidirectional uniform wind, variable-direction uniform wind, and
variable-direction non-uniform wind. For each scenario, 600 individuals are distributed among 20
subpopulations, evolving over 3000 or 2500 generations, depending on the scenario. The optimization
results include optimal configurations, fitness levels, total power output, power output efficiency, and
the turbine count per configuration. The study also reconciles differences with previous research and
provides explanations for these discrepancies.

Gonzalez et al. [58] introduce an evolutionary algorithm for wind farm layout optimization, using
a comprehensive cost model that accounts for initial investment, net cash flow over the wind farm’s
life, wind conditions, turbine features, and wake decay impact on energy production. The algorithm
handles diverse terrain and constraints, such as limited land areas and investment caps, while focusing
on minimizing production loss from wake decay. This advanced evolutionary algorithm has been
favorably compared to prior results, demonstrating its effectiveness in various wind farm scenarios.

Abdelsalam et al. [59] propose an optimization method combining a binary real coded genetic
algorithm with local search to enhance turbine placement in wind farms. Initially, this algorithm serves
as the global optimization system, encoding potential turbine locations in a binary matrix and using a
real matrix for power output calculations. This phase involves random initialization, fitness evaluation,
reproduction via genetic operators, and repairing infeasible individuals. The local search phase then
refines this approximate solution, improving solution quality by exploring the solution’s local region.
The method is designed to terminate upon reaching a predefined number of generations or achieving
convergence, with the overall goal of optimizing the efficiency of wake interaction among turbines.

More recent advancements include two state-of-the-art genetic algorithms proposed in Ju et
al. [41, 42]. The first, an adaptive genetic algorithm (AGA) [41], incorporates a self-awareness
mechanism allowing chromosomes to evaluate turbine efficiency and target improvements, initially
relocating the least efficient turbine randomly. Extensive tests confirm AGA’s superiority over
conventional genetic algorithms in wind farm layout optimization. The second, a support vector
regression (SVR) guided genetic algorithm (SUGGA) [42], integrates self-adjustment capabilities
with an SVR-based response surface guidance for turbine relocation, assessing landowner
participation constraints on farm efficiency. SUGGA outperforms baseline algorithms in various
scenarios, providing significant efficiency improvements and insights for wind farm planning.

A comprehensive study by Kunakote et al. [37] bridges metaheuristics with wind farm layout
design, assessing twelve metaheuristic algorithms in WFLO. The study formulates four WFLO
problems, with goals to minimize costs and maximize power production, varying turbine placement
and numbers. Employing Jansen’s wake model and two energy estimation methods, the study
compares metaheuristics for convergence and consistency. It identifies the moth-flame optimization
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algorithm as the most efficient, setting a benchmark for future metaheuristic studies in WFLO.
Despite these advancements, the No-Free-Lunch theorem [60] suggests that these algorithms,

including genetic algorithms and metaheuristics, still face limitations in search efficiency across
diverse wind scenarios. This limitation underscores the ongoing need for more efficient algorithms to
tackle the complexities of WFLO.

3. Proposed LSHADE-SPAGA method

In this study, we introduce for the first time an efficient optimization algorithm for WFLO
problems, which innovatively integrates novel binary genetic operators with a notable DE variant,
namely LSHADE with semi-parameter adaptation [50] (LSHADE-SPA). The original LSHADE
algorithm [49], an advanced version of DE [61], is renowned for its adaptive control parameters and
success-history based approach, employing a limited memory strategy to dynamically adjust the
scaling factor and crossover rate. This enhances its flexibility and efficiency, particularly in reducing
the population size during the optimization process to refine solutions. LSHADE is exceptionally
effective in multi-modal and high-dimensional challenges, adeptly balancing exploration and
exploitation to avoid local optima and seek global solutions. LSHADE-SPA further elevates
LSHADE by introducing a semi-parameter adaptation method, which strikes a balance between
random, fully adaptive, and self-adaptive algorithms. In our newly proposed LSHADE-SPAGA, we
have developed two unique binary mutation and crossover operators, specifically tailored for
optimizing wind farm layouts.

Mathematically, the population X in the LSHADE-SPAGA method can be represented as

X = {X1, X2, ..., XN},

Xi = {x1
i , x

2
i , ..., x

D
i }

(3.1)

where N is the size of the population, and D denotes the dimension of WFLO problems, corresponding
to the number of turbines placed in the wind farm. In this study, an integer coding strategy is proposed
to construct a wind farm, which makes the dimension of problems equal to the number of wind turbines
in the wind farm. Importantly, xd

i is an integer value that signifies the position of each turbine within
the wind farm.

Upon generating N feasible solutions randomly, we specifically design a novel binary genetic
mutation operator tailored for wind farm layout optimization, formulated as

xd
i =

Randi(1,M), if r < pm

xd
i , otherwise

(3.2)

where Randi(1,M) randomly selects an integer from the interval [1,M]. It is important to note that
the layout for a WFLO problem is discretely segmented into various grids, each representing potential
turbine placement locations. For example, in our experiments, the wind farm layout comprises M =
12 × 12 such locations. Here, M signifies the maximum possible position for wind turbines within the
wind farm, r is a random number drawn from a uniform distribution between 0 and 1, and pm represents
the mutation probability.
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To facilitate frequent information exchange among different individuals in the LSHADE-SPAGA
method, we have designed a binary crossover operation, which is formulated as

Ui =

{x1
i , ..., x

d
i , x

d+1
j , ..., x

D
j } if r < pc

Xi, otherwise

s.t. xd
i < xd+1

j

(3.3)

where Ui represents a new individual created through the crossover operator. i and j are indices
randomly selected from the interval [1,N], d is a randomly chosen crossover point, and pc is the
crossover probability. Notably, the indices of wind turbines in an individual are sorted in ascending
order. Because a fixed number of wind turbines are used in this study, we restrict the location of wind
turbines at the crossover point to guarantee that the number of wind turbines does not change during
the crossover operation.

Individuals that have undergone genetic mutation and crossover are then subject to differential
mutation, described by

Xi = Xi + F(Xbest − Xi) + F(Xr1 − Xr2) (3.4)

where Xbest is the best individual in the current population, and Xr1 and Xr2 are distinct individuals
randomly selected from the population, distinct from each other and from Xi. F is a scaling factor that
influences the rate of mutation.

Additionally, LSHADE-SPAGA incorporates a linear population size reduction strategy [49] to
dynamically adjust its population size. This is described mathematically as:

N = round
(Nmin − Nmax

MaxNEF
∗ NEF + Nmax

)
(3.5)

where Nmin and Nmax represent the minimum and maximum population sizes, respectively. NEF is the
current number of fitness evaluations, and MaxNEF is the predefined maximum number of fitness
evaluations. The round function is used to round the result to the nearest integer. This formula
effectively adjusts the population size based on the progress of the optimization process, maintaining
an optimal balance between exploration and exploitation as the algorithm evolves.

In LSHADE-SPAGA, the selection between genetic operator mutations and differential evolution
updates for individuals is determined by a memory probability

Xi =

 (3.2) if Hi < r

(3.4) otherwise
(3.6)

where Hi represents the memory probability of individual Xi, initially set to 0.5 for each individual.
This memory probability is updated as

w = g(X′) − g(X);

H = H ∗ L − (1 − L) ∗
∑

i∈better wi

sum(w)
(3.7)

where L being the learning rate, set to 0.8. Here, g is the fitness evaluation function defined in Eq (2.1),
and w is the fitness difference between parent X and offspring X′. The proportion of better-performing
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individuals is used to adjust H, which is constrained within the range (0.2, 0.8) to maintain balance:

H =


0.2, H < 0.2
0.8, H > 0.8
H, otherwise

(3.8)

After mutation, LSHADE-SPAGA replaces the original LSHADE crossover operator with the
binary crossover operator (3.3). Additionally, an adaptive strategy is employed to adjust the scaling
factor F, enhancing performance.

Fi = 0.45 + 0.1r

Fi = randc(MFi, δ)
(3.9)

where randc(·) represents the Cauchy distribution, MFi is a randomly selected memory slot storing
successful means from previous generations, and δ is the standard deviation of the Cauchy
distribution. This adaptive approach contributes to the overall efficiency and effectiveness of the
algorithm in optimizing the wind farm layout.

The processes of the proposed algorithms include initialization, crossover, mutation, and selection
operations. Assuming that there are D wind turbines in a wind farm. The time complexity of
initialization is O(ND), where N is the population size. The crossover and mutation of LSHADE
requires O(ND). The mutation and crossover operations with the sorted operation of GA both have
computational complexity O(ND) + O(N log D) in the worst case. Then, the parameters update of
LSHADE requires O(2N). The complexity of evaluating function is O(ND). Finally, the selection is
O(N). As a result, the overall time complexity of DCADE in the worst case is O(ND).

4. Experimental results and discussions

4.1. Experiment setting

To thoroughly evaluate the efficacy of the LSHADE-SPAGA algorithm, extensive experiments
were conducted. Figure 1 presents wind roses for four distinct wind scenarios, which visually
represent the distribution of wind frequencies from various directions. Specifically, wind scenario 1 is
characterized by a single, predominant wind direction from the North (N), indicated by a 100%
frequency, signifying a consistent northerly wind. Wind scenario 2 exhibits a range of wind directions
with a notable frequency from the North, varying between 5% and 25%. Wind scenario 3 shows a
more balanced spread of directions, with the highest frequency being 30% from the North, decreasing
in a clockwise direction. Wind scenario 4 displays the greatest diversity in wind directions, with
frequencies evenly distributed and not surpassing 9% for any direction. The wind roses also
differentiate wind speeds using color coding: dark red represents 13 m/s, orange denotes 10 m/s, and
light green indicates 7 m/s. The segment lengths in each direction are proportional to the frequency of
wind at those respective speeds and directions.
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Figure 1. The wind roses used in the experiments.

Figure 2 displays a matrix layout consisting of twelve smaller matrices, each labeled with a
constraint from L1 to L12. These matrices represent different topographical constraints for a given area
for wind farm layout optimization. Each cell within the matrices is numbered sequentially from 1
to 144, representing individual possible locations for wind turbines. The matrices under each
constraint have certain cells shaded in purple, indicating areas where placing turbines is not feasible
due to the specific topographical constraints of that scenario. The arrangement and number of shaded
cells vary across the constraints, suggesting unique topographical features or limitations for each
scenario. Figure 2 illustrates how various topographical constraints can impact the available space for
turbine placement in wind farm layout planning.

To evaluate the performance of the proposed LSHADE-SPAGA methods, eight state-of-the-art
optimization algorithms are used as competitors, including: nonlinear programming (NLP),
SHADE [62], LSHADE [49], LSHADE-SPACMA [50], CJADE [63], CMA-ES [64], AGA [41], and
SUGGA [42]. SHADE is an enhanced version of the DE algorithm that uses historical success rates
to adjust its strategy parameters dynamically. LSHADE is a variant of SHADE that incorporates a
limited memory mechanism to further refine the adaptive parameter adjustment process.
LSHADE-SPACMA is a hybrid method that combines LSHADE with a semi-parameter adaptation
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and the covariance matrix adaptation evolution strategy to improve exploration and exploitation
capabilities. CJADE is an iteration of the DE algorithm that integrates chaotic maps to maintain
diversity in the population and avoid premature convergence. CMA-ES is a strategy that uses a
statistical model of the candidate solutions’ distribution to guide the search for the global optimum.
AGA is a genetic algorithm that adapts its parameters based on the observed performance of the
population, allowing for self-adjustment in response to the optimization challenge. SUGGA is an
algorithm that employs support vector regression as a surrogate model to inform the genetic
algorithm’s search process, aiming to improve precision in the placement of wind turbines. Each of
these algorithms incorporates different mechanisms to handle complex optimization problems,
making them suitable competitors for evaluating the performance of LSHADE-SPAGA in various
wind farm layout optimization scenarios.

Figure 2. The constraint of different topographies.
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4.2. Experimental results

Tables 1–4 present a comprehensive comparison of the performance of various algorithms under
four distinct wind scenarios. The most favorable outcomes across all the algorithms are denoted in bold
for emphasis. Each table includes the mean and standard deviation values of conversion efficiency, the
mean value of different constraints, and Wilcoxon signed-rank test results. Each table is categorized
into three principal sections based on the number of turbines: 15, 20, and 25. Within these sections, the
algorithms’ performances are assessed against a series of constraints, designated from L0 to L12. Here
L0 denotes an unconstrained layout, while L1 to L12 correspond to the constraints depicted in Figure 2.
The algorithms’ effectiveness is quantified by the average power output they produce, with each value
accompanied by its standard deviation in parentheses to indicate variability.

The data from these tables clearly demonstrate that the proposed LSHADE-SPAGA algorithm
secures the highest number of optimal results across different wind scenarios: achieving the best
outcomes in 24 out of 36 instances for wind scenario 1, in 30 out of 36 instances for wind scenario 2,
in 34 out of 36 instances for wind scenario 3, and in all 36 instances for wind scenario 4.
LSHADE-SPAGA achieves the best average values in 11 out of 12 groups, with the only exception
being the case of 15 turbines under wind scenario 1. These findings indicate that LSHADE-SPAGA
consistently surpasses its counterparts in terms of solution quality. Furthermore, as the complexity of
the WFLO problem escalates from scenario 1 to scenario 4, LSHADE-SPAGA not only maintains
performance but actually shows improved results, suggesting its superior capability to tackle
increasingly complex problems. Additionally, the significance of these results is backed by p-values,
most of which are below the 0.05 threshold, providing statistical evidence that LSHADE-SPAGA
significantly outperforms the competing algorithms. Notably, Although LSHADE-SPAGA can not
obtain better results than SUGGA in small-scale wind farms, it also gets the same quality solution in
this situation and has the best conversion efficiency in middle and large-scale wind farms. The
Wilcoxon results have demonstrated that LSHADE-SPAGA is significantly better than its
competitors. Compared with the mathematical method, all meta-heuristic algorithms perform better
than it. NLP performs an unstable performance under different constraints, while LSHADE-SPAGA
is able to obtain stable solutions than other methods.

For a deeper understanding of the search dynamics of the proposed algorithm, Figures 3–6 present
convergence plots. Each figure includes three convergence graphs for varying turbine counts: 15, 20,
and 25. These graphs chart the improvement of conversion efficiency against the number of function
evaluations, which is a standard metric for gauging optimization algorithm performance. All tested
algorithms are benchmarked, including AGA, SUGGA, SHADE, CMA-ES, CJADE, LSHADE,
LSHADE-SPACMA, and LSHADE-SPAGA. The y-axis quantifies conversion efficiency, reflecting
the turbines’ ability to convert wind to energy, and the x-axis tracks the total function evaluations,
indicative of the computational investment of the optimization. Generally, as function evaluations
climb, so does efficiency, underscoring typical optimization convergence. With an increase in
turbines, more evaluations are needed for convergence, and a ceiling of 10000D function evaluations
is set. These plots show that, while LSHADE-SPACMA’s convergence rate is moderate, it ultimately
outperforms other algorithms in achieving superior conversion efficiency, showcasing its adeptness at
balancing global exploration and local exploitation.
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Table 1. Performance comparison results of all algorithms under wind scenario 1.

Turbine NLP AGA SUGGA SHADE CJADE CMAES LSHADE
LSHADE- LSHADE-
SPACMA SPAGA

15

L0 80.16 97.58(0.14) 97.76(0.12) 97.66(0.13) 97.43(0.17) 96.20(1.21) 96.84(0.49) 96.59(0.50) 97.82(0.12)
L1 74.03 97.00(0.25) 97.14(0.21) 96.71(0.17) 96.56(0.20) 94.90(1.73) 95.84(0.60) 95.60(0.52) 96.91(0.11)
L2 79.05 97.69(0.12) 97.79(0.11) 97.79(0.09) 97.68(0.12) 96.94(0.87) 97.32(0.30) 97.03(0.39) 97.85(0.07)
L3 84.88 97.14(0.67) 97.70(0.25) 95.58(0.32) 95.13(0.29) 93.57(1.34) 94.54(0.75) 93.82(0.61) 96.16(0.22)
L4 72.08 97.20(0.57) 97.41(0.42) 95.50(0.36) 95.01(0.31) 92.72(1.39) 94.30(0.71) 93.85(0.76) 96.11(0.27)
L5 87.74 97.71(0.10) 97.80(0.09) 97.84(0.07) 97.75(0.11) 96.17(1.82) 97.44(0.27) 97.00(0.39) 97.87(0.06)
L6 81.03 97.44(0.22) 97.73(0.12) 97.32(0.38) 97.18(0.23) 95.78(1.76) 96.15(0.64) 95.92(0.68) 97.78(0.14)
L7 72.15 97.31(0.16) 97.47(0.14) 97.19(0.18) 96.99(0.18) 96.40(0.66) 96.30(0.57) 96.05(0.49) 97.42(0.10)
L8 75.94 97.59(0.13) 97.76(0.10) 97.73(0.11) 97.59(0.13) 96.70(0.77) 97.24(0.36) 96.84(0.32) 97.84(0.09)
L9 81.70 97.50(0.34) 97.70(0.21) 96.72(0.25) 96.36(0.20) 94.90(1.30) 95.68(0.57) 95.35(0.65) 97.00(0.15)
L10 67.54 97.45(0.37) 97.53(0.34) 96.66(0.24) 96.23(0.29) 94.31(1.62) 95.68(0.53) 95.31(0.54) 96.99(0.15)
L11 84.17 97.66(0.13) 97.78(0.10) 97.79(0.11) 97.65(0.09) 95.90(2.06) 97.15(0.43) 96.79(0.41) 97.86(0.07)
L12 67.76 97.45(0.22) 97.66(0.14) 97.33(0.40) 97.09(0.21) 96.43(1.21) 96.23(0.63) 96.13(0.61) 97.76(0.14)

Average 77.56 97.44(0.26) 97.63(0.18) 97.06(0.22) 96.82(0.19) 95.46(1.36) 96.21(0.53) 95.87(0.53) 97.33(0.13)
p-value 1.22E-04 5.54E-01 7.73E-01 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 −

20

L0 75.22 93.52(0.47) 94.10(0.36) 93.54(0.62) 92.84(0.36) 90.13(1.63) 91.51(1.12) 90.14(0.79) 94.93(0.43)
L1 73.12 91.88(0.62) 92.36(0.62) 91.85(0.49) 90.85(0.42) 87.21(1.81) 89.37(1.10) 88.31(0.99) 93.24(0.35)
L2 71.00 94.04(0.32) 94.47(0.37) 94.64(0.52) 94.07(0.25) 91.16(1.67) 92.94(0.88) 91.79(0.98) 95.08(0.30)
L3 63.92 92.55(0.77) 93.77(0.65) 90.40(0.80) 89.08(0.49) 85.00(1.75) 87.26(1.15) 85.97(0.86) 92.54(0.85)
L4 64.88 92.82(0.95) 93.25(1.05) 90.30(0.90) 88.99(0.53) 85.49(1.81) 87.27(1.42) 85.88(1.08) 92.64(0.73)
L5 65.75 94.11(0.39) 94.60(0.28) 94.89(0.39) 94.34(0.20) 90.37(2.00) 93.20(1.06) 91.80(1.06) 95.28(0.30)
L6 75.58 92.17(0.82) 92.96(0.55) 91.56(0.42) 90.82(0.45) 89.08(1.39) 88.24(1.09) 88.26(0.99) 93.55(0.67)
L7 72.90 92.73(0.50) 93.35(0.54) 92.91(0.49) 91.92(0.38) 88.21(1.91) 90.42(1.14) 89.10(1.01) 94.03(0.42)
L8 81.16 93.79(0.47) 94.29(0.28) 94.35(0.29) 93.64(0.28) 91.51(1.62) 92.66(0.92) 91.08(0.93) 95.01(0.30)
L9 68.97 93.20(0.73) 94.05(0.40) 92.41(0.51) 91.33(0.42) 88.04(2.46) 89.74(1.23) 88.15(0.79) 94.11(0.58)
L10 69.84 92.99(0.59) 93.53(0.75) 92.20(0.43) 91.18(0.49) 88.41(1.51) 89.69(1.25) 88.38(1.01) 93.91(0.54)
L11 80.60 93.80(0.47) 94.36(0.32) 94.43(0.64) 93.82(0.30) 89.71(2.23) 92.50(1.22) 90.68(0.96) 95.09(0.38)
L12 62.68 92.79(0.53) 93.48(0.48) 92.53(0.51) 91.66(0.41) 88.71(1.71) 89.85(1.22) 89.02(0.96) 94.13(0.53)

Average 71.20 93.11(0.59) 93.74(0.51) 92.77(0.54) 91.89(0.38) 88.69(1.81) 90.36(1.14) 89.12(0.96) 94.12(0.49)
p-value 1.22E-04 6.10E-04 2.39E-02 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 −

25

L0 72.59 87.54(0.62) 88.43(0.65) 88.53(0.47) 87.41(0.42) 83.90(1.86) 85.29(1.27) 83.53(0.97) 90.63(0.67)
L1 65.69 85.23(0.59) 85.94(0.85) 85.74(0.57) 84.51(0.44) 80.01(1.94) 82.41(1.51) 80.69(0.97) 88.13(0.81)
L2 68.16 88.21(0.70) 88.84(0.50) 90.21(0.37) 89.13(0.36) 85.25(1.93) 86.51(1.58) 84.76(0.83) 91.00(0.61)
L3 64.58 86.36(1.04) 87.90(1.21) 82.72(0.53) 81.68(0.43) 78.04(1.87) 79.58(1.38) 77.59(0.73) 84.14(0.50)
L4 61.75 86.13(1.09) 86.63(1.21) 82.74(0.44) 81.40(0.47) 77.86(1.45) 79.30(1.22) 77.78(1.02) 84.09(0.51)
L5 61.65 88.30(0.56) 89.03(0.71) 90.49(0.56) 89.40(0.32) 84.90(1.80) 87.00(1.63) 84.58(1.09) 91.33(0.54)
L6 70.35 85.25(0.76) 86.30(0.73) 84.94(0.36) 84.14(0.47) 81.21(1.11) 80.94(1.35) 79.86(0.72) 87.22(0.54)
L7 72.12 86.37(0.49) 87.35(0.75) 87.31(0.54) 85.97(0.50) 82.37(1.53) 83.65(1.40) 81.88(1.09) 89.56(0.68)
L8 70.95 87.87(0.62) 88.73(0.65) 89.65(0.38) 88.37(0.32) 84.46(1.52) 86.31(1.46) 84.24(0.97) 90.85(0.60)
L9 68.26 86.85(0.80) 88.18(0.71) 85.96(0.45) 84.67(0.45) 80.92(1.57) 82.49(1.36) 80.88(0.84) 87.54(0.57)
L10 65.47 87.16(0.99) 87.78(0.98) 85.92(0.43) 84.61(0.29) 81.27(2.09) 82.49(1.11) 80.82(0.81) 87.41(0.52)
L11 65.57 87.84(0.62) 88.81(0.62) 89.67(0.75) 88.61(0.38) 84.81(1.62) 86.55(1.35) 83.90(1.00) 91.01(0.63)
L12 72.41 86.24(0.58) 87.28(0.56) 86.83(0.47) 85.62(0.44) 82.74(1.59) 82.87(1.63) 81.61(0.99) 89.00(0.76)

Average 67.66 86.87(0.73) 87.78(0.78) 86.98(0.49) 85.81(0.41) 82.13(1.68) 83.49(1.40) 81.70(0.93) 88.61(0.61)
p-value 1.22E-04 4.03E-03 1.22E-01 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 −
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Table 2. Performance comparison results of all algorithms under wind scenario 2.

Turbine NLP AGA SUGGA SHADE CJADE CMAES LSHADE
LSHADE- LSHADE-
SPACMA SPAGA

15

L0 84.27 95.31(0.43) 95.29(0.42) 95.93(0.62) 96.20(0.37) 92.63(2.19) 95.16(0.79) 93.88(0.73) 96.97(0.35)
L1 68.54 94.79(0.72) 95.02(0.68) 93.82(0.47) 94.06(0.32) 89.88(2.28) 92.87(0.87) 91.54(0.73) 94.69(0.35)
L2 81.89 94.62(0.57) 94.60(0.63) 94.60(0.52) 94.83(0.38) 91.30(1.96) 93.74(0.72) 92.29(0.70) 95.40(0.31)
L3 77.34 95.01(0.70) 95.10(0.49) 93.61(0.65) 94.06(0.37) 90.46(1.67) 92.52(0.93) 91.26(0.84) 94.71(0.37)
L4 76.92 94.75(0.53) 94.41(0.59) 94.59(0.46) 94.68(0.31) 92.19(1.53) 93.02(0.95) 92.08(0.68) 95.33(0.29)
L5 81.37 94.68(0.49) 94.53(0.47) 95.11(0.69) 95.33(0.38) 92.95(1.23) 93.85(0.86) 92.59(0.60) 96.38(0.34)
L6 82.27 94.91(0.39) 95.11(0.44) 95.74(0.62) 95.81(0.47) 92.00(2.16) 94.31(0.99) 92.88(0.88) 96.51(0.29)
L7 78.71 95.23(0.52) 95.47(0.50) 94.97(0.53) 95.31(0.36) 91.20(1.92) 94.20(0.84) 92.93(0.76) 95.82(0.35)
L8 80.94 94.97(0.58) 94.95(0.58) 95.45(0.46) 95.59(0.38) 91.30(2.12) 94.34(0.82) 93.21(0.70) 96.23(0.41)
L9 79.53 95.09(0.64) 95.34(0.52) 95.02(0.38) 95.25(0.39) 91.50(1.92) 93.90(0.95) 92.50(0.68) 95.91(0.41)
L10 81.78 95.09(0.59) 94.97(0.42) 95.43(0.42) 95.61(0.39) 92.25(1.39) 94.17(0.97) 92.91(0.73) 96.14(0.37)
L11 81.78 95.06(0.44) 95.05(0.47) 95.90(0.48) 96.10(0.36) 92.34(1.71) 94.54(0.82) 93.48(0.85) 96.70(0.32)
L12 77.68 95.11(0.41) 95.12(0.40) 95.72(0.53) 96.11(0.39) 92.00(1.95) 94.86(0.90) 93.48(0.68) 96.54(0.30)

Average 79.46 94.97(0.54) 95.00(0.51) 95.07(0.53) 95.30(0.37) 91.69(1.85) 93.96(0.88) 92.69(0.74) 95.95(0.34)
p-value 1.22E-04 6.10E-04 8.54E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 −

20

L0 79.43 88.72(0.47) 88.75(0.51) 89.82(0.61) 90.21(0.36) 86.20(1.86) 88.60(0.96) 86.73(0.88) 90.90(0.45)
L1 72.37 87.57(0.83) 88.02(0.81) 86.31(0.67) 86.73(0.34) 82.86(1.58) 84.84(0.98) 83.32(0.93) 87.06(0.50)
L2 69.02 88.01(0.77) 87.97(0.73) 88.21(0.53) 88.51(0.33) 84.54(1.54) 86.27(1.20) 84.76(0.73) 89.00(0.39)
L3 64.88 88.02(0.88) 88.47(0.60) 86.16(0.75) 86.65(0.32) 83.67(1.74) 84.45(0.99) 82.95(0.90) 87.24(0.40)
L4 66.71 88.33(0.54) 88.08(0.73) 88.32(0.49) 88.61(0.30) 85.35(1.27) 86.11(1.04) 84.45(0.72) 88.89(0.38)
L5 76.11 88.00(0.49) 87.88(0.57) 88.73(0.39) 88.97(0.28) 86.07(1.34) 86.88(1.07) 85.22(0.69) 89.68(0.41)
L6 66.88 88.22(0.50) 88.24(0.48) 88.49(0.54) 88.67(0.30) 84.69(1.77) 86.37(0.97) 84.84(1.03) 89.61(0.40)
L7 73.02 88.53(0.67) 88.46(0.59) 88.15(0.73) 88.62(0.27) 84.35(1.85) 86.73(1.01) 85.18(0.95) 89.26(0.39)
L8 74.64 88.40(0.55) 88.43(0.66) 89.19(0.79) 89.64(0.42) 85.52(1.80) 87.71(1.14) 85.76(0.87) 90.12(0.48)
L9 72.97 88.35(0.76) 88.46(0.52) 88.31(0.59) 88.62(0.38) 85.51(1.51) 86.56(1.16) 84.85(0.67) 89.22(0.41)
L10 77.46 88.56(0.54) 88.36(0.66) 89.04(0.66) 89.41(0.34) 85.95(1.35) 87.38(1.08) 85.44(0.73) 90.07(0.41)
L11 78.60 88.54(0.52) 88.33(0.40) 89.68(0.55) 89.81(0.33) 86.73(1.37) 87.68(1.10) 86.21(0.75) 90.46(0.39)
L12 68.71 88.69(0.51) 88.71(0.52) 89.21(0.78) 89.44(0.36) 85.57(1.27) 87.31(0.89) 85.89(0.78) 90.39(0.44)

Average 72.37 88.30(0.62) 88.32(0.60) 88.43(0.62) 88.76(0.33) 85.15(1.56) 86.68(1.05) 85.05(0.82) 89.38(0.42)
p-value 1.22E-04 1.22E-03 5.25E-03 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 −

25

L0 67.25 81.91(0.37) 81.95(0.46) 83.28(0.67) 83.75(0.34) 80.14(1.28) 82.04(0.98) 79.86(0.79) 84.25(0.40)
L1 64.03 80.38(0.85) 80.66(0.90) 78.66(0.59) 79.02(0.29) 75.94(1.05) 77.16(0.71) 75.40(0.67) 79.45(0.36)
L2 71.63 81.29(0.77) 81.08(0.63) 81.54(0.39) 81.54(0.31) 77.68(1.33) 79.21(1.12) 77.33(0.75) 81.98(0.39)
L3 59.83 81.09(0.72) 81.45(0.70) 79.03(0.36) 78.97(0.30) 76.43(1.08) 76.56(0.85) 74.97(0.55) 79.50(0.40)
L4 67.38 81.42(0.62) 81.36(0.72) 81.42(0.37) 81.58(0.33) 78.21(1.14) 78.96(1.07) 77.20(0.86) 82.05(0.33)
L5 64.91 81.60(0.41) 81.26(0.38) 82.67(0.40) 82.70(0.26) 79.69(1.31) 80.28(0.97) 78.35(0.63) 83.39(0.32)
L6 64.72 81.35(0.50) 81.52(0.60) 81.67(0.60) 81.73(0.39) 77.47(1.36) 78.84(1.17) 77.04(0.70) 82.78(0.37)
L7 62.72 81.53(0.54) 81.65(0.73) 81.01(0.70) 81.54(0.28) 78.43(1.38) 79.51(1.06) 77.79(0.57) 82.05(0.41)
L8 60.37 81.73(0.59) 81.43(0.58) 82.42(0.59) 82.76(0.25) 79.33(1.19) 80.51(0.91) 78.49(0.67) 83.07(0.40)
L9 71.35 81.51(0.61) 81.80(0.71) 81.19(0.81) 81.54(0.25) 77.98(1.19) 79.06(0.96) 77.48(0.69) 82.06(0.41)
L10 71.17 81.71(0.72) 81.64(0.53) 82.56(0.66) 82.77(0.30) 79.57(1.29) 80.34(0.99) 78.54(0.76) 83.20(0.43)
L11 68.13 81.98(0.52) 81.79(0.37) 83.13(0.64) 83.48(0.28) 80.26(1.19) 80.99(0.89) 79.25(0.76) 83.99(0.35)
L12 72.28 81.85(0.40) 81.85(0.36) 82.57(0.86) 82.96(0.48) 78.70(1.36) 80.76(1.12) 78.61(0.74) 83.76(0.39)

Average 72.28 81.49(0.59) 81.50(0.59) 81.63(0.59) 81.87(0.31) 78.45(1.24) 79.56(0.98) 77.72(0.70) 82.43(0.38)
p-value 1.22E-04 1.33E-02 1.64E-02 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 −
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Table 3. Performance comparison results of all algorithms under wind scenario 3.

Turbine NLP AGA SUGGA SHADE CJADE CMAES LSHADE
LSHADE- LSHADE-
SPACMA SPAGA

15

L0 87.38 98.52(0.25) 98.85(0.22) 98.46(0.32) 98.25(0.35) 96.04(1.19) 97.46(0.69) 96.63(0.57) 99.26(0.14)
L1 84.33 98.05(0.34) 98.31(0.28) 98.01(0.37) 97.60(0.36) 95.12(1.32) 97.11(0.85) 95.63(0.54) 99.00(0.18)
L2 90.18 98.72(0.26) 98.98(0.19) 98.83(0.25) 98.78(0.23) 96.63(1.16) 98.08(0.53) 96.96(0.48) 99.27(0.10)
L3 84.63 98.22(0.38) 98.82(0.29) 97.66(0.42) 97.38(0.29) 94.93(1.58) 96.54(0.79) 95.61(0.53) 98.72(0.23)
L4 84.28 98.19(0.38) 98.51(0.31) 97.86(0.38) 97.50(0.25) 95.10(0.97) 96.64(0.69) 95.91(0.66) 98.72(0.17)
L5 86.70 98.72(0.25) 98.99(0.20) 98.81(0.27) 98.60(0.26) 95.65(1.42) 98.18(0.58) 97.19(0.50) 99.26(0.12)
L6 83.78 97.99(0.36) 98.49(0.30) 97.57(0.52) 97.58(0.39) 95.67(1.48) 96.04(0.72) 95.49(0.59) 98.98(0.27)
L7 91.44 98.32(0.34) 98.66(0.23) 98.21(0.37) 97.94(0.34) 95.45(1.30) 97.28(0.77) 96.15(0.48) 99.08(0.16)
L8 85.73 98.57(0.27) 98.98(0.18) 98.65(0.44) 98.44(0.31) 96.90(0.98) 97.71(0.64) 96.81(0.53) 99.26(0.10)
L9 85.88 98.42(0.38) 98.91(0.28) 98.13(0.37) 97.89(0.37) 95.30(1.15) 96.92(0.75) 96.15(0.70) 98.98(0.16)
L10 86.96 98.34(0.28) 98.76(0.24) 98.02(0.41) 97.90(0.32) 94.95(1.61) 97.06(0.68) 96.20(0.53) 98.99(0.18)
L11 90.65 98.64(0.25) 98.94(0.22) 98.73(0.31) 98.47(0.28) 97.06(1.28) 97.79(0.66) 96.92(0.45) 99.27(0.12)
L12 84.96 98.09(0.32) 98.37(0.34) 97.95(0.37) 97.73(0.29) 95.98(1.93) 96.73(0.75) 95.86(0.50) 98.99(0.20)

Average 86.68 98.37(0.31) 98.74(0.25) 98.22(0.37) 98.00(0.31) 95.75(1.34) 97.20(0.70) 96.27(0.54) 99.06(0.16)
p-value 1.22E-04 1.22E-04 3.66E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 −

20

L0 84.60 96.37(0.42) 97.10(0.41) 96.10(0.46) 95.59(0.39) 92.52(1.58) 94.36(0.76) 92.68(0.72) 97.90(0.54)
L1 79.06 95.41(0.57) 95.98(0.48) 94.95(0.50) 94.29(0.43) 91.24(1.63) 93.74(0.97) 91.62(0.68) 97.52(0.59)
L2 84.70 96.51(0.37) 97.07(0.35) 96.78(0.47) 96.22(0.35) 92.87(1.21) 94.95(0.97) 93.37(0.64) 98.08(0.38)
L3 78.58 95.66(0.58) 96.95(0.49) 94.82(0.46) 94.23(0.39) 90.94(1.21) 93.18(1.09) 91.17(0.64) 96.80(0.67)
L4 80.97 95.57(0.57) 96.14(0.48) 95.04(0.56) 94.45(0.33) 91.76(1.03) 93.12(0.89) 91.89(0.72) 96.95(0.52)
L5 83.90 96.50(0.51) 97.18(0.52) 96.59(0.67) 96.25(0.37) 92.85(1.18) 95.37(0.93) 93.47(0.63) 98.21(0.35)
L6 84.08 95.11(0.50) 96.17(0.50) 94.45(0.56) 94.11(0.39) 91.49(1.48) 92.16(1.01) 91.33(0.80) 96.64(0.49)
L7 82.48 95.90(0.44) 96.60(0.49) 95.33(0.72) 94.92(0.35) 91.82(1.52) 93.99(0.88) 92.11(0.53) 97.78(0.43)
L8 86.30 96.46(0.44) 97.16(0.39) 96.46(0.32) 95.96(0.37) 92.65(0.99) 94.88(1.03) 93.29(0.88) 98.12(0.41)
L9 85.68 95.98(0.43) 96.85(0.49) 95.37(0.47) 94.91(0.35) 91.58(1.42) 93.81(0.94) 92.05(0.63) 97.41(0.56)
L10 81.55 95.84(0.52) 96.64(0.45) 95.53(0.44) 95.09(0.43) 92.68(1.19) 93.48(0.95) 92.21(0.63) 97.46(0.43)
L11 85.45 96.38(0.41) 97.13(0.43) 96.42(0.37) 96.05(0.38) 92.90(0.99) 95.05(0.94) 93.04(0.55) 98.12(0.40)
L12 83.99 95.13(0.46) 95.85(0.51) 94.87(0.49) 94.53(0.35) 91.90(1.19) 92.40(1.01) 91.55(0.70) 96.83(0.56)

Average 83.18 95.91(0.48) 96.68(0.46) 95.59(0.50) 95.12(0.37) 92.09(1.28) 93.88(0.95) 92.29(0.67) 97.52(0.49)
p-value 1.22E-04 1.22E-04 2.44E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 −

25

L0 80.63 93.69(0.47) 94.60(0.44) 93.14(0.49) 92.42(0.38) 88.78(1.41) 91.05(1.07) 88.90(0.59) 96.00(0.68)
L1 77.97 92.22(0.57) 92.69(0.53) 91.76(0.83) 90.72(0.49) 87.29(0.97) 89.72(0.97) 87.50(0.89) 94.78(0.86)
L2 79.99 93.92(0.45) 94.75(0.41) 93.88(0.64) 93.08(0.35) 89.60(1.09) 91.81(1.07) 89.62(0.75) 96.03(0.63)
L3 78.41 92.75(0.49) 94.11(0.62) 91.62(0.68) 90.66(0.44) 87.18(1.15) 89.52(1.43) 86.98(0.55) 94.37(0.62)
L4 78.27 92.57(0.54) 93.10(0.59) 91.96(0.62) 91.14(0.32) 88.74(1.21) 89.37(1.01) 87.88(0.46) 93.95(0.54)
L5 79.87 93.76(0.52) 94.59(0.43) 94.16(0.52) 93.11(0.39) 90.34(1.27) 92.40(1.09) 89.77(0.74) 96.14(0.72)
L6 77.69 92.12(0.59) 93.11(0.55) 91.23(0.44) 90.70(0.41) 87.56(1.20) 87.95(1.16) 86.77(0.73) 93.42(0.59)
L7 80.83 93.09(0.54) 93.84(0.44) 92.60(0.49) 91.65(0.40) 88.33(1.18) 90.51(1.09) 88.21(0.66) 95.39(0.89)
L8 80.97 93.83(0.51) 94.65(0.44) 93.64(0.48) 92.70(0.29) 89.60(1.05) 91.87(0.98) 89.30(0.74) 96.10(0.65)
L9 76.59 93.26(0.56) 94.44(0.46) 92.60(0.66) 91.63(0.40) 87.58(1.80) 90.28(1.00) 87.86(0.63) 95.08(0.68)
L10 81.49 93.13(0.57) 93.77(0.46) 92.55(0.85) 91.67(0.38) 88.68(1.17) 90.25(1.03) 88.45(0.68) 94.87(0.57)
L11 78.97 93.81(0.49) 94.48(0.46) 93.77(0.76) 92.91(0.36) 89.67(1.10) 92.20(1.22) 89.55(0.84) 95.96(0.68)
L12 79.59 91.84(0.63) 92.54(0.48) 91.60(0.39) 90.95(0.39) 87.92(1.38) 88.16(1.16) 87.49(0.70) 93.60(0.50)

Average 79.33 93.08(0.53) 93.90(0.48) 92.66(0.60) 91.79(0.38) 88.56(1.23) 90.39(1.10) 88.33(0.69) 95.05(0.66)
p-value 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 −

AIMS Energy Volume 12, Issue 1, 321–349.



335

Table 4. Performance comparison results of all algorithms under wind scenario 4.

Turbine NLP AGA SUGGA SHADE CJADE CMAES LSHADE
LSHADE- LSHADE-
SPACMA SPAGA

15

L0 86.77 95.25(0.31) 95.38(0.37) 95.76(0.48) 95.94(0.37) 92.54(1.23) 94.52(0.63) 93.60(0.39) 96.93(0.41)
L1 85.98 95.01(0.42) 95.17(0.46) 94.74(0.51) 94.87(0.45) 92.18(1.24) 93.32(0.65) 92.51(0.49) 95.87(0.64)
L2 87.91 95.35(0.38) 95.36(0.31) 95.73(0.40) 96.02(0.29) 93.01(1.17) 94.71(0.66) 93.65(0.44) 96.79(0.36)
L3 84.44 95.10(0.49) 95.18(0.40) 94.65(0.47) 94.96(0.43) 91.98(1.16) 93.29(0.76) 92.30(0.45) 95.99(0.54)
L4 89.40 95.33(0.29) 95.41(0.30) 95.59(0.33) 95.81(0.28) 93.81(0.68) 94.44(0.60) 93.61(0.53) 96.79(0.30)
L5 84.96 95.30(0.31) 95.35(0.33) 95.57(0.43) 95.90(0.29) 94.14(0.98) 94.56(0.66) 93.77(0.45) 96.62(0.35)
L6 82.24 95.13(0.46) 95.22(0.35) 94.93(0.46) 95.28(0.39) 92.56(1.22) 93.74(0.94) 92.74(0.61) 96.56(0.39)
L7 86.00 95.34(0.36) 95.57(0.41) 95.14(0.51) 95.37(0.39) 92.90(1.10) 93.96(0.72) 93.07(0.60) 96.40(0.45)
L8 86.70 95.28(0.39) 95.30(0.37) 95.63(0.45) 95.98(0.35) 93.45(0.98) 94.78(0.68) 93.65(0.56) 96.83(0.43)
L9 85.15 95.29(0.38) 95.36(0.37) 95.31(0.52) 95.46(0.37) 92.66(1.23) 94.05(0.69) 93.06(0.47) 96.53(0.65)
L10 84.96 95.32(0.35) 95.29(0.30) 95.53(0.47) 95.73(0.29) 93.39(1.08) 94.52(0.62) 93.50(0.41) 96.83(0.38)
L11 89.39 95.35(0.28) 95.27(0.24) 95.60(0.34) 95.84(0.29) 93.63(0.96) 94.53(0.58) 93.60(0.46) 96.82(0.31)
L12 80.25 95.36(0.34) 95.54(0.35) 95.43(0.44) 95.48(0.37) 92.93(1.35) 94.07(0.75) 93.27(0.58) 96.84(0.49)

Average 85.70 95.26(0.37) 95.34(0.35) 95.36(0.45) 95.59(0.35) 93.01(1.11) 94.19(0.69) 93.26(0.49) 96.60(0.44)
p-value 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 −

20

L0 79.35 91.95(0.39) 92.03(0.41) 92.64(0.41) 92.86(0.40) 88.81(1.52) 90.60(0.78) 89.47(0.54) 93.80(0.53)
L1 76.70 91.37(0.48) 91.61(0.58) 90.92(0.42) 91.33(0.36) 88.28(1.05) 88.96(0.77) 87.80(0.48) 92.17(0.55)
L2 82.88 92.01(0.37) 91.99(0.42) 92.55(0.48) 92.90(0.33) 90.06(1.06) 90.67(0.77) 89.56(0.63) 93.58(0.46)
L3 76.26 91.34(0.63) 91.67(0.46) 91.00(0.42) 91.32(0.36) 87.69(1.38) 89.00(0.85) 87.77(0.54) 92.30(0.57)
L4 81.55 91.99(0.32) 92.08(0.48) 92.50(0.38) 92.65(0.33) 90.24(0.67) 90.66(0.79) 89.36(0.52) 93.73(0.48)
L5 83.19 91.94(0.32) 92.06(0.31) 92.60(0.52) 92.87(0.28) 90.68(0.94) 90.59(0.70) 89.68(0.45) 93.78(0.36)
L6 80.93 91.40(0.50) 91.82(0.42) 91.41(0.47) 91.65(0.44) 88.55(1.15) 89.15(0.91) 88.07(0.56) 92.96(0.51)
L7 78.07 91.83(0.45) 92.03(0.37) 91.83(0.43) 92.15(0.35) 89.06(0.89) 89.97(0.81) 88.67(0.63) 93.18(0.62)
L8 84.16 92.00(0.35) 92.00(0.35) 92.55(0.46) 92.83(0.28) 90.04(1.08) 90.74(0.78) 89.51(0.49) 93.89(0.63)
L9 80.05 91.71(0.50) 92.00(0.44) 91.70(0.48) 92.17(0.39) 88.81(1.17) 89.94(0.79) 88.67(0.43) 93.18(0.49)
L10 82.46 92.03(0.45) 92.01(0.36) 92.49(0.50) 92.73(0.27) 90.17(0.78) 90.41(0.78) 89.46(0.48) 93.75(0.47)
L11 83.61 92.00(0.33) 91.98(0.33) 92.57(0.42) 92.87(0.37) 90.22(0.84) 90.63(0.60) 89.52(0.43) 93.79(0.39)
L12 80.39 91.90(0.37) 92.17(0.33) 92.14(0.54) 92.17(0.28) 89.19(1.04) 89.90(0.87) 88.83(0.68) 93.45(0.54)

Average 80.74 91.81(0.42) 91.96(0.40) 92.07(0.46) 92.35(0.34) 89.37(1.04) 90.09(0.78) 88.95(0.53) 93.35(0.51)
p-value 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 −

25

L0 79.53 88.70(0.33) 88.72(0.29) 89.51(0.39) 89.56(0.42) 86.07(0.98) 86.84(0.75) 85.65(0.53) 90.65(0.57)
L1 75.73 87.89(0.46) 88.03(0.51) 87.42(0.47) 87.67(0.36) 84.62(0.96) 84.93(0.79) 83.59(0.52) 88.55(0.42)
L2 77.85 88.65(0.34) 88.73(0.31) 89.55(0.35) 89.60(0.33) 86.32(1.04) 86.61(0.68) 85.49(0.47) 90.35(0.43)
L3 75.95 87.84(0.57) 88.17(0.52) 87.56(0.40) 87.63(0.32) 84.71(0.84) 84.56(0.66) 83.44(0.42) 88.66(0.45)
L4 80.21 88.81(0.32) 88.82(0.33) 89.33(0.38) 89.47(0.30) 87.02(0.82) 86.53(0.65) 85.60(0.47) 90.37(0.42)
L5 80.72 88.78(0.31) 88.78(0.25) 89.64(0.36) 89.83(0.33) 87.44(0.71) 87.04(0.80) 85.83(0.40) 90.70(0.38)
L6 78.67 87.77(0.59) 88.10(0.46) 87.89(0.47) 87.98(0.47) 84.55(1.04) 84.91(1.02) 83.66(0.63) 89.35(0.89)
L7 76.54 88.51(0.40) 88.74(0.44) 88.53(0.45) 88.69(0.42) 85.40(0.96) 85.84(0.72) 84.66(0.53) 89.73(0.48)
L8 79.30 88.76(0.39) 88.70(0.34) 89.56(0.36) 89.54(0.30) 85.99(0.94) 86.93(0.78) 85.73(0.62) 90.57(0.42)
L9 73.95 88.31(0.36) 88.52(0.42) 88.57(0.48) 88.70(0.27) 85.57(0.90) 85.74(0.74) 84.54(0.50) 89.72(0.48)
L10 80.59 88.66(0.36) 88.83(0.33) 89.29(0.38) 89.52(0.35) 86.86(0.86) 86.77(0.74) 85.69(0.50) 90.58(0.47)
L11 82.02 88.72(0.32) 88.80(0.32) 89.42(0.43) 89.69(0.29) 87.07(0.79) 87.06(0.85) 85.66(0.41) 90.59(0.43)
L12 77.72 88.44(0.33) 88.74(0.35) 88.68(0.44) 88.91(0.36) 85.71(1.08) 85.86(0.83) 84.69(0.61) 90.26(0.64)

Average 78.37 88.45(0.39) 88.59(0.37) 88.84(0.41) 88.99(0.35) 85.95(0.92) 86.12(0.77) 84.94(0.51) 90.01(0.50)
p-value 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 1.22E-04 −

Figures 7–10 provide box-whisker plots to illustrate the performance variability of various
optimization algorithms under specific wind scenarios. Each figure includes three box-whisker plots
for turbine counts of 15, 20, and 25, comparing the conversion efficiency of all evaluated algorithms.
The box-whisker plot, a statistical tool, depicts the data distribution through a five-number summary:
minimum, first quartile, median, third quartile, and maximum. The interquartile range is shown by the
box, while the whiskers illustrate the data’s spread, and outliers are marked with red plus signs. These
plots reveal that the median conversion efficiency tends to decline with an increase in turbine number.
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The diversity in the spread and range across the algorithms may indicate their varying stability and
performance consistency. The figures demonstrate that LSHADE-SPACMA consistently delivers
stable and high-quality solutions for WFLO problems.

Figures 11–14 depict the optimal wind farm layouts derived from all tested algorithms. Each figure
contains a set of grid layouts, each illustrating the solution provided by a different algorithm for
scenarios involving either 20 or 25 turbines. Below each grid, the algorithm’s name is displayed,
accompanied by the conversion efficiency (η) achieved by the layout it generated. The grids are
sequentially numbered to denote possible turbine locations, with uniquely colored stars or symbols
marking the actual turbine placements. All tested algorithms are distinguished by distinct symbols
and colors, facilitating a straightforward visual comparison of their respective solutions. Notably,
LSHADE-SPAGA consistently generates the best wind farm layouts, adhering to the constraints and
effectively mitigating wake effects.

Figure 3. The convergence plots of all compared algorithms for wind scenario 1.

Figure 4. The convergence plots of all compared algorithms for wind scenario 2.
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Figure 5. The convergence plots of all compared algorithms for wind scenario 3.

Figure 6. The convergence plots of all compared algorithms for wind scenario 4.
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Figure 7. The box-whisker plots for wind scenario 1.
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Figure 8. The box-whisker plots for wind scenario 2.
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Figure 9. The box-whisker plots for wind scenario 3.
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Figure 10. The box-whisker plots for wind scenario 4.
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Figure 11. The wind farm layout obtained by all compared algorithms for wind scenario 1
with 25 turbines.

Figure 12. The wind farm layout obtained by all compared algorithms for wind scenario 2
with 20 turbines.
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Figure 13. The wind farm layout obtained by all compared algorithms for wind scenario 3
with 25 turbines.

Figure 14. The wind farm layout obtained by all compared algorithms for wind scenario 4
with 25 turbines.
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4.3. Ablation study and discussions

In this section, we perform an ablation study regarding the mutation and crossover operators used in
the proposed LSHADE-SPAGA. Table 5 summarizes four combinations of different strategies, where
the Mutation-CMA denotes the ones used in CMA-ES, the Mutation-GA means the genetic mutation
operator defined in Eq (3.2). Crossover-DE represents the original operator in DE. Crossover-GA
denotes the crossover operator defined in Eq (3.3). Table 6 presents a detailed comparison of the effects
of varying mutation and crossover strategies on the performance of LSHADE-SPAGA across four
different wind scenarios (WS1, WS2, WS3, and WS4). Each wind scenario section is divided into rows
representing different constraints (L1 to L12) and columns representing the strategies (S1, S2, S3, and
S4). The performance under each constraint and strategy is quantified by a numerical value, with the
standard deviation in parentheses. The table evaluates the effectiveness of these strategies in optimizing
the conversion efficiency within wind farm layouts. From it, it is clear that the combination of the
proposed Eqs (3.2) and (3.3) yields the best performance. Additionally, those p-values at the bottom
of each wind scenario section statistically evaluates the significance of the results, which suggests that
the proposed genetic operators significantly enhance the search performance of the algorithm.

In this section, we conduct an ablation study to examine the impact of different mutation and
crossover operators on the proposed LSHADE-SPAGA algorithm. Table 5 details four distinct
strategy combinations, with “Mutation-CMA” referring to operators used in CMA-ES, and
“Mutation-GA” indicating the genetic mutation operator as defined in Eq (3.2). “Crossover-DE”
pertains to the original operator in DE, while “Crossover-GA” refers to the crossover operator
outlined in Eq (3.3). Table 6 provides a comprehensive comparison of these strategies’ impact on
LSHADE-SPAGA’s performance across four separate wind scenarios (WS1-WS4). These scenarios
are categorized by various constraints (L1 to L12) and strategies (S1-S4), with the algorithm’s
effectiveness under each scenario being measured by numerical values accompanied by their standard
deviations. It becomes evident that integrating the proposed Eqs (3.2) and (3.3) results in superior
performance. Furthermore, the p-values included at the end of each section statistically affirm the
significance of the results, indicating that the customized genetic operators substantially improve the
algorithm’s search capabilities.

This study delves into the hyper-parameter Nmin. As indicated by Eq (3.4), a minimum of four
individuals is required to execute a DE mutation. We have set Nmin to 4, D, and 2D for analysis.
Generally, a greater Nmin could potentially bolster the local exploitation ability of an algorithm, albeit
possibly at the expense of computational efficiency. Table 7 investigates the influence of the minimum
population size on the algorithm’s performance over four wind scenarios (WS1-WS4), considering
different turbine counts (15, 20, and 25).

Additionally, Table 8 presents the results of the Wilcoxon rank-sum test, applied to discuss the
hyper-parameter. The findings from these tables suggest that, while a larger Nmin may yield better
solutions for WFLO in some cases, marked improvements are not consistently observed. Consequently,
to balance solution quality with computational efficiency, we opt for the minimum permissible value
of Nmin, which is 4, in this research.
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Table 5. The combination of different strategies.

Strategies Crossover-DE Crossover-GA
Mutation-CMA S1 S2
Mutation-GA S3 S4

Table 6. The ablation results of four different combinations of mutation and crossover
operators.

Parameter S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4
Turbine 15 20 25

WS1

L0 96.59(0.50) 97.64(0.19) 97.50(0.28) 97.82(0.12) 90.14(0.79) 93.81(0.73) 92.44(0.68) 94.93(0.43) 83.53(0.97) 88.33(1.25) 85.83(0.85) 90.63(0.67)
L1 95.60(0.52) 96.76(0.19) 96.56(0.30) 96.91(0.11) 88.31(0.99) 92.08(0.80) 90.42(0.74) 93.24(0.35) 80.69(0.97) 85.96(1.26) 82.80(1.12) 88.13(0.81)
L2 97.03(0.39) 97.76(0.12) 97.64(0.27) 97.85(0.07) 91.79(0.98) 94.44(0.52) 94.01(0.57) 95.08(0.30) 84.76(0.83) 88.78(1.25) 87.96(0.98) 91.00(0.61)
L3 93.82(0.61) 95.68(0.53) 95.36(0.34) 96.16(0.22) 85.97(0.86) 90.31(1.38) 88.79(1.19) 92.54(0.85) 77.59(0.73) 82.09(1.12) 80.13(1.27) 84.14(0.50)
L4 93.85(0.76) 95.63(0.39) 95.10(0.58) 96.11(0.27) 85.88(1.08) 89.88(1.29) 89.07(0.76) 92.64(0.73) 77.78(1.02) 81.75(1.01) 80.48(0.77) 84.09(0.51)
L5 97.00(0.39) 97.82(0.10) 97.69(0.24) 97.87(0.06) 91.80(1.06) 94.72(0.51) 93.97(0.97) 95.28(0.30) 84.58(1.09) 89.54(1.17) 87.61(1.36) 91.33(0.54)
L6 95.92(0.68) 97.35(0.30) 97.27(0.32) 97.78(0.14) 88.26(0.99) 90.88(1.00) 90.59(0.71) 93.55(0.67) 79.86(0.72) 83.61(0.92) 82.75(0.87) 87.22(0.54)
L7 96.05(0.49) 97.24(0.20) 97.08(0.34) 97.42(0.10) 89.10(1.01) 92.94(0.73) 91.49(0.65) 94.03(0.42) 81.88(1.09) 87.12(1.38) 84.49(0.86) 89.56(0.68)
L8 96.84(0.32) 97.75(0.15) 97.70(0.20) 97.84(0.09) 91.08(0.93) 94.14(0.67) 93.20(0.76) 95.01(0.30) 84.24(0.97) 88.87(1.09) 87.10(0.69) 90.85(0.60)
L9 95.35(0.65) 96.76(0.31) 96.37(0.49) 97.00(0.15) 88.15(0.79) 92.16(1.05) 90.91(0.55) 94.11(0.58) 80.88(0.84) 85.18(1.23) 83.44(1.00) 87.54(0.57)
L10 95.31(0.54) 96.77(0.30) 96.46(0.32) 96.99(0.15) 88.38(1.01) 92.18(0.93) 90.80(0.93) 93.91(0.54) 80.82(0.81) 85.27(1.19) 83.14(1.01) 87.41(0.52)
L11 96.79(0.41) 97.72(0.16) 97.68(0.13) 97.86(0.07) 90.68(0.96) 94.29(0.68) 93.40(0.64) 95.09(0.38) 83.90(1.00) 89.36(1.13) 86.46(1.36) 91.01(0.63)
L12 96.13(0.61) 97.35(0.30) 97.25(0.39) 97.76(0.14) 89.02(0.96) 92.58(0.90) 91.47(0.88) 94.13(0.53) 81.61(0.99) 86.07(1.24) 84.41(0.75) 89.00(0.76)

p-value 1.22E-04 1.22E-04 1.22E-04 − 1.22E-04 1.22E-04 1.22E-04 − 1.22E-04 1.22E-04 1.22E-04 −

WS2

L0 90.14(0.79) 93.81(0.73) 92.44(0.68) 94.93(0.43) 83.53(0.97) 88.33(1.25) 85.83(0.85) 90.63(0.67) 93.88(0.73) 96.28(0.42) 95.71(0.64) 96.97(0.35)
L1 88.31(0.99) 92.08(0.80) 90.42(0.74) 93.24(0.35) 80.69(0.97) 85.96(1.26) 82.80(1.12) 88.13(0.81) 91.54(0.73) 93.94(0.52) 93.49(0.61) 94.69(0.35)
L2 91.79(0.98) 94.44(0.52) 94.01(0.57) 95.08(0.30) 84.76(0.83) 88.78(1.25) 87.96(0.98) 91.00(0.61) 92.29(0.70) 94.72(0.47) 94.59(0.46) 95.40(0.31)
L3 85.97(0.86) 90.31(1.38) 88.79(1.19) 92.54(0.85) 77.59(0.73) 82.09(1.12) 80.13(1.27) 84.14(0.50) 91.26(0.84) 93.87(0.58) 93.65(0.64) 94.71(0.37)
L4 85.88(1.08) 89.88(1.29) 89.07(0.76) 92.64(0.73) 77.78(1.02) 81.75(1.01) 80.48(0.77) 84.09(0.51) 92.08(0.68) 94.19(0.50) 94.35(0.65) 95.33(0.29)
L5 91.80(1.06) 94.72(0.51) 93.97(0.97) 95.28(0.30) 84.58(1.09) 89.54(1.17) 87.61(1.36) 91.33(0.54) 92.59(0.60) 95.65(0.56) 95.06(0.80) 96.38(0.34)
L6 88.26(0.99) 90.88(1.00) 90.59(0.71) 93.55(0.67) 79.86(0.72) 83.61(0.92) 82.75(0.87) 87.22(0.54) 92.88(0.88) 95.60(0.63) 95.36(0.77) 96.51(0.29)
L7 89.10(1.01) 92.94(0.73) 91.49(0.65) 94.03(0.42) 81.88(1.09) 87.12(1.38) 84.49(0.86) 89.56(0.68) 92.93(0.76) 95.28(0.48) 94.80(0.52) 95.82(0.35)
L8 91.08(0.93) 94.14(0.67) 93.20(0.76) 95.01(0.30) 84.24(0.97) 88.87(1.09) 87.10(0.69) 90.85(0.60) 93.21(0.70) 95.56(0.49) 95.24(0.59) 96.23(0.41)
L9 88.15(0.79) 92.16(1.05) 90.91(0.55) 94.11(0.58) 80.88(0.84) 85.18(1.23) 83.44(1.00) 87.54(0.57) 92.50(0.68) 95.20(0.54) 94.78(0.66) 95.91(0.41)
L10 88.38(1.01) 92.18(0.93) 90.80(0.93) 93.91(0.54) 80.82(0.81) 85.27(1.19) 83.14(1.01) 87.41(0.52) 92.91(0.73) 95.39(0.60) 95.10(0.62) 96.14(0.37)
L11 90.68(0.96) 94.29(0.68) 93.40(0.64) 95.09(0.38) 83.90(1.00) 89.36(1.13) 86.46(1.36) 91.01(0.63) 93.48(0.85) 96.06(0.51) 95.58(0.64) 96.70(0.32)
L12 89.02(0.96) 92.58(0.90) 91.47(0.88) 94.13(0.53) 81.61(0.99) 86.07(1.24) 84.41(0.75) 89.00(0.76) 93.48(0.68) 96.04(0.51) 95.68(0.65) 96.54(0.30)

p-value 1.22E-04 1.22E-04 1.22E-04 − 1.22E-04 1.22E-04 1.22E-04 − 1.22E-04 1.22E-04 1.22E-04 −

WS3

L0 83.53(0.97) 88.33(1.25) 85.83(0.85) 90.63(0.67) 93.88(0.73) 96.28(0.42) 95.71(0.64) 96.97(0.35) 86.73(0.88) 89.86(0.62) 88.75(0.70) 90.90(0.45)
L1 80.69(0.97) 85.96(1.26) 82.80(1.12) 88.13(0.81) 91.54(0.73) 93.94(0.52) 93.49(0.61) 94.69(0.35) 83.32(0.93) 86.12(0.63) 85.06(0.54) 87.06(0.50)
L2 84.76(0.83) 88.78(1.25) 87.96(0.98) 91.00(0.61) 92.29(0.70) 94.72(0.47) 94.59(0.46) 95.40(0.31) 84.76(0.73) 87.88(0.71) 87.34(0.77) 89.00(0.39)
L3 77.59(0.73) 82.09(1.12) 80.13(1.27) 84.14(0.50) 91.26(0.84) 93.87(0.58) 93.65(0.64) 94.71(0.37) 82.95(0.90) 85.92(0.74) 84.97(0.85) 87.24(0.40)
L4 77.78(1.02) 81.75(1.01) 80.48(0.77) 84.09(0.51) 92.08(0.68) 94.19(0.50) 94.35(0.65) 95.33(0.29) 84.45(0.72) 87.30(0.78) 87.04(0.85) 88.89(0.38)
L5 84.58(1.09) 89.54(1.17) 87.61(1.36) 91.33(0.54) 92.59(0.60) 95.65(0.56) 95.06(0.80) 96.38(0.34) 85.22(0.69) 88.44(0.64) 87.96(0.71) 89.68(0.41)
L6 79.86(0.72) 83.61(0.92) 82.75(0.87) 87.22(0.54) 92.88(0.88) 95.60(0.63) 95.36(0.77) 96.51(0.29) 84.84(1.03) 87.79(0.80) 87.24(0.69) 89.61(0.40)
L7 81.88(1.09) 87.12(1.38) 84.49(0.86) 89.56(0.68) 92.93(0.76) 95.28(0.48) 94.80(0.52) 95.82(0.35) 85.18(0.95) 88.19(0.64) 87.12(0.68) 89.26(0.39)
L8 84.24(0.97) 88.87(1.09) 87.10(0.69) 90.85(0.60) 93.21(0.70) 95.56(0.49) 95.24(0.59) 96.23(0.41) 85.76(0.87) 88.96(0.72) 87.91(0.86) 90.12(0.48)
L9 80.88(0.84) 85.18(1.23) 83.44(1.00) 87.54(0.57) 92.50(0.68) 95.20(0.54) 94.78(0.66) 95.91(0.41) 84.85(0.67) 87.87(0.67) 86.82(0.77) 89.22(0.41)
L10 80.82(0.81) 85.27(1.19) 83.14(1.01) 87.41(0.52) 92.91(0.73) 95.39(0.60) 95.10(0.62) 96.14(0.37) 85.44(0.73) 88.69(0.82) 87.99(0.85) 90.07(0.41)
L11 83.90(1.00) 89.36(1.13) 86.46(1.36) 91.01(0.63) 93.48(0.85) 96.06(0.51) 95.58(0.64) 96.70(0.32) 86.21(0.75) 89.32(0.72) 88.42(0.80) 90.46(0.39)
L12 81.61(0.99) 86.07(1.24) 84.41(0.75) 89.00(0.76) 93.48(0.68) 96.04(0.51) 95.68(0.65) 96.54(0.30) 85.89(0.78) 88.90(0.69) 87.94(0.77) 90.39(0.44)

p-value 1.22E-04 1.22E-04 1.22E-04 − 1.22E-04 1.22E-04 1.22E-04 − 1.22E-04 1.22E-04 1.22E-04 −

WS4

L0 93.88(0.73) 96.28(0.42) 95.71(0.64) 96.97(0.35) 86.73(0.88) 89.86(0.62) 88.75(0.70) 90.90(0.45) 79.86(0.79) 83.01(0.59) 81.59(0.45) 84.25(0.40)
L1 91.54(0.73) 93.94(0.52) 93.49(0.61) 94.69(0.35) 83.32(0.93) 86.12(0.63) 85.06(0.54) 87.06(0.50) 75.40(0.67) 78.49(0.61) 77.12(0.43) 79.45(0.36)
L2 92.29(0.70) 94.72(0.47) 94.59(0.46) 95.40(0.31) 84.76(0.73) 87.88(0.71) 87.34(0.77) 89.00(0.39) 77.33(0.75) 80.43(0.68) 79.33(0.78) 81.98(0.39)
L3 91.26(0.84) 93.87(0.58) 93.65(0.64) 94.71(0.37) 82.95(0.90) 85.92(0.74) 84.97(0.85) 87.24(0.40) 74.97(0.55) 78.06(0.57) 76.56(0.75) 79.50(0.40)
L4 92.08(0.68) 94.19(0.50) 94.35(0.65) 95.33(0.29) 84.45(0.72) 87.30(0.78) 87.04(0.85) 88.89(0.38) 77.20(0.86) 80.15(0.80) 79.28(0.81) 82.05(0.33)
L5 92.59(0.60) 95.65(0.56) 95.06(0.80) 96.38(0.34) 85.22(0.69) 88.44(0.64) 87.96(0.71) 89.68(0.41) 78.35(0.63) 81.91(0.63) 80.65(0.81) 83.39(0.32)
L6 92.88(0.88) 95.60(0.63) 95.36(0.77) 96.51(0.29) 84.84(1.03) 87.79(0.80) 87.24(0.69) 89.61(0.40) 77.04(0.70) 80.36(0.97) 79.19(0.78) 82.78(0.37)
L7 92.93(0.76) 95.28(0.48) 94.80(0.52) 95.82(0.35) 85.18(0.95) 88.19(0.64) 87.12(0.68) 89.26(0.39) 77.79(0.57) 81.01(0.67) 79.66(0.52) 82.05(0.41)
L8 93.21(0.70) 95.56(0.49) 95.24(0.59) 96.23(0.41) 85.76(0.87) 88.96(0.72) 87.91(0.86) 90.12(0.48) 78.49(0.67) 81.89(0.66) 80.44(0.70) 83.07(0.40)
L9 92.50(0.68) 95.20(0.54) 94.78(0.66) 95.91(0.41) 84.85(0.67) 87.87(0.67) 86.82(0.77) 89.22(0.41) 77.48(0.69) 80.62(0.54) 79.26(0.76) 82.06(0.41)
L10 92.91(0.73) 95.39(0.60) 95.10(0.62) 96.14(0.37) 85.44(0.73) 88.69(0.82) 87.99(0.85) 90.07(0.41) 78.54(0.76) 81.67(0.83) 80.20(0.57) 83.20(0.43)
L11 93.48(0.85) 96.06(0.51) 95.58(0.64) 96.70(0.32) 86.21(0.75) 89.32(0.72) 88.42(0.80) 90.46(0.39) 79.25(0.76) 82.59(0.82) 81.13(0.79) 83.99(0.35)
L12 93.48(0.68) 96.04(0.51) 95.68(0.65) 96.54(0.30) 85.89(0.78) 88.90(0.69) 87.94(0.77) 90.39(0.44) 78.61(0.74) 82.10(0.69) 80.12(0.69) 83.76(0.39)

p-value 1.22E-04 1.22E-04 1.22E-04 − 1.22E-04 1.22E-04 1.22E-04 − 1.22E-04 1.22E-04 1.22E-04 −
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Table 7. The discussion of minimum population size on the performance of the proposed
algorithm.

Parameter 4.0 D 2D 4.0 D 2D 4.0 D 2D
Turbine 15 20 25

WS1

L0 97.80(0.10) 97.81(0.09) 97.80(0.10) 94.93(0.43) 94.75(0.46) 94.75(0.46) 90.55(0.69) 90.62(0.75) 90.55(0.69)
L1 96.90(0.12) 96.88(0.10) 96.90(0.12) 92.99(0.56) 93.08(0.46) 92.99(0.56) 87.90(0.80) 88.02(0.80) 87.90(0.80)
L2 97.84(0.08) 97.85(0.07) 97.84(0.08) 95.08(0.30) 95.11(0.39) 95.11(0.39) 90.99(0.52) 90.99(0.49) 90.99(0.52)
L3 96.16(0.23) 96.11(0.29) 96.16(0.23) 92.54(0.85) 92.67(0.65) 92.67(0.65) 84.14(0.50) 84.27(0.51) 84.28(0.47)
L4 96.11(0.27) 96.12(0.26) 96.12(0.26) 92.64(0.73) 92.72(0.78) 92.72(0.78) 84.09(0.51) 84.14(0.46) 84.14(0.46)
L5 97.87(0.06) 97.88(0.05) 97.88(0.04) 95.28(0.30) 95.24(0.31) 95.28(0.30) 91.33(0.54) 91.35(0.45) 91.42(0.57)
L6 97.72(0.14) 97.77(0.11) 97.72(0.14) 93.55(0.67) 93.68(0.62) 93.80(0.67) 87.15(0.60) 87.04(0.69) 87.15(0.60)
L7 97.38(0.13) 97.38(0.13) 97.38(0.13) 94.03(0.42) 93.93(0.51) 93.93(0.51) 89.45(0.68) 89.56(0.55) 89.45(0.68)
L8 97.80(0.10) 97.84(0.09) 97.80(0.10) 95.01(0.30) 94.97(0.38) 94.97(0.38) 90.85(0.60) 90.84(0.58) 90.84(0.58)
L9 97.00(0.15) 96.96(0.20) 96.96(0.20) 93.97(0.63) 94.05(0.49) 93.97(0.63) 87.54(0.57) 87.52(0.58) 87.52(0.58)
L10 96.99(0.15) 97.00(0.17) 97.00(0.17) 93.74(0.63) 93.84(0.60) 93.74(0.63) 87.41(0.52) 87.50(0.54) 87.50(0.54)
L11 97.85(0.06) 97.84(0.08) 97.85(0.06) 95.06(0.37) 95.06(0.42) 95.06(0.37) 91.01(0.63) 90.97(0.50) 91.01(0.75)
L12 97.69(0.18) 97.73(0.16) 97.69(0.18) 94.13(0.53) 94.12(0.56) 94.12(0.56) 89.00(0.76) 89.07(0.70) 89.07(0.70)

WS2

L0 94.93(0.43) 94.75(0.46) 94.75(0.46) 90.55(0.69) 90.62(0.75) 90.55(0.69) 96.81(0.31) 96.86(0.32) 96.81(0.31)
L1 92.99(0.56) 93.08(0.46) 92.99(0.56) 87.90(0.80) 88.02(0.80) 87.90(0.80) 94.69(0.35) 94.55(0.41) 94.55(0.41)
L2 95.08(0.30) 95.11(0.39) 95.11(0.39) 90.99(0.52) 90.99(0.49) 90.99(0.52) 95.36(0.39) 95.38(0.27) 95.36(0.39)
L3 92.54(0.85) 92.67(0.65) 92.67(0.65) 84.14(0.50) 84.27(0.51) 84.28(0.47) 94.71(0.37) 94.62(0.42) 94.62(0.42)
L4 92.64(0.73) 92.72(0.78) 92.72(0.78) 84.09(0.51) 84.14(0.46) 84.14(0.46) 95.19(0.40) 95.25(0.37) 95.19(0.40)
L5 95.28(0.30) 95.24(0.31) 95.28(0.30) 91.33(0.54) 91.35(0.45) 91.42(0.57) 96.36(0.40) 96.33(0.36) 96.36(0.40)
L6 93.55(0.67) 93.68(0.62) 93.80(0.67) 87.15(0.60) 87.04(0.69) 87.15(0.60) 96.36(0.30) 96.43(0.33) 96.36(0.30)
L7 94.03(0.42) 93.93(0.51) 93.93(0.51) 89.45(0.68) 89.56(0.55) 89.45(0.68) 95.82(0.35) 95.85(0.38) 95.85(0.38)
L8 95.01(0.30) 94.97(0.38) 94.97(0.38) 90.85(0.60) 90.84(0.58) 90.84(0.58) 96.19(0.33) 96.23(0.33) 96.19(0.33)
L9 93.97(0.63) 94.05(0.49) 93.97(0.63) 87.54(0.57) 87.52(0.58) 87.52(0.58) 95.90(0.38) 95.86(0.41) 95.90(0.38)
L10 93.74(0.63) 93.84(0.60) 93.74(0.63) 87.41(0.52) 87.50(0.54) 87.50(0.54) 96.12(0.34) 96.09(0.32) 96.12(0.34)
L11 95.06(0.37) 95.06(0.42) 95.06(0.37) 91.01(0.63) 90.97(0.50) 91.01(0.75) 96.70(0.32) 96.65(0.40) 96.65(0.40)
L12 94.13(0.53) 94.12(0.56) 94.12(0.56) 89.00(0.76) 89.07(0.70) 89.07(0.70) 96.54(0.30) 96.51(0.32) 96.64(0.31)

WS3

L0 90.55(0.69) 90.62(0.75) 90.55(0.69) 96.81(0.31) 96.86(0.32) 96.81(0.31) 90.85(0.46) 90.81(0.42) 90.85(0.46)
L1 87.90(0.80) 88.02(0.80) 87.90(0.80) 94.69(0.35) 94.55(0.41) 94.55(0.41) 87.06(0.50) 87.15(0.36) 87.16(0.36)
L2 90.99(0.52) 90.99(0.49) 90.99(0.52) 95.36(0.39) 95.38(0.27) 95.36(0.39) 89.00(0.39) 89.03(0.46) 89.10(0.36)
L3 84.14(0.50) 84.27(0.51) 84.28(0.47) 94.71(0.37) 94.62(0.42) 94.62(0.42) 87.22(0.43) 87.15(0.41) 87.22(0.43)
L4 84.09(0.51) 84.14(0.46) 84.14(0.46) 95.19(0.40) 95.25(0.37) 95.19(0.40) 88.89(0.38) 89.04(0.41) 89.07(0.44)
L5 91.33(0.54) 91.35(0.45) 91.42(0.57) 96.36(0.40) 96.33(0.36) 96.36(0.40) 89.64(0.30) 89.65(0.34) 89.64(0.30)
L6 87.15(0.60) 87.04(0.69) 87.15(0.60) 96.36(0.30) 96.43(0.33) 96.36(0.30) 89.61(0.40) 89.55(0.50) 89.63(0.39)
L7 89.45(0.68) 89.56(0.55) 89.45(0.68) 95.82(0.35) 95.85(0.38) 95.85(0.38) 89.26(0.39) 89.15(0.47) 89.41(0.41)
L8 90.85(0.60) 90.84(0.58) 90.84(0.58) 96.19(0.33) 96.23(0.33) 96.19(0.33) 90.05(0.46) 90.04(0.45) 90.05(0.46)
L9 87.54(0.57) 87.52(0.58) 87.52(0.58) 95.90(0.38) 95.86(0.41) 95.90(0.38) 89.22(0.41) 89.30(0.41) 89.30(0.41)
L10 87.41(0.52) 87.50(0.54) 87.50(0.54) 96.12(0.34) 96.09(0.32) 96.12(0.34) 90.07(0.41) 90.01(0.43) 90.10(0.36)
L11 91.01(0.63) 90.97(0.50) 91.01(0.75) 96.70(0.32) 96.65(0.40) 96.65(0.40) 90.46(0.39) 90.40(0.37) 90.40(0.37)
L12 89.00(0.76) 89.07(0.70) 89.07(0.70) 96.54(0.30) 96.51(0.32) 96.64(0.31) 90.39(0.44) 90.42(0.48) 90.46(0.53)

WS4

L0 96.81(0.31) 96.86(0.32) 96.81(0.31) 90.85(0.46) 90.81(0.42) 90.85(0.46) 84.25(0.40) 84.21(0.38) 84.32(0.43)
L1 94.69(0.35) 94.55(0.41) 94.55(0.41) 87.06(0.50) 87.15(0.36) 87.16(0.36) 79.45(0.36) 79.53(0.38) 79.57(0.38)
L2 95.36(0.39) 95.38(0.27) 95.36(0.39) 89.00(0.39) 89.03(0.46) 89.10(0.36) 81.95(0.39) 81.95(0.43) 81.95(0.39)
L3 94.71(0.37) 94.62(0.42) 94.62(0.42) 87.22(0.43) 87.15(0.41) 87.22(0.43) 79.50(0.40) 79.49(0.40) 79.65(0.37)
L4 95.19(0.40) 95.25(0.37) 95.19(0.40) 88.89(0.38) 89.04(0.41) 89.07(0.44) 82.05(0.33) 82.04(0.37) 82.10(0.37)
L5 96.36(0.40) 96.33(0.36) 96.36(0.40) 89.64(0.30) 89.65(0.34) 89.64(0.30) 83.36(0.41) 83.36(0.35) 83.36(0.41)
L6 96.36(0.30) 96.43(0.33) 96.36(0.30) 89.61(0.40) 89.55(0.50) 89.63(0.39) 82.74(0.41) 82.72(0.42) 82.74(0.41)
L7 95.82(0.35) 95.85(0.38) 95.85(0.38) 89.26(0.39) 89.15(0.47) 89.41(0.41) 82.05(0.41) 82.11(0.36) 82.11(0.36)
L8 96.19(0.33) 96.23(0.33) 96.19(0.33) 90.05(0.46) 90.04(0.45) 90.05(0.46) 83.07(0.40) 83.10(0.43) 83.35(0.40)
L9 95.90(0.38) 95.86(0.41) 95.90(0.38) 89.22(0.41) 89.30(0.41) 89.30(0.41) 82.05(0.42) 82.01(0.38) 82.05(0.42)
L10 96.12(0.34) 96.09(0.32) 96.12(0.34) 90.07(0.41) 90.01(0.43) 90.10(0.36) 83.20(0.43) 83.29(0.37) 83.37(0.37)
L11 96.70(0.32) 96.65(0.40) 96.65(0.40) 90.46(0.39) 90.40(0.37) 90.40(0.37) 83.99(0.35) 84.03(0.37) 84.03(0.37)
L12 96.54(0.30) 96.51(0.32) 96.64(0.31) 90.39(0.44) 90.42(0.48) 90.46(0.53) 83.76(0.39) 83.70(0.42) 83.81(0.37)
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Table 8. Wilcoxon rank-sum test results of the minimum population size on the performance
of the proposed algorithm.

Turbine 15 20 25 15 20 25 15 20 25 15 20 25
Wind scenarios WS1 WS2 WS3 WS4
D 0/13/0 1/11/1 0/13/0 1/12/0 0/13/0 1/12/0 1/11/1 0/13/0 1/10/2 2/10/1 0/13/0 0/12/1
2D 2/11/0 2/10/1 0/12/1 4/9/0 0/12/1 0/10/3 1/11/1 0/13/0 0/12/1 3/10/0 1/11/1 2/11/0

5. Conclusions

In this paper, we propose LSHADE-SPAGA, a cutting-edge algorithm that enhances the
differential evolution process with a binary genetic operator for optimizing environmental concerns,
particularly focusing on wind farm layout optimization (WFLO). This innovation comes in response
to the urgent need for sustainable resource management amid escalating environmental challenges
and rapid economic growth. The LSHADE-SPAGA algorithm underwent rigorous testing across
various conditions, including four distinct wind scenarios, twelve specific layout constraints, an
unconstrained layout option, and three different turbine types, resulting in a comprehensive evaluation
over 156 test cases. It was compared with seven leading algorithms, and the results demonstrated that
LSHADE-SPAGA consistently delivered superior solution quality and achieved a well-balanced
trade-off between the speed of convergence and the accuracy of results. Its capacity to navigate
effectively between global exploration and local exploitation proves crucial in addressing the
intricacies of WFLO. The algorithm’s marked ability to escape local optima and produce high-quality
solutions marks a significant contribution to the field of environmental optimization for wind farm
layouts. Looking ahead, there are plans to extend the application of LSHADE-SPAGA to a broader
range of complex environmental optimization challenges.
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