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Abstract: This research provides a comprehensive literature overview and bibliometric evaluation of 
multi-agent system (MAS) implementation in energy demand response (DR) to identify gaps. The 
review encompasses 39 relevant papers from searches in three academic databases, focusing on studies 
published from 2012 to the middle of 2023. The review includes MAS frameworks, optimization 
algorithms, communication protocols, market structures and evaluation methodologies. Bibliometric 
analysis of 587 documents from the search on the Scopus database identified prolific authors, 
influential articles and collaborative networks within the field. The findings reveal growing research 
interest in implementing an MAS for DR, focusing on integrating intelligent agents into electricity 
grids to enable effective load management and enhance grid stability. Additionally, the review outlines 
potential research directions, including exploring advanced MAS techniques, interoperability 
challenges, policy implications and the integration of renewable energy sources. 

Keywords: distributed electricity generation; renewable energy sources; demand response; multi-agent 
systems; energy management; grid reliability 
 

1. Introduction  

The growing concerns surrounding climate change and the depletion of fossil fuel reserves have 
catalyzed a global transition toward sustainable and renewable energy sources [1]. Solar and wind 
power, two major sources of renewable electricity for distributed energy resource sources, have 
garnered a considerable amount of interest in recent years [2]. These distributed energy resources 
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provide many benefits, including reduced greenhouse gas emissions, increased energy security and 
heightened resilience against power outages [3]. It contributes to a greener and more sustainable 
energy landscape, aligning with the objectives of mitigating climate change and achieving a 
cleaner energy future [4]. 

However, integrating renewable energy sources into conventional power grids introduces many 
technical and operational complexities [5]. Unlike traditional power plants, electricity generation from 
renewable sources is characterized by inherent variability and intermittency [6]. The intermittent 
nature of renewable energy mandates innovative strategies and mechanisms to manage and balance 
electricity supply and demand efficiently, ensuring the optimal utilization of available resources while 
mitigating the possible impacts of power fluctuations on the power grid [7]. Demand response (DR) 
mechanisms have emerged as indispensable tools in modern power systems to effectively address the 
variability and intermittency of renewable energy generation in the power grid [8]. It refers to 
consumers’ voluntary modification of electricity consumption in response to signals or incentives to 
manage grid reliability, reduce peak demand and optimize energy usage, typically during periods of 
high demand or system stress [9]. 

Furthermore, DR systems involve adjusting electricity usage patterns, shifting loads or curtailing 
non-essential consumption to achieve more efficient and sustainable energy management [10]. 
However, managing all of the necessary functions and complying with all of the regulatory and 
technical standards takes time. An intensive engineering effort will be required to achieve the desired 
level of automation. Consequently, the imperative arose to deploy DR system mechanisms 
characterized by their intelligent and efficient nature, thus optimizing grid operations, facilitating the 
seamless integration of renewable energy sources, curtailing costs, fostering environmental 
sustainability, increasing grid flexibility and empowering consumers to contribute to decision-making 
in the ongoing energy transition toward an enlightened, resilient and sustainable future [11,12]. 
Automating, standardizing and simplifying data collection and analysis, response coordination and 
protocols, interfaces and information exchange, as well as restructuring complex processes and 
improved user-friendliness specifications, can improve existing DR solutions. These can be achieved 
by integrating the system with a multi-agent system (MAS) [8,13]. 

A MAS involves multiple agents who collaborate and perform assigned tasks [14]. The MAS 
properties of autonomy, sociality, reactivity and proactive behavior are powerful tools for developing 
complex systems [15–17]. Consumers, utility providers, market participants and devices can interact 
and communicate as agents in an MAS to optimize electricity consumption, coordinate load balancing 
and facilitate energy trading and negotiation. Agents in an MAS are intelligent entities; they can make 
decisions autonomously, communicate and interact with other stakeholders [18]. Designing an MAS 
for response to electricity demand requires the consideration of multiple conditions, such as system 
architecture, agent heterogeneity, communication and coordination, information exchange, decision-
making algorithms, scalability, robustness and regulatory and market considerations [19]. A robust and 
correct communication infrastructure is imperative to facilitate seamless information exchange among 
participating agents. The MAS infrastructure should provide robust support for real-time data transmission, 
ensuring a reliable and secure connection between the agents and the central control system [20]. 

Moreover, the MAS requires an efficient and precise measurement and monitoring mechanism to 
acquire comprehensive data about the current electrical consumption across diverse sources [21,22]. 
This requires using smart meters and sensor devices, which give information on complex energy use 
patterns. Additionally, the architecture of the MAS must integrate state-of-the-art forecasting and 
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predictive analytics methodologies to anticipate variations in electricity demand and optimize 
responsive strategies proactively. This process involves analyzing historical data, incorporating 
external factors such as weather conditions and events and using machine learning algorithms to 
facilitate precise predictive modeling [23,24]. Finally, the system requires a resilient decision-making 
framework, facilitating coordination and collaboration among participating agents. The framework 
should enable the seamless transmission of control signals, such as price signals or demand signals, 
while providing robust support for intelligent decision-making processes that align with the 
overarching objectives of the electricity DR program. The research gap exists in the implementation 
and validation of MASs for DR, and this involves encompassing varied energy ecosystems and 
investigating scalability and performance aspects in real-world scenarios. 

This study was designed to provide a concise overview of the existing MAS frameworks used in 
DR systems and the prevailing challenges encountered in implementing the systems, as well as to 
examine a viable solution to mitigate those challenges. Additionally, we evaluate the metrics and 
methods used to assess the effectiveness of these solutions, which reflect the technical proficiency of 
the approach. Finally, we provide suggestions on design decisions that can help address common issues 
encountered when integrating DR with an MAS. We summarize our intentions by proposing the 
following research question: To what extent have MASs improved DR technology in practical 
implementation? These insights are essential for the development of a more sustainable and resilient 
electricity network. 

The article follows a structured format, beginning with an introductory section that outlines the 
study’s purpose, objectives and research question. The methodology is provided in the second section, 
explaining the detailed search protocols employed to identify relevant literature on MAS 
implementation in DR systems. Subsequently, the findings derived from the research, analysis and 
interpretation of these results are explained in the third section. The discussions are provided in the 
fourth section; lastly, the fifth section summarizes the article with conclusive remarks drawn from the 
findings and recommendations for future research. 

2. Methods 

This section presents a comprehensive overview of the procedural framework for systematic 
literature review and bibliometric analysis. 

2.1. Systematic review analysis 

The systematic review of the literature used in this work was carried out by formulating the 
research question, creating a review methodology, conducting a search while choosing relevant 
documents using assessment criteria and extracting and analyzing data. A systematic literature review 
was designed to identify the critical contributions to the subject and potential research needs [25]. The 
objective of the systematic review was to respond to the research question of to what extent have MASs 
improved DR technology in practical implementation. Reputable databases are essential for a thorough 
and detailed systematic evaluation of the literature [26]. Due to their extensive coverage and reputable 
standing, we used three important databases in this study: Scopus, ScienceDirect and IEEE Xplore. 
The search terms utilized to answer our research question were “multi-agent systems”, “demand 
response” and “implementation”. The search was limited to articles published and authored in English 
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over the previous 10 years (2012 to mid-2023) to guarantee the appropriateness and adequacy of the 
research. The search results were loaded into Mendeley reference management software to combine 
the results from several databases and eliminate duplicates. The papers that emerged underwent 
screening. The titles and abstracts were scrutinized for relevance to the study’s topic. Then, using 
predetermined assessment criteria, full-text publications were evaluated. 

The quality assessment encompasses an evaluation of article citations and journal impact to gauge 
the scholarly significance and relevance of the selected articles. This assessment, conducted on the 
selected articles, considered the number of citations received by each article in peer-reviewed literature, 
and it was examined as an indicator of its impact and importance within the research community. The 
quality assessment focuses on the most frequently cited articles from specific periods included in our 
content analysis. It is important to note that how often an article is cited depends on its publication and 
subject matter. Documents published a while ago have more chances to get cited than newer ones. So, 
we categorized the documents into three groups based on their publication dates, and each group was 
evaluated by using different criteria in our quality assessment. The resulting quality assessment is 
presented in Table 1, indicating the article citations and journal impact. 

Table 1. Citation count and year of selected studies. 

S/n. Title Year Citation Ref.

1. “Reinforcement learning in local energy markets” 2021 15 [27]

2. “Energy efficient behavior modeling for demand side recommender system in solar 

microgrid applications using multi-agent reinforcement learning model” 

2023 3 [28]

3. “Reinforcement learning-driven local transactive energy market for distributed energy 

resources” 

2022 11 [29]

4. “Multi-agent system-based microgrid operation strategy for demand response” 2015 38 [18]

5. “Conceptual study for open energy systems: Distributed energy network using 

interconnected DC nanogrids” 

2015 190 [30]

6. “Multi-agent deep reinforcement learning based demand response for discrete 

manufacturing systems energy management” 

2020 84 [31]

7. “Secure automated home energy management in multi-agent smart grid architecture” 2018 13 [32]

8. “A multi-agent-based optimal control method for combined cooling and power systems 

with thermal energy storage” 

2021 14 [33]

9. “Hardware-in-the-loop simulation of distributed intelligent energy management system 

for microgrids” 

2013 36 [34]

10. “Optimal, dynamic and reliable demand-response via OpenADR-compliant multi-agent 

virtual nodes: Design, implementation & evaluation” 

2021 4 [21]

11. “Optimal trading strategies for multi-energy microgrid cluster considering demand 

response under different trading modes: A comparison study” 

2022 17 [35]

Continued on next page
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S/n. Title Year Citation Ref.

12. “IoT-based stochastic EMS using multi-agent system for coordination of grid-connected 

multi-microgrids” 

2023 1 [36]

13. “Implementation of a novel multi-agent system for demand response management in 

low-voltage distribution networks” 

2019 36 [37]

14. “Combined DR pricing and voltage control using reinforcement learning based multi-

agents and load forecasting” 

2022 0 [38]

15. “Energy trading and control of islanded DC microgrid using multi-agent systems” 2021 0 [39]

16. “Synthesis of an intelligent rural village microgrid control strategy based on smart-grid 

multi-agent modeling and transactive energy management principles” 

2018 57 [40]

17. “Micro-grid grid outage management using multi-agent systems” 2017 32 [41]

18. “MARLA-SG: Multi-agent reinforcement learning algorithm for efficient demand 

response in smart grid” 

2020 33 [22]

19. “Intelligent implementation of residential demand response using multi-agent system 

and deep neural networks” 

2021 6 [12]

20. “Optimising residential electric vehicle charging under renewable energy: Multi-agent 

learning in software simulation and hardware-in-the-loop evaluation” 

2019 7 [42]

21. “Reinforcement learning for demand response: A review of algorithms and modeling 

techniques” 

2019 544 [43]

22. “Multi-agent reinforcement learning for energy management in residential buildings” 2020 76 [44]

23. “A multi-agent-based optimization of residential and industrial demand response 

aggregators” 

2019 96 [14]

24. “A multi-agent model of urban microgrids: Assessing the effects of energy-market 

shocks using real-world data” 

2023 4 [45]

25. “Simulation of smart factory processes applying multi-agent-systems—a knowledge 

management perspective” 

2020 11 [46]

26. “A conceptual microgrid management framework based on adaptive and autonomous 

multi-agent systems” 

2022 2 [47]

27. “Artificial intelligence and machine learning approaches to energy demand-side 

response: A systematic review” 

2020 323 [48]

28. “A reinforcement learning approach to home energy management for modulating heat 

pumps and photovoltaic systems” 

2022 5 [49]

29. “Multi-agent reinforcement mechanism design for dynamic pricing-based demand 

response in charging network” 

2023 2 [50]

Continued on next page
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S/n. Title Year Citation Ref.

30. “Reinforcement learning-based composite differential evolution for integrated demand 

response scheme in industrial microgrids” 

2023 1 [6] 

31. “A multi-agent and internet of things framework of a digital twin for optimized 

manufacturing control” 

2022 6 [51]

32. “Optimal planning of hybrid energy conversion systems for annual energy cost 

minimization in Indian residential buildings” 

2019 12 [52]

33. “Development and implementation of multi-agent systems for demand response 

aggregators in an industrial context” 

2022 8 [8] 

34. “An energy internet DERMS platform using a multi-level Stackelberg game” 2020 9 [53]

35. “Trading platform for cooperation and sharing based on blockchain within multi-agent 

energy internet” 

2021 11 [54]

36. “Multi-agent architecture for peer-to-peer electricity trading based on blockchain 

technology” 

2019 49 [55]

37. “Distributed subgradient-based coordination of multiple renewable generators in a 

microgrid” 

2013 123 [56]

38. “A multi-agent system based coordinated multi-objective optimal load scheduling 

strategy using marginal emission factors for building cluster demand response” 

2023 7 [57]

39. “Three-level hierarchical management of active distribution system with 

multimicrogrid” 

2022 1 [58]

While articles were primarily selected based on predefined inclusion and exclusion criteria, their 
relevance to the research question was also considered alongside the journal impact and citation counts. 
This assessment helps to ensure that the review is grounded in high-quality, influential sources and 
informs the evaluation of the strength of evidence in subsequent sections of this review. The resulting 
selection of 39 articles served as the analysis sample. These procedures are shown in Figure 1. 
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Figure 1. Systematic review data search and screening process. 

2.2. Bibliometric analysis 

Bibliometric analyses are generally used because they offer objective quantitative validity and 
reliability that compensate for subjectivity, even if systematic literature reviews attempt to eliminate 
subjective bias to increase the quality of the review. Performance analysis and scientific mapping are 
two applications of the bibliometric technique [59]. Science mapping strives to categorize and illustrate 
the structure and development of scientific areas, in contrast to performance analysis, which assesses 
the effect of research by institutions, authors or nations. 

In total, 587 articles were extracted for the bibliometric analysis from the search on Scopus, as 
shown in Figure 2. Relevant information from the chosen articles was carefully extracted. This 
information included titles, author names, publication year, study objectives, methodology, 
conclusions, system designs and assessment techniques to understand the current state of research. 
Thematic analysis was used to arrange and examine the retrieved data. Based on reoccurring ideas and 
patterns in the articles, themes and subthemes were found. In deploying an MAS for DR, this technique 
made identifying common strategies, knowledge gaps and emerging trends easier. 

Bibliographic information from the chosen publications was analyzed by using a bibliometric 
analysis tool. The VOSviewer software effectively visualizes and explores networks that involve co-
authorship, co-citation and keyword co-occurrence [60]. To depict the interconnections among authors, 
keywords, and citation patterns, network diagrams were generated to investigate these networks. The 
thematic analysis and bibliometric study findings presented a comprehensive overview of the current 
research landscape on implementing an MAS for DR. The deployment of MASs in various methods, 
as related to energy DR, was considered while performing the bibliometric study in the following parts. 
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Figure 2. Bibliometric review data retrieval and analytical process. 

3. Results 

The analysis identified the research gap described in the systematic review analysis to carry out 
a thorough and critical review of the gathered material. Evaluations highlighted the gaps in the research 
and the potential of implementing MASs for DR. By highlighting the connections between the most 
significant publications, researchers, organizations, subjects and other elements of the subject, the 
bibliometric analysis enables the mapping and expansion of knowledge in the field of study [61]. 
Although bibliometric tools may be used for various analyses, this study focused on the following 
keywords: methodology, year of publication, country searches and article citation. 

3.1. Case studies of MAS implementation for DR 

This section presents an overview of the literature on the practical implementation of MAS for 
DR systems. It investigates MAS utilization in controlled experimental environments, analyzing 
pertinent studies and offering a comprehensive overview of these implementations’ crucial findings 
and outcomes. To ensure conciseness and deepness in our review, we have summarized selected case 
studies in Table 2. This table provides quick reference point, enabling readers to understand our 
review’s objectives, methods and findings of the most pertinent case studies. However, it is important 
to acknowledge that not all relevant case studies could be accommodated in the table. This decision 
was made to balance providing a concise overview of key studies and allowing for a more thorough 
exploration of others that may require deeper analysis. 
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Table 2. Summary of objective, method and findings of selected case studies. 

S/n. Objective Methodology Findings Ref.

1. Automate bidding on local energy 

markets (LEMs) of 100 households 

using machine learning algorithms. 

Simulation of LEM with a 15-

minute merit-order market 

mechanism; they deployed 

reinforcement learning for 

agents. 

Achieved self-sufficiency 

of up to 30% with trading 

and 41.4% with trading and 

DR when 45% of 

households installed 5kWp 

PV panels. 

[27]

3. Enhance grid reliability to achieve self-

consumption and meet DR goals. 

Embedded battery energy storage 

system (BESS) technologies into 

the grid and used reinforcement 

learning control for operation. 

Maximum peak load 

reduction of approximately 

24.5%. 

[28]

4. Examine the compatibility between 

specific market elements and 

independent learning agents in local 

energy markets. 

Simulated autonomous local 

energy exchange (ALEX) as an 

experimental framework. 

ALEX-based pricing 

resulted in a median 

reduction of 38.8% in 

energy bills relative to net 

billing. 

[29]

5. Schedule strategy for distribution 

system operators (DSOs) that optimizes 

the charging/discharging of PV energy-

integrated energy storage systems (PV-

ESS), EV charging prices, and DR 

incentives. 

Particle swarm optimization 

(PSO) was combined with 

Evolutionary game theory (EGT) 

to solve the optimization problem 

and determine the payoff 

function through self-

evolutionary improvement. 

Achieved the most 

economical decisions 

among agents and 

effectively managed the 

voltage profile in an IEEE 

33-bus distribution system.

[62]

6. Develop a fully distributed online 

optimal energy management solution 

for smart grids. 

Distributed solution based on a 

market-based self-interest 

motivation model. Each system 

participant is assigned an energy 

management agent. 

Effective in maximizing 

social welfare and 

improving energy 

efficiency in smart grids 

through simulation studies.

[19]

7. Explore the feasibility and concept of a 

DC-based open energy system (OES) 

for exchanging intermittent energy 

between houses in a local community. 

Higher-level control software, a 

distributed MAS that handles 

power exchange and a physical 

model of a four-node OES were 

used to simulate and compare 

power exchange strategies. 

Improved solar 

replacement ratio and a 

reduction in AC grid 

consumption. 

[30]

Continued on next page
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S/n. Objective Methodology Findings Ref.

8. Propose a multi-agent deep 

reinforcement learning-

based DR scheme for 

energy management in 

discrete manufacturing 

systems. 

Formulated the industrial manufacturing 

system as a partially observable Markov 

game and adopted a multi-agent deep 

deterministic policy gradient algorithm to 

obtain optimal schedules for different 

machines. 

Effectively minimized 

electricity costs and ensured 

the continuity of production 

tasks better than a benchmark 

without DR. 

[31]

9. Develop a decentralized 

and automated DR and 

home energy management 

system. 

Implemented a hierarchical agent 

architecture that allows stakeholders to 

make decisions based on energy 

consumption and generation changes. 

It improves value for 

prosumers, enhances 

efficiency and increases 

market competitiveness in the 

low-voltage part of 

distribution networks. 

[32]

10. Propose an MAS-based 

optimal control method for 

combined cooling, heating 

and power systems with 

thermal energy storage to 

minimize operation costs. 

Simulated the implementation of 

coordinator agents, building agents, 

energy management agents and 

optimization agents. The genetic 

algorithm was used for the operation 

optimization. 

Reduced operation costs by 

10.0% on a typical summer 

day and 7.7% on a typical 

spring day relative to a rule-

based control method. 

[33]

11. Develop a distributed 

intelligent management 

system for microgrids by 

using a multi-agent-based 

control system. 

Developed a hardware-in-the-loop 

simulation system with intelligent agents 

by using microcontrollers, Zigbee wireless 

communication and power system 

dynamics models in real-time simulation 

environments. 

Demonstrates the successful 

development of a distributed 

intelligent microgrid 

management system and its 

promising application in 

emergency DR programs. 

[34]

12. Introduce a novel, 

distributed MAS that 

optimally dispatches 

compliant DR requests 

while accounting for non-

deterministic factors in 

practical deployments. 

The distributed MAS aggregates 

consumers and prosumers, following 

virtual power plant principles, to ensure a 

100% DR success rate. Agents in the MAS 

optimally exploit flexibility via clustering 

and optimization engines and use dynamic 

bi-directional DR matchmaking to 

mitigate deviations. 

Ensures 100% DR success rate 

and delivers significant 

savings to aggregators and 

customers serving DR 

requests, demonstrating 

efficiency in ensuring 

technical DR fault tolerance. 

[21]

Continued on next page
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S/n. Objective Methodology Findings Ref.

13. Explore the cooperation of 

neighboring multi-energy 

microgrids by developing 

optimal trading strategies 

and pricing mechanisms. 

A bi-level optimization model with two 

trading modes was utilized, employing 

Stackelberg game theory-based pricing 

for intermediary agent-based trading, 

and supply/demand ratio-based pricing 

for direct trading. 

Forming a cluster of multi-

energy microgrids increases the 

total benefits relative to 

individual operations. Direct 

trading yields higher benefits, 

but intermediary agent-based 

trading enhances self-

sufficiency. 

[35]

14. Develop an optimization 

model for interconnected 

multi-microgrids, 

considering overall system 

cost and utilizing a 

hierarchical energy 

management system based 

on the MAS. 

Employed a hierarchical energy 

management system based on the MAS 

theory, where each system element is 

treated as an independent agent 

connected via the Internet of Things 

(IoT). 

The simulation and 

implementation results 

demonstrate that the MAS-based 

optimization model effectively 

reduces operational costs in 

multi-microgrid systems while 

minimizing communication and 

computational burden. 

[36]

15. Implement an MAS 

framework for flexible 

price-based DR in advanced 

distribution automation 

technologies to alleviate 

network constraints and 

achieve demand-supply 

balance. 

Used a genetic algorithm-based multi-

objective optimization technique to 

determine optimal locations and 

demand reduction amounts by 

considering probabilistic estimation of 

flexible demand and optimal decision-

making for appliance start times based 

on price signals and customer 

willingness to participate. 

Demonstrated the feasibility and 

effectiveness of the proposed 

framework in a modified IEEE 

69 bus distribution network, 

showcasing how flexible loads 

can help manage network 

constraints and balance demand 

and supply. 

[37]

Continued on next page
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S/n. Objective Methodology Findings Ref.

16. Minimize the overall 

expenditure of meeting high 

energy demand. 

It involves utilizing a long short-term 

memory network for predicting day-

ahead load, utilizing the Q-learning 

algorithm for independent agent 

decision-making and employing a multi-

agent framework overseen by a master 

agent to manage household agents for 

effective cooperation and voltage 

regulation. 

Reduced the total average 

aggregated load demand from 

5.23 to 3.86 kW and lowered the 

total average cost from 94.01 to 

60.80 Rs, eliminating voltage 

level violations within the 

system. 

[38]

17. Evalute the performance of 

load shedding by using a 

dynamic pricing algorithm 

in a multi-agent system for 

real-time power control in a 

DC microgrid with price-

based DR. 

Using embedded devices, relays and 

sensors, they designed a system by using 

intelligent physical agents, the Java 

Agent Development Framework (JADE) 

and an agent simulation platform to 

control load shedding and energy trading 

in residential areas. 

Achieved load shedding within 

600 ms, leading to an 80% cost 

reduction for individual houses.

[39]

18. Introduce an automated 

energy management system 

for rural off-grid 

communities, focusing on 

price-based DR and the 

effective integration of 

sustainable resources. 

The paper recommends employing 

cascaded control abstraction, distributed 

market-based control and multi-agent 

transactive principles to implement a 

price-sensitive cyber-physical smart grid 

within rural microgrids. 

The proposed smart village 

solution is an automated smart 

microgrid energy management 

system. 

[40]

19. Create an MAS for 

efficiently handling micro-

grid outages, improving 

power generation and 

reducing operational 

expenses. 

Simulated the system dynamics by using 

the JADE to account for intermittent 

solar power, load variations, dynamic 

grid pricing and critical load 

discrepancies. 

The simulation results illustrate 

that the MAS enhances 

microgrid efficiency, resulting 

in increased power generation, 

reduced operational costs and 

the optimized use of financial 

and environmental resources. 

[41]

Continued on next page
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S/n. Objective Methodology Findings Ref.

20. Investigate the interplay 

between financial autonomy, 

service provision and 

stakeholder engagement within 

the context of implementing a 

distributed energy resource 

management system (DERMS) 

in an Energy Internet 

framework. 

They employed a transparent decision 

support system and a reverse 

Stackelberg game-theoretic approach 

to determine a fair distribution of 

financial resources among transactive 

energy participants by utilizing 

interconnected sub-games and utility 

functions to model the price response at 

different levels. 

The study confirms the 

existence and uniqueness of 

the Nash equilibrium and 

offers precise solutions for 

stakeholder energy 

contributions. 

[53]

21 Present an energy management 

framework that fosters efficient 

decision-making and 

coordination among operating 

agents, including distribution 

utilities, microgrid operators 

and end-user aggregators. 

It introduced a game-theoretic dynamic 

pricing scheme that facilitates 

interactions between distribution 

utilities, microgrid operators and end-

user aggregators. 

The results validate that the 

participatory strategy leads 

to improved economic 

benefits and technical 

aspects by reducing peak 

demand and enhancing 

voltage profiles in the power 

trading model. 

[58]

We will briefly describe each case study not included in Table 1 to ensure a comprehensive 
overview of the available literature. In [22], an effective energy management system employing an 
MAS was implemented to model distributed energy resources in a neighborhood grid alongside 
multiple green residential buildings. The proposed model computes the price at which the supply and 
demand for electricity reach equilibrium in a home microgrid. The model was demonstrated to improve 
overall energy efficiency and individual residential green building profits and optimally manage 
devices in green residential buildings. Consequently, in [12], a system based on intelligent multi-agents 
was proposed to optimize the response to residential demand in distributed networks. The model 
portrays retailers and smart home devices as multifunctional and intelligent agents. Smart home 
devices forecast and schedule energy loads, while a retail agent informs home agents of energy prices. 
Simulation accurately predicted electricity loads and energy prices through the use of coupled 
convolutional neural network - a long short-term memory model. 

Furthermore, in [42] discusses prediction-based multi-agent reinforcement learning for 
decentralized electric vehicles, and it addresses the optimum charging challenge concerning 
intermittent wind power and variable base load demands. GridLAB-D, a software power network 
simulator, was used in [42] to train and test the algorithm in a residential load management scenario. 
The simulation agents learned the optimal charging behavior for electricity, effectively circumventing 
high-power demand instances and attaining a peak-to-average ratio of 1.67, which represented a 
significant improvement from the baseline scenario’s 2.24 ratio. The DR approach maximizes 
renewable energy utilization and avoids peak power use to meet DR objectives [43]. A multi-agent 
reinforcement learning approach was also explored in [44] for energy management. Real data and 
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probability density functions were used in the proposed method to address uncertainties. The method 
involves using training scenarios to facilitate the training of Q functions for agents. Upon examination 
of the results, it was observed that the overall disparity in energy costs between the scenarios that 
incorporate trained Q values and those that employ the no-regret learning method was minimal, 
amounting to 0.4%. This outcome underlines the agents’ commendable adaptation to the environment. 
The reinforcement learning-based method leads to more cost-effective consumer schemes than 
conventional mathematical optimization-based energy management programs. 

A novel agent-based framework was proposed in [14]; incorporate flexibility in industrial and 
residential demand. A central DR provider was proposed to coordinate responses from industrial and 
residential DR aggregators. These aggregators allow entire production lines to be flexible for energy-
intensive industries such as cement production and metal smelting. In their framework, 
thermostatically controlled appliances and electrical storage systems are also utilized by residential 
DR aggregators to store thermal and electrical energy. Additionally, electricity markets use integrated 
flexibility to maximize profits for market participants, eliminating the need for supportive regulations 
to subsidize responsive consumers. A test of the proposed structure was conducted in the Danish sector 
of the Nordic electricity market to demonstrate its applicability and efficiency. They found that integrating 
flexibility into power systems may improve their ability to handle intermittent power sources. 

A model based on an MAS was developed to analyze microgrid capacity using real-world 
data [45]. A full simulation of microgrid performance was carried out by applying economic, technical 
and environmental metrics. This model included autonomous agents with specific load profiles, 
renewable energy generation sources and DR potential. A peer-to-peer e-commerce marketplace can 
be simulated by using the model, where agents trade electricity. Using data from a medium-sized 
German city on the performance of Europe’s microgrids in 2022 and 2019, the model was validated to 
examine the effects of the energy market shocks. The study results prove that microgrids with peer-to-
peer trading can reduce electricity costs and greenhouse gas emissions. 

When designing the MAS, industrial consumers’ operational constraints and preferences were 
considered to ensure effective implementation. The production schedules, process continuity and specific 
functional requirements of industrial facilities were considered during the negotiation process [46]. 
Considering these factors, DR actions were carried out without disrupting critical operations, and while 
achieving substantial reductions in peak demand. During the implementation of the MAS for DR, 
various approaches were employed to stimulate consumer engagement. Financial incentives, 
personalized energy consumption feedback and time-of-use pricing alternatives were strategically 
deployed [37]. By providing actionable information and attractive incentives, consumers were 
empowered to modulate their energy consumption responsively. The actions achieved through these 
implementations provide information on the detailed design and seamless deployment of the MAS in 
residential and integrated DR initiatives. Within residential feeder 7, the implementation of DR yielded 
a remarkable reduction in load, i.e., 69.30%. This substantial load reduction serves as compelling 
evidence for the practical viability and effectiveness of the proposed framework. These visions pave 
the way for a wider acceptance and utilization of such systems in practical, real-world settings. 

The studies analyzed reveal the diverse methodologies and findings in the context of MAS 
implementation for DR. These studies leverage techniques such as reinforcement learning, 
optimization algorithms and intelligent agents to address various challenges in DR. The findings 
underscore the effectiveness of MASs in reducing electricity costs, enhancing grid stability and 
optimizing energy management. They highlight successful applications in scenarios ranging from 
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microgrid control to household demand management. These studies demonstrate the versatility and 
promise of MASs as essential tools for tackling contemporary energy management issues, offering 
solutions that contribute to cost savings and improved operational efficiency across different contexts 
in the energy sector. 

3.2. Recent MASs framework for DR 

This section presents a comprehensive overview of the advances in implementing MASs for DR, 
highlighting the latest strides in this field. It encompasses emerging trends and novel methodologies 
that have enhanced the effectiveness and efficiency of MAS installations, illuminates notable 
breakthroughs in the domain and accentuates pivotal progress made in this discipline. Recent scholarly 
investigations have explored the perspective of MASs for DR programs by integrating advanced 
machine learning and artificial intelligence methodologies [28,47–49]. The authors of [50] introduced 
an innovative design framework for multi-agent reinforcement mechanisms that simultaneously 
determines the optimal charging rates for a subset of charging stations over a specific period. This 
framework considers the power output restrictions, unexpected incoming requests and unforeseen 
charging requirements of self-interested users who strive to maximize utility. Utilizing Markov game 
theory effectively captured the essence of cooperation between stations [6]. At the same time, the 
complex challenge was addressed through the implementation of a multi-agent deep deterministic 
policy gradient. The primary objective entailed the augmentation of network revenue over the long 
term while simultaneously considering the social welfare of all users. An experimental evaluation 
assessed the framework’s efficacy, revealing superior performance compared to the time-of-use pricing 
system and the noncooperative deep deterministic policy gradient method. 

Furthermore, the integration of Internet-of-Things (IoT) technology has facilitated the collection 
and transmission of data in real time with enhanced stability within MASs for DR [36,51]. Smart 
meters and IoT sensors provide continuous and valuable insights into environmental parameters, grid 
conditions and energy consumption patterns [8,52]. In [36], a novel optimization model is introduced 
for interconnected multi-microgrids, and it considers the total cost of the entire system. A hierarchical 
energy management system was employed to achieve optimal system performance, drawing on the 
principles of the MAS concept. Within the framework of the IoT platform, every individual element 
of the system engages in autonomous agent-based interactions with other components. A primary 
advantage of this structure is its ability to be partitioned into multiple layers, which presents a 
significant benefit of effectively managing the overall complexity. 

Similarly, the introduction of multiple management stages has reduced the communication costs 
incurred by the system. The simulation and implementation outcomes demonstrated the effectiveness 
of the proposed MAS-based optimization model in significantly curbing the operating expenses of the 
multi-microgrid system. In particular, this achievement was achieved while maintaining minimal 
communication expenses and computational burden. 

Other notable progress is evident in blockchain research, which has paved the way for establishing 
trust among agents, thus enabling secure data exchange and facilitating automated transactions within 
DR programs. In [54], an innovative blockchain-based trading system was devised to promote multi-
agent collaboration and facilitate energy sharing. The simulation of nodes in market transactions was 
accomplished by integrating power system modeling at the physical layer with a transaction consensus 
approach at the cyber layer. This framework captured the complex dynamics of the power system while 
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ensuring seamless and secure market interactions. An ingenious integration of smart contracts with 
blockchain technology was introduced to enable autonomous peer-to-peer power trading within a 
microgrid setting without human intervention [55]. This pioneering approach leveraged an MAS to 
facilitate secure and efficient power transactions seamlessly. Utilizing blockchain technology allows 
the proposed market to facilitate microtransactions while reducing transaction costs. Moreover, 
incorporating blockchain technology has significantly sustained the platform’s security by establishing 
a verifiable record of information origin, instilling confidence among all participating parties. 
Incorporating an MAS alongside the potential for agent negotiations further facilitates the attainment of 
an optimal system state that is characterized by low energy costs and rewarding local energy production. 

Finally, there have been notable enhancements in decentralized control and coordination 
techniques, and they have resulted in the increased effectiveness and scalability of DR solutions based 
on MASs. Decentralized techniques expand the realm of decision-making and coordination beyond the 
dependence on a single control unit, distributing these responsibilities among multiple agents [56]. In 
response to the concurrent change in electricity prices and marginal emission factors, the authors of [57] 
developed an MAS-based coordinated optimum load scheduling technique for building cluster load 
management. To address the dynamic fluctuations of electricity prices and marginal emission factors, 
an innovative, coordinated optimum load scheduling technique for building cluster load management 
was developed by the authors of [57], who employed the MAS framework. The proposed approach 
effectively mitigates conflicts arising from multiple optimization objectives by concurrently 
minimizing power costs, carbon emissions and peak loads while ensuring high user satisfaction with 
electricity consumption. Assessment of user satisfaction was quantified through a utility function, 
signifying its careful consideration within the optimization framework. The findings demonstrate that 
the implementation of hybrid DR can effectively reduce peak power by 5.54% without inducing any 
increase in energy prices or carbon emissions. This outcome highlights the potential of hybrid-based DR 
to achieve substantial peak power reduction while maintaining economic and environmental equilibrium. 

3.3. Analysis of influential authors and research organizations 

This section examines the patterns of research cooperation that have arisen in the literature while 
highlighting some of these prominent authors. The bibliometric study has found 159 authors with 160 
affiliations linked to research publications on MASs for DR. The reports on the main concepts, 
techniques and real-world applications of MASs for DR have benefited from the contributions of these 
scholars. Their knowledge and groundbreaking work have influenced the industry and stimulated 
innovation. Figures 3 and 4 display the top authors and institutions published on MASs for DR. 
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Figure 3. List of authors with the most publications. 

 

Figure 4. The affiliations for the most cited publications. 

The most prominent authors in the field of MASs for DR include the authors of [28,29,55,63–68]. 
Other notable authors are the authors of [14,36,37,66,72,73,68–70]. Their research contributions cover 
various topics, including market-based strategies, agent coordination and decision-making algorithms. 
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Their papers have received numerous citations and significantly influenced how MASs are understood 
and used in response to demand. 

Through a spatial representation of the research collaborations, a density visualization analysis 
yielded 12 distinct clusters, as illustrated in Figure 5. The intensity of the colors in the visualization 
serves as an indicator of the density of author collaborations. Darker regions signify heightened 
densities, signifying a greater magnitude of collaborative efforts among authors. Visualization shows 
the clusters of authors who exhibit robust collaboration within their respective research domains. 
Notable areas encompass the implementation of MASs for DR in microgrid and smart home contexts. 

Moreover, the visualization effectively highlights areas characterized by lower density, indicating 
relatively sparse author collaborations. Prominent areas characterized by a low collaboration density 
include the implementation of MASs for DR in urban and industrial transformers. These areas of lower 
density present promising avenues for future research and exploration, offering novel opportunities to 
advance the field. 

 

Figure 5. Density visualization of author collaboration produced by VOSviewer. 

Collaboration is necessary to promote interdisciplinary research and combine skills from many 
fields to produce more thorough and significant studies. Collaborative research activities have been 
observed among 11 subjects on implementing MASs for DR. Experts from various fields, including 
energy, engineering and computer science, participate in these collaborations; see Figure 6. The 
combined efforts have produced unique applications of MASs for, particularly in terms of creative 
ideas and improved methodologies. 
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Figure 6. Analysis of publications according to subject. 

The collaboration patterns in the Scopus search illustrate the significance of knowledge sharing 
and the cross-pollination of ideas in furthering the subject; they also show the value of 
multidisciplinary teamwork. Such partnerships support a thriving research community, offer a forum 
for tackling difficult problems and push the limits of MAS implementation to respond to energy demand. 

3.4. Analysis of keyword co-occurrence 

The study of keyword co-occurrence in the literature is presented in this subsection. The MAS 
implementation for DR identifies and analyzes the new research issues that have gained popularity. 
Here, we investigate how many themes are related and what it means for future studies. Figure 7 
displays the co-occurrence of the terms from documents relating to the deployment of MAS-in-DR 
programs created using the VOSviewer software. 
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Figure 7. Analysis of keyword co-occurrence in VOSviewer. 

Keywords with a minimum incidence of five times were filtered to get the results displayed in the 
figure. The network visualization results presented in Figure 7 show that the largest cluster (i.e., the 
green cluster) is strongly related to the use of an MAS for DR, and it encompasses terms such as “multi-
agent simulation”, “distributed generation”, “renewable energy” and “deep reinforcement learning”. 
The red keyword cluster “smart grids” is linked to other keywords generally related to the grid and 
residential optimization of distributed energy. The other two major groups (i.e., blue and yellow) are 
associated with the technical approaches of the DR projects. Furthermore, Figure 8 includes an overlay 
visualization for further analysis of the relevant keywords in the literature. 
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Figure 8. Overlay visualization of keyword occurrence on VOSviewer. 

Recent publications included studies based mainly on MASs for intelligent energy 
management [23,47,50,74–77]. The recent co-occurrence of the keywords “deep reinforcement 
learning”, “renewable energy sources”, “integrated energy systems” and “transactive energy” is shown 
in Figure 8. The terms are primarily associated with 2021 and later. 

3.5. Visualisation of publication trends 

Figure 9 presents a graphical representation of the annual publication count of the utilization of 
an MAS in DR. The data reveal substantial publication growth from 2012 onward, with a notable surge 
to more than 73 publications in 2021. 
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Figure 9. Analysis of scientific output by year of publication. 

The combination of technological developments, increased interest in DR, interdisciplinary 
collaboration, supporting regulations and funding opportunities can be attributed to the increase in 
publications on the application of MASs for DR. These reasons have helped the scientific community to 
concentrate on creating novel methods to optimize energy consumption and load demand using MASs. 

Also, along with the number of publications, the citation overview of the selected documents is 
discussed, including the mean total citation per year of the papers selected, as shown in Figure 10. The 
results show that the highest number of mean citations per year was reached in 2022. In total, 2010 
citations were received that year. Though the number of publications was less in the early years, the 
numbers began to rise gradually in 2013. 
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Figure 10. Analysis of article citation by year of publication. 

The trend of publications in the top territories that published papers on MAS implementation for 
DR is shown in Figure 11 to demonstrate significant patterns. 

 

Figure 11. Number of publication records by country. 
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Countries such as China, the USA, Germany and Japan have emerged as significant contributors. 
The number of papers on MAS implementation for DR has steadily increased in these regions, 
reflecting an increasing interest and research focus on maximizing energy usage through decentralized 
control and coordination. Figure 11 illustrates the research productivity of different countries in the 
field of MASs for DR. China has emerged as the leading contributor, with 135 published documents, 
followed by the USA, with 83 documents, and the United Kingdom with 43 documents. In particular, 
an analysis of African nations reveals a limited publication count, with each nation having published 
fewer than five articles on MASs for DR. Recognizing the historical success of DR in curbing peak 
demand within emerging markets, several developed nations, including the USA, Germany and 
Australia, are now actively exploring DR mechanisms to facilitate grid frequency-balancing services and 
increase the flexible capacity of the electricity market [78,79]. According to a report in [1], by 2030, 
Europe and China will have cut their carbon emissions by 60 to 65 percent from 2005 levels. 
Consequently, this reasonable goal can indicate a rise in research institutions’ interest in studying 
distributed energy source optimization. 

4. Discussion 

Although the systematic and bibliometric review on the use of MASs for DR offers useful insights 
into the body of literature, it is important to recognize some limitations that might have affected the 
scope and implications of this work. The availability and accessibility of publications in scholarly 
databases are essential for the review process. Due to publication bias or the exclusion of papers written 
in languages other than English, some pertinent studies were not included in the analysis. Therefore, 
the results might only fully represent a portion of the literature on the subject. The research included 
in the study also covers a variety of approaches, themes and experiments. The heterogeneity of the 
research may constrain the clear correlation and generalizability of the results. The reported results can 
differ significantly depending on several variables, including the simulation model, the market 
structure and the implementation strategy. Despite these limitations, the systematic and bibliometric 
investigation of MAS deployment for DR represents an essential synthesis of the existing research 
corpus. It offers an overview of the current state of knowledge of academics, professionals and 
decision-makers in this field, identifies knowledge gaps and highlights potential directions for further 
research in this area. 

Various methodologies and techniques have been employed to implement MASs for DR. A 
centralized MAS [80], which utilizes a central agent, provides simplicity but may suffer from single 
points of failure. In contrast, distributed MASs [6], which are without central agents, exhibit greater 
robustness but require more intricate management. Hybrid MASs [6] combine elements of both, 
seeking a balance between simplicity, resilience and performance. These approaches can be enhanced 
with specific techniques, such as game theory [6,63,72], which facilitates negotiation and cooperation 
in competitive environments; machine learning [81], which allows for adaptation to change grids and 
consumer behavior; and optimization [82], which finds optimal energy consumption schedules. This 
research finding suggests that certain MAS methods, such as multi-agent reinforcement learning [71], 
price-based DR [78] and decentralized energy management systems [83], exhibit exceptional 
performance when applied for energy DR. The most suitable MAS approach should consider program 
requirements, consumer characteristics, scalability, robustness and efficiency. 

Integrating MASs with the IoT and AI technologies has revealed the unexploited perspective for 
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improved performance and efficiency. However, scholarly work has documented several challenges in 
this domain. These challenges include establishing well-defined protocols, efficient data management, 
seamless system compatibility and preserving privacy. Among the prominent concerns highlighted in 
the literature is the scalability of MASs in the context of DR. As the number of agents and devices 
within the system increases, the complexity of coordination and communication increases. Thus, 
ensuring the proficient handling of numerous users and devices through the MAS without 
compromising performance becomes an imperative priority. 

Furthermore, gathering, distributing and analyzing private customer energy usage data is a 
necessary component of MAS implementation for DR. Privacy concerns are brought about by the 
dangers resulting from unlawful access, use or disclosure of personal information. Gaining consumer 
trust and promoting active participation in the DR program depends on how privacy is protected and 
whether strong security measures are implemented. Furthermore, there are many difficulties in 
managing and analyzing the massive amounts of data produced by and MAS for DR. For decision-
making, system optimization and overall performance, efficient data collection, storage, integration 
and analysis are essential. Developing improved data management methods, through techniques such 
as data fusion, aggregation and analytics, is necessary to support efficient DR plans and extract 
valuable discoveries. System interoperability is another mentioned drawback. Interoperability is 
necessary to integrate MASs with infrastructure, energy management systems and smart grid 
components. However, providing smooth interoperability between various systems, protocols and 
communication standards is challenging. It means developing standardized interfaces, protocols and 
structures for efficient data flow, interoperability and collaboration involving heterogeneous 
components. The lack of widely accepted and established protocols for MAS implementation for DR 
highlights the necessity for standardized protocols, which complicates efforts to improve 
interoperability, scalability and integration. The absence of standards makes it difficult to create MASs 
that are interoperable with one another, share data and enable inter-agent communication. The 
effectiveness of the implementation of MASs in practical DR applications depends on the solution to 
these difficulties. Researchers and practitioners must develop scalable MAS architectures, reliable 
privacy-preserving methods, effective data management strategies and standard protocols. The 
potential of MASs to facilitate the transition to sustainable and smart energy grids and enable effective 
responses to demand can be fully realized by addressing these difficulties. 

5. Conclusions 

In conclusion, this review of the literature was designed to analyze MAS implementation for DR 
applications. We investigated this field’s current body of research through a systematic and 
bibliometric evaluation, highlighting significant trends, approaches and difficulties. The analysis 
revealed a significant growth in the application of MASs for DR, indicating the increasing recognition 
of its potential to optimize energy consumption and enhance the grid’s reliability. The reviewed studies 
demonstrated the effectiveness of MASs in addressing the complexities of DR, including coordination, 
communication and decision-making among multiple entities. 

Based on the analysis, it is evident that MASs hold great promise for future DR applications in 
home and industrial energy. The reviewed studies demonstrated their potential to enable dynamic, 
responsive and efficient energy management, contributing to the integration of renewable energy 
sources, reduction of peak loads and overall grid stability. MAS implementation for DR can help 
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consumers by allowing them to actively engage in energy markets and make smart decisions regarding 
their energy consumption. Future research should address the identified challenges and limitations and 
explore novel approaches for MAS implementation in response to demand to further advance the field. 
Furthermore, more attention should be paid to real-world case studies and practical deployments to 
assess MAS-based DR systems’ scalability, reliability and economic viability. 

This systematic and bibliometric review provides comprehensive overview of current research on 
MAS implementation for DR. By synthesizing the existing literature, we have contributed to 
understanding the key trends, methodologies and challenges in this field. Researchers, practitioners 
and policymakers who seek to advance and implement MAS-based DR systems will find the data 
provided here to be valuable, ultimately promoting a more sustainable and effective energy future. 
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