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Abstract: The performance of lithium-ion batteries declines rapidly over time, inducing anxiety in
their usage. Ascertaining the capacity of these batteries is difficult to measure directly during online
remaining useful life (RUL) prediction, and a single deep learning model falls short of accuracy and
applicability in RUL predictive analysis. Hence, this study proposes a lithium-ion battery RUL indirect
prediction model, fusing convolutional neural networks and bidirectional gated recurrent units (CNN-
BiGRU). The analysis of characteristic parameters of battery life status reveals the selection of pressure
discharge time, average discharge voltage and average temperature as health factors of lithium-ion bat-
teries. Following this, a CNN-BiGRU model for lithium-ion battery RUL indirect prediction is estab-
lished, and the Tree-structured Parzen Estimator (TPE) adaptive hyperparameter optimization method
is used for CNN-BiGRU model hyperparameter optimization. Overall, comparison experiments on
single-model and other fusion models demonstrate our proposed model’s superiority in the prediction
of RUL in terms of stability and accuracy.
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1. Introduction

Due to the emerging energy crisis, there is a growing imperative for societies to explore and develop
new energy sources. Lithium-ion batteries have gained momentum in the new energy market owing
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to their high energy density, high output voltage, long cycle life, and wide operating temperature
range [1–3]. Nonetheless, the internal resistance of lithium-ion batteries rises with repeated cycles of
charging and discharging, which results in serious heating that undermines the performance and normal
functioning of the battery pack [4,5]. The remaining useful life (RUL) of a lithium-ion battery defines
the number of charging and discharging cycles remaining between its beginning of measurement and
the end-of-life (EOL) [6]. A regular RUL prediction of lithium-ion batteries can reveal the number
of remaining useful cycles, approximate the proximity of a battery to EOL and prevent potential risks
associated with its usage [7–11]. Consequently, the accuracy of the RUL evaluation method for lithium-
ion batteries has a direct bearing on the overall performance of the battery management system, which
is of immense practical significance in the field of energy battery applications.

The traditional life prediction model is a demanding and stringent process owing to the intricate
physical and chemical attributes of lithium-ion batteries. Fortunately, the RUL model of lithium-ion
batteries built on data-driven technology is a potent and efficacious approach facilitated by the
progress of Artificial Intelligence. This method treats a battery as a black box, bypasses the intricate
internal changes it undergoes and identifies the statistical pattern through the historical measurement
dataset, which enables the prediction of RUL in lithium-ion batteries. Recent years have witnessed an
increasing number of scholars focusing on power batteries research. There exist two principal
categories for developing battery life prediction models: model-based and data-driven
approaches [12–14].

The model-based method is often utilized to establish a mathematical model of a battery, as it
involves analyzing the battery’s physical structure and electrochemical reaction and estimating the
changing process of battery parameters. For example, Khare et al. [15] used a statistical modeling
method to map the internal resistance of a battery to its health state, while Mevawalla et al. [16]
developed an equivalent circuit model incorporating physio-chemical theory and a nonlinear equation
for the internal resistance to simulate the internal resistance and surface temperature of lithium-ion
batteries using measurable parameters. Wang et al. [17] proposed a resistance-based thermal model of
batteries, while Xie et al. [18] suggested a distributed spatial-temporal online correction algorithm for
state of charge three-dimensional state of temperature (SOT) co-estimation of a battery. Xing et al. [19]
used a fusion prediction method based on the physics of failure (PoF) and data-driven technology to
analyze the failure mechanism caused by changes in the battery’s physical and chemical characteristics.
Wang et al. [20] introduced a spherical particle filter to predict the RUL of lithium-ion batteries by
solving the state space model and evaluating the capacity degradation. Similarly, Tran et al. [21]
investigated and compared the performance of three different equivalent circuit models for four lithium-
ion battery chemistries under dynamic and non-dynamic current profiles. However, while the model-
based method has proven effective, it is susceptible to bad external conditions and may not establish
an accurate mechanism model. Additionally, the diverse physical and chemical properties of various
batteries weaken the model’s applicability, necessitating modifications to suit different batteries, which
is a difficult task.

The data-driven method involves utilizing techniques such as machine learning to extract battery
ageing characteristics from battery data collected during operation, revealing the relationship between
the input data and the degradation process and predicting the remaining battery life [22–24]. For
example, Kim et al. [25] proposed strategically switched metaheuristics to fully exploit the shape of
an objective function around sample points. Cai et al. [26] proposed an optimization process based
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on a nondominated sorting genetic algorithm (NSGA II), short-term characteristics of support vector
regression (SVR), and current pulse test for prediction. Qin et al. [27] established an improved particle
swarm optimization-support vector regression (PSO-SVR) model for estimating RUL under different
fault thresholds. Similarly, Cai et al. [28] proposed a hybrid data-driven algorithm to reconstruct the
phase space, predict RUL by combining discrete gray model (DGM), relevance vector machine (RVM),
and artificial fish swarm algorithm (AFSA). Various studies have applied deep learning to improve
prediction accuracy. For instance, Fei et al. [29] proposed a novel deep learning-based framework,
a bilateral branched Visual Transformer with Dilated Self-Attention, for online state of health (SOH)
estimation. Ma et al. [30] and Zhang et al. [31] used long short-term memory (LSTM) to predict RUL,
while Yalçın et al. [32] proposed convolutional neural network (CNN) artificial bee colony (ABC) to
estimate heat generation rate (HGR) and voltage. Wang et al. [33] proposed a transferable lithium-ion
battery RUL prediction method, while Chen et al. [34] presented a fusion model based on CNN and
LSTM, and Xia et al. [35] proposed a hybrid prediction model based on LSTM and fully connected
layer to capture the correlation in earlier data. However, these data-driven methods have complex
structure, entail extensive calculations and prolonged training times, which remain a challenge.

It is not possible to predict the RUL of lithium-ion batteries accurately after measuring all the
properties owing to the fact that the battery cycle enters the next stage after manual measurement,
which alters the RUL and makes the predicted value insignificant. In order to achieve online RUL
prediction, it is necessary to find surrogate properties that are easily measurable to establish indirect
health factors, as well as predict the feature variables used for the prediction alongside the RUL.
Therefore, it is important to design a real-time prediction model architecture to achieve online RUL
prediction in the true sense. In this study, we combine CNN and bidirectional gated recurrent
units (BiGRU) models to predict the RUL of lithium-ion batteries. The main contributions of this
paper are as follows.

1.In practical applications, it is difficult to obtain direct health factors of lithium batteries in real
time, such as capacity [36]. Therefore, in this study, we extracted indirect health factors of lithium
batteries, including isothermal discharge time, average voltage, and average temperature and analyzed
the effectiveness of health factor selection through Pearson correlation coefficient.

2.To improve the limited prediction accuracy of a single recurrent neural network, we proposed a
CNN-BiGRU model for indirectly predicting the RUL of lithium batteries. We used a convolutional
neural network to extract the latent features of battery health factors, and fitted these features using
bidirectional gated recurrent units to enhance the RUL prediction accuracy of lithium batteries.

3.We introduced the Tree-structured Parzen Estimator (TPE) hyperparameter optimization method
to optimize the hyperparameters of the proposed model. Compared to the CNN, GRU, and BiGRU
models, the CNN-BiGRU model with TPE hyperparameter optimization does not require manual
parameter tuning and achieves higher RUL prediction accuracy for lithium-ion batteries.

The rest of this paper is organized as follows. Section two describes the RUL prediction problem of
lithium-ion batteries and the data structure. Then, in section three, the details of the proposed approach
are introduced. And section four, the proposed model is compared with the GRU model, BiGRU model,
CNN-GRU model, and the all-around performance of each model in the RUL prediction experiment
are analyzed. Finally, the conclusion is presented in section five.
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2. Problem statement of RUL prediction of lithium-ion batteries

2.1. The problem of RUL prediction of lithium-ion batteries

The RUL of a lithium-ion battery is the number of charge/discharge cycles remaining between the
start of the measurement and the threshold of failure, and its calculation formula is obtained by Eq (1).

RUL = Cycle −CycleEOL (1)

Where, Cycle is the charge/discharge cycles of the lithium-ion battery at the measurement moment, and
CycleEOL is the charge/discharge cycles of the lithium-ion battery at the failure threshold. The lithium-
ion battery degradation to a certain level will affect normal use, and 70% of the standard capacity of
lithium-ion batteries is usually used as the failure threshold in research [37].

2.2. Data set

This paper uses the lithium-ion battery data set from the NASA Ames Prognostics Center of
Excellence [38]. The LiCoO2 is used as the positive material, soft and hard carbon as the negative
material and lithium salt as the electrolyte material for the 18,650 lithium-ion cobalt acid battery. The
battery has a rated capacity of 2 Ah and a rated voltage of 4.2 V. Lithium-ion batteries are
charged (C-rate = 0.75 C), discharged (C-rate = 1 C) and tested for impedance at different
temperatures until the end of the battery life and recorded for collected data, such as voltage, current,
temperature and impedance. Table 1 shows the details of the NASA battery pack. We took the first
group of lithium-ion batteries as an example to introduce the process of the NASA battery pack
ageing life test. The charging process consists of charging with a constant current (CC) mode of 1.5 A
until the voltage reaches 4.2 V, then the charging continues with a constant voltage (CV) mode until
the charging current drops to 20 mA. The discharge process starts with a discharge with a CC of 2 A
until the voltage of the battery reaches a different set value. For impedance measurements, the battery
is scanned by electrochemical impedance spectroscopy (EIS) from 0.1 Hz to 5 kHz. The condition for
the battery’s EOL is that after recharging and discharging the lithium-ion battery repeatedly, the
battery is considered invalid when its rated capacity decreases from 100% to 70% (from 2 Ah to 1.4
Ah). The EOL of lithium-ion batteries can be defined as the number of cycles when the capacity of
the lithium-ion batteries drops to the failure threshold during the initial experiment.
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Table 1. NASA battery pack details.

Group Battery Temperature(°C) CC(A) Vcuto f f (V) Cycle Capacity (Ah)

Group 1

B0005

24 2

2.7 168 1.8565
B0006 2.5 168 2.0353
B0007 2.2 168 1.8911
B0018 2.5 132 1.8550

Group 2

B0025

24 0/4

2.0 28 1.8470
B0026 2.2 28 1.8133
B0027 2.5 28 1.8233
B0028 2.7 28 1.8047

Group 3
B0038

24,44
1 2.2 47 0.8981

B0039 2 2.5 47 0.1190
B0040 3 2.7 47 0.6735

3. Indirect RUL prediction model for lithium-ion batteries based on CNN-BiGRU

3.1. Extraction of health factors for lithium-ion batteries

Health factors can be used to characterize the health status and RUL of lithium-ion batteries [39].
Battery data contains information related to battery aging, and these aging-related features are referred
to as health factors. Battery capacity and resistance can directly indicate battery aging and are known
as direct health factors, while collected battery data such as current, voltage and temperature cannot
directly indicate battery aging and are known as indirect health factors.

In practical measurements, battery capacity, which is a direct health factor, is typically estimated
using the ampere-hour integration method and cannot be measured directly, while battery data such as
current, voltage and temperature, which are indirect health factors, can be easily collected. Studies [40]
have used the time of discharge with the same voltage drop in lithium-ion batteries as an indirect factor
to predict their RUL, which has shown promising results. This paper builds upon this approach by
adding two more indirect health factors, average temperature and average discharge voltage, and uses
three indirect factors, average temperature, average discharge voltage and discharge time with the same
voltage drop to predict the remaining discharge capacity of the battery and the remaining life of the
lithium-ion battery indirectly. The formula for calculating the discharge time with the same voltage
drop is given below:

∆ti(HI) = tVhigh − tVlow , i = 1, 2, 3, . . . , k (2)

Here, ti(HI) refers to the discharge time with the same voltage drop for the i-th cycle period,
while tVhigh represents the discharge time from the start of discharge to the high voltage Vhigh and tVlow

represents the discharge time from the start of discharge to the low voltage Vlow . For the NASA
lithium-ion battery dataset, Vhigh of 3.7 V and Vlow of 3.5 V were chosen for extracting the discharge
time with the same voltage drop. Taking Battery B0005 as an example, the capacity versus cycle and
discharge time with the same voltage drop versus cycle are shown in Figure 1.
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Figure 1. Capacity and constant voltage discharge time relationship diagram for battery
B0005.

According to Figure 1, both the decay trends and the curves of capacity-cycles and isobaric
discharge time-cycles are almost identical and overlapping. This study uses the mean discharge
voltage, mean temperature and isobaric discharge time as the health factors. Pearson’s correlation
coefficient is used to measure the correlation between the selected health factors and capacity, proving
the effectiveness of the selected health factors. The calculation formula of Pearson’s correlation
coefficient is shown in Eq (3).

ρ =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
√∑n

i=1

(
Xi − X̄

)2√∑n
i=1

(
Yi − Ȳ

)2 (3)

Table 2 presents the Pearson coefficients between the average discharge voltage, average
temperature, constant voltage discharge time, and capacity for batteries B0005, B0006, and B0007.
Table 3 provides an explanation of the battery health factors. Heat maps of the Pearson coefficients
for the three batteries are shown in Figures 2(a) to 2(c). The Pearson coefficient values between the
constant voltage discharge time and capacity for these three batteries, as depicted in Table 2, were
found to be above 0.990, indicating a strong positive correlation. Moreover, the Pearson coefficient
values between the average discharge voltage and capacity were also above 0.961, demonstrating a
positive correlation between the two. The Pearson coefficient value between the average temperature
and capacity was found to be above -0.588, signifying a relatively strong negative correlation.

In summary, it has been demonstrated that the extracted average discharge voltage, average
temperature and constant voltage discharge time can effectively characterize the discharge capacity of
lithium-ion batteries. This, in turn, lays the groundwork for the indirect prediction of the RUL of
these batteries.

AIMS Energy Volume 11, Issue 5, 896–917.



902

Table 2. The correlation coefficient table between battery health factors and capacity.

B0005 B0006 B0007
Variables x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

x1 1 0.982 –0.810 0.998 1 0.965 –0.823 0.990 1 0.961 –0.588 0.997
x2 0.982 1 –0.824 0.989 0.965 1 –0.843 0.989 0.961 1 –0.632 0.975
x3 –0.810 -0.824 1 –0.804 –0.823 –0.843 1 –0.831 –0.588 –0.632 1 –0.602
x4 0.998 0.989 –0.804 1 0.990 0.989 –0.831 1 0.997 0.975 –0.602 1

Table 3. Explanation of the meaning of battery health factors and capacity.

Variable Explanation
x1 Battery capacity
x2 battery mean discharge voltage
x3 battery mean discharge temperature
x4 time taken for battery voltage to drop from 3.7V to 3.5V during discharge

(a) B0005 (b) B0006 (c) B0007

Figure 2. Thermographic map of the correlation between battery health factors and capacity.

3.2. The fusion model of CNN-BiGRU

The prediction of time series problems concerning lithium-ion batteries using LSTM and GRU
recurrent neural networks only considers the effects of past battery data on present battery data, and
neglects the relationship between battery data and its propagation through the recurrent neural
network. Integrating both the forward and backward propagations of relevant information, a BiGRU
offers each data point access to historical and future information to improve prediction accuracy. This
paper proposes a CNN-BiGRU fusion model that leverages a CNN as a feature extraction layer for
battery data and a BiGRU as a prediction module, amalgamating the advantages of both models to
increase prediction accuracy. The CNN-BiGRU fusion model follows the structure shown in Figure 3,
composed of an input layer, a convolutional layer, a pooling layer, a BiGRU layer, a dropout layer and
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a fully connected layer.

Figure 3. The architecture diagram of the CNN-BiGRU model.

The CNN-BiGRU model aims to predict the capacity of a lithium-ion battery based on health
factors. The input layer of the model takes mean voltage, mean temperature and isothermal discharge
time as input data. The health factors undergo one-dimensional convolution to identify potential
information among them, followed by pooling to enhance the model features and reduce parameters.
The output of the pooling layer goes through the BiGRU network that updates the state of the GRU
and conducts battery capacity prediction using forward and backward propagation. To prevent
overfitting, the output of the BiGRU layer is fed into a dropout layer that randomly disconnects
neurons. The fully connected layer generates the final capacity prediction result. The model uses the
ReLu activation function to avoid overfitting and provides nonlinear advantages. Figure 4 presents the
algorithm flow chart of the CNN-BiGRU fusion model.

The detailed algorithm steps are described below. First, extract the raw lithium-ion battery data
from the NASA Prognostics Center of Excellence open battery dataset. The data includes the cycle
number Ni, discharge voltage Vi, discharge temperature Ti, battery capacity Ci, and the invalid data is
filtered out. Second, calculate the average discharge voltage V̄i, average discharge temperature T̄i and
capacity Ci for each cycle based on the cycle number. Third, extract the discharge voltage data for each
cycle and calculate the isothermal discharge time ∆ti(HI) based on the preset Vhigh of 3.7 V and Vhigh

of 3.5 V. Next, perform min-max normalization on the health factors, including the average discharge
voltage V̄i, average discharge temperature T̄i , isothermal discharge time ∆ti(HI) and capacity. Based on
the principle of CNN multivariate single-step prediction, construct a three-dimensional array for data
input in the format of [sample, stride, feature], and then split it into training and testing sets. Set up
the hyperparameter configuration space for the CNN-BiGRU model and initialize the hyperparameters,
including the number of convolutional filters, stride, kernel size, pooling size, number of GRU in the
bidirectional layer, dropout rate, and learning rate. Optimize the hyperparameters using TPE, calculate
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the suitable hyperparameter point and add it to the initial set of TPE collections. Repeat the above step
until the maximum epoch times (set to 50 times) is reached or there is a depletion of resources. Lastly,
input the testing set into the optimized CNN-BiGRU model for capacity prediction, and calculate the
battery remaining life based on the predicted capacity and the battery failure threshold. Output the
predicted remaining life of the battery.

Figure 4. The flowchart of the CNN-BiGRU model.
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4. Experiment

4.1. Model evaluation metrics

To evaluate the model’s performance for predicting the RUL of a lithium-ion battery, the following
evaluation metrics are used: mean absolute percentage error (MAPE), mean absolute error (MAE),
mean squared error (MSE), root mean squared error (RMSE), absolute error (AE) and relative
error (RE).

MAPE =
1
N

N∑
i=1

|
Cpred(i) −Ctue (i)

Ctrue (i)
| × 100% (4)

RMS E =

 1
N

N∑
i=1

(
Cpred(i) −Ctrue (i)

)21/2 (5)

MAE =
1
N

N∑
i=1

|
Cpred(i) −Ctrue (i)

Ctrue (i)
| (6)

MS E =
1
N

N∑
i=1

(
Cpred (i) −Ctrue (i)

)2
(7)

AE = |RULpred − RULtrue | (8)

RE = |RULpred − RULtrue |/RULtrue (9)

Where Cpred(i) for predicted capacity value, Ctrue(i) for true capacity value, N for cycle number,
RULpred for predicted remaining life value and RULtrue for true remaining life value. MAPE and
RMSE are the accuracy metrics for capacity prediction and the lower the value, the more accurate the
capacity prediction. AE and RE reflect the performance metrics of the model for RUL prediction and
the closer to zero the values, the more accurate the RUL prediction.

4.2. TPE hyperparameter optimization algorithm

Hyperparameters have a significant impact on the accuracy of predictive models [41,42]. When the
model is relatively simple, the hyperparameter search space, and the dataset are both small, optimizing
the objective function that can be used as a key way to search and adjust hyperparameters. However, as
the model used in this paper is a deep learning model, although the objective function of deep learning
models can be easily obtained, the training process is time-consuming. If the objective function is
chosen as the optimization method for hyperparameter search, it will result in longer computation time
and lower efficiency.

The Bayesian optimization algorithm for hyperparameters is a method that uses a surrogate
function instead of the objective function to indirectly provide the optimal combination of
hyperparameters for the objective function by calculating the performance of hyperparameters on the
surrogate function. The TPE algorithm is a Bayesian optimization algorithm, as well as a
model-based sequential global optimization algorithm. The core of this algorithm is to (1) determine
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the search space of hyperparameters (2) determine the objective function to be optimized (3)
determine the surrogate function of the objective function (4) use a suitable acquisition function as the
position of the next prediction point, and (5) update the surrogate function and store the previous
calculation process.

The TPE algorithm constructs a graph search space consisting of hyperparameters, such as the
number of convolutional filters, stride, kernel size, number of GRU in the bidirectional layer, dropout
rate, and learning rate. The hyperparameter combination space is usually composed of Gaussian
distribution N, uniform distribution U, log-uniform distribution logU or categorical variables. Table 4
shows the prior distribution of hyperparameters used in this paper. Let x represent the set of
hyperparameters, y is the evaluation value under x and TPE models likelihood probability p(x | y) and
a priori probability p(y).

Table 4. The prior distribution of hyperparameter.

Hyperparameter type Symbol Prior distribution
Number of convolution kernels k LogU(70, 1.25)
Stride s LogU(3.6, 1.2)
Convolution kernel size f LogU(4.5, 1.3)
Number of bidirectional gated recurrent units h LogU(100, 1.33)
Dropout rate p LogU(0.05, 0.5)
Batch size b LogU(22, 1.3)
Learning rate a LogU(0.0007, 1.3)

TPE converts prior probability distributions to generate a series of hyperparameter combination
spaces under which different density distributions are produced. When the prior distribution is a
logarithmic uniform distribution, TPE will convert it into an exponentially truncated Gaussian
distribution; when the prior distribution is uniform, TPE will convert it into a truncated Gaussian
distribution; and when the prior distribution is categorical, TPE will transform it into a reweighted
categorical distribution. This process generates a range of hyperparameter spaces and a series of
density distributions.

To demonstrate the effectiveness of TPE hyperparameter optimization, we used the CNN-BiGRU
model with battery B0005 as an example. We specified the range of hyperparameters to be searched
using the TPE optimization algorithm to find the optimal combination. Table 5 shows the experimental
results of the TPE optimization algorithm applied to battery B0005.

As illustrated in Table 5, the TPE algorithm achieved a minimum error of 0.69% after 25 epochs,
with a final accuracy of 99.31%. This error percentage was within 0.7%, indicating the effectiveness
of the TPE hyperparameter search. Table 6 provides detailed hyperparameters and corresponding
accuracies for each epoch of the TPE algorithm, and readers are referred to Table 4 for symbol
explanations.

Table 6 shows that the optimal hyperparameter combination was achieved after 25 epochs, with
the following values: 51 convolutional kernels k, stride s of two, kernel size f of two, 342 BiGRU
neurons h, 0.0982 dropout rate p, batch size b of 43 and learning rate a of 0.0005.
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Table 5. Experimental results of TPE on battery B0005.

Epochs Error Epochs Error Epochs Error Epochs Error Epochs Error
1 4.05 11 2.61 21 1.26 31 2.18 41 5.66
2 3.50 12 7.24 22 6.40 32 2.30 42 3.75
3 2.34 13 4.35 23 1.25 33 4.40 43 4.41
4 8.51 14 2.18 24 2.77 34 4.84 44 7.79
5 2.28 15 2.56 25 0.69 35 3.13 45 1.32
6 1.84 16 4.67 26 1.55 36 2.81 46 2.91
7 5.41 17 6.17 27 3.63 37 5.21 47 1.92
8 3.54 18 3.99 28 2.59 38 2.61 48 3.75
9 3.37 19 2.07 29 4.21 39 1.15 49 3.89

10 1.12 20 1.88 30 2.18 40 4.22 50 2.02

Table 6. Hyperparameter combinations of TPE on battery B0005.

Epochs k s f h p b a Error
1 66 3 4 101 0.1305 20 0.0008 4.05%
2 45 5 4 121 0.0736 24 0.0008 3.50%
3 43 4 4 197 0.0751 29 0.0007 2.34%
4 71 4 5 108 0.0273 24 0.0010 8.51%
5 102 4 4 117 0.0589 20 0.0005 2.28%
... ... ... ... ... ... ... ... ...
25 51 2 2 342 0.0982 43 0.0005 0.69%
... ... ... ... ... ... ... ... ...
50 66 6 3 97 0.0280 23 0.0007 2.02%

The model was then tested using both the default hyperparameters and the TPE-optimized
hyperparameters. Table 7 shows the experimental results.

Table 7 shows that using TPE to optimize the hyperparameters reduced the error of the CNN-
BiGRU model to 0.69%, while using the default hyperparameters resulted in an error of 1.10%. These
results demonstrate that TPE hyperparameter optimization is effective in controlling the error of the
CNN-BiGRU model within 0.7% and can improve performance by 59.4%.

Table 7. The comparison between TPE-optimized hyperparameter combination and default
hyperparameter combination.

Type k s f h p b a Error
TPE optimization 51 2 2 342 0.0982 43 0.0005 0.69%
default 128 1 1 256 0.3 10 0.0010 1.10%
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4.3. Result and analysis

We conducted RUL prediction experiments on three batteries, B0005, B0006, and B0007, using
their average discharge voltage V̄i , average discharge temperature T̄i and isothermal discharge time as
features to establish the relationship between the features and their capacity. The hyperparameters of
the CNN-BiGRU model established using TPE hyperparameter search are shown in Table 8.

Table 8 shows the parameters of the CNN-BiGRU model established using TPE hyperparameter
optimization for battery B0005 as an example. The same parameters were used for the other two
batteries. The prediction starting point for battery B0005 was 60, and the model parameters after TPE
hyperparameter optimization were as follows: 51 convolutional kernels k, stride s of two, kernel size f
of two, 342 BiGRU neurons h, 0.0982 dropout rate p, batch size b of 43 and learning rate a of 0.0005.

Table 8. The comparison between TPE-optimized hyperparameter combination and default
hyperparameter combination.

Battery Starting point k s f h p b a
B0005 60 51 2 2 342 0.0982 43 0.0005
B0005 84 126 3 1 934 0.1028 20 0.0010
B0005 100 28 4 9 236 0.2726 24 0.0010
B0006 60 53 2 6 581 0.0459 19 0.0010
B0006 84 58 3 4 419 0.0459 21 0.0006
B0006 100 66 3 2 78 0.0420 21 0.0010
B0007 60 60 4 5 78 0.0320 18 0.0010
B0007 84 64 3 4 101 0.0801 33 0.0010
B0007 100 79 3 3 112 0.0825 25 0.0010

The model parameter settings for the other compared algorithms are listed below. The models
compared in this study are CNN-GRU, CNN-BiGRU, GRU, and BiGRU. The CNN-GRU model is
similar to the CNN-BiGRU structure shown in Figure 3, but it replaces the BiGRU layer with a GRU
layer. In the case of batteries B0005 and B0006, the CNN-GRU model has 128 convolutional kernels
with a size of one and a pooling layer with a size of two, and 120 GRU cells. In contrast, for battery
B0007, the CNN-GRU model predicts 60 different times, and each prediction uses a different set of
hyperparameters. The number of convolutional kernels varies from 32 to 64, while the number of GRU
cells remains constant at 128.

The structure of the GRU model comprises a GRU layer, a dropout layer and a fully connected
layer. The dropout rate for each battery is set to 0.3, and the number of GRU cells varies. For batteries
B0005 and B0006, the GRU model has 150 cells, whereas for battery B0007, it has 200 cells. The
BiGRU model’s structure is similar to that of the GRU model, but with a BiGRU layer instead of the
GRU layer. The number of BiGRU cells varies across batteries: 100 cells for batteries B0005 and
B0006 and 200 cells for battery B0007. In Figures 5 (a) to (i), the capacity prediction results of the
CNN-BiGRU model, along with those of the CNN-GRU, GRU and BiGRU models, are shown for
three batteries. The figures compare the different models’ performance in predicting battery capacity,
which is an essential aspect of battery health management.
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(a) B0005 with prediction starting point
of 60

(b) B0005 with prediction starting point
of 84

(c) B0005 with prediction starting point
of 100

(d) B0006 with prediction starting point
of 60

(e) B0006 with prediction starting point
of 84

(f) B0006 with prediction starting point
of 100

(g) B0007 with prediction starting point
of 60

(h) B0007 with prediction starting point
of 84

(i) B0007 with prediction starting point
of 100

Figure 5. RUL prediction of each model on three types of batteries.

Figures 5 (a) to (i) show that, as the prediction start point increases, the CNN-BiGRU model is closer
to the true value curve than the other three algorithms, indicating that the CNN-BiGRU algorithm has
better battery capacity prediction performance. Tables 9 to 11 list the accuracy tables of the four
algorithms at different prediction start points for three batteries. The tables compare the accuracy of
the different models and demonstrate the performance of the CNN-BiGRU algorithm in predicting
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battery capacity more effectively than the other methods.

The battery prediction results for the CNN-BiGRU, CNN-GRU, GRU, and BiGRU algorithms are
compared in Tables 9 to 11 for three batteries (B0005, B0006 and B0007) at various prediction start
points. It is observed that the CNN-BiGRU algorithm outperforms the other algorithms in all four
evaluation metrics: MAPE, MAE, MSE, and RMSE. Specifically: For battery B0005, the
CNN-BiGRU algorithm exhibits MAPE below 0.84%, with MAE ranging between 0.0095
and 0.0511, held an MSE of 0.02% and an RMSE of 0.0178. The performance of the other
algorithms, including the CNN-GRU, GRU, and BiGRU, was inferior to the CNN-BiGRU algorithm.

For battery B0006, the performance of the CNN-BiGRU algorithm on all four evaluation metrics is
better than those of the CNN-GRU, GRU and BiGRU algorithms. However, it should be noted that the
aging process of the B0006 battery accelerated after reaching the failure threshold, which resulted in a
rapid decrease in capacity and larger prediction errors.

For battery B0007, the CNN-BiGRU algorithm demonstrated MAPE below 0.87%, MAE below
0.0130 , MSE below 0.0343% and RMSE below 0.0185. Again, the CNN-BiGRU algorithm’s
performance on all four evaluation metrics was superior to that of the other algorithms.

Therefore, based on the results of the comparison, the CNN-BiGRU algorithm proves more accurate
in predicting the capacity of lithium-ion batteries than the other four algorithms. Furthermore, the
predicted results of this algorithm are less affected by prediction start point.

Table 9. Capacity prediction result for battery B0005.

Battery Starting point Model MAPE/% MAE MSE/% RMSE

B0005 60

CNN-BiGRU 0.69% 0.0099 0.0200 0.0141
CNN-GRU 1.15% 0.0165 0.0396 0.0199
GRU 1.33% 0.0188 0.0464 0.0215
BIGRU 1.53% 0.0216 0.0006 0.0241

B0005 84

CNN-BiGRU 0.84% 0.0118 0.0003 0.0178
CNN-GRU 3.02% 0.0411 0.2316 0.0481
GRU 0.86% 0.0120 0.0278 0.0167
BIGRU 1.05% 0.0148 0.0439 0.0210

B0005 100

CNN-BiGRU 0.69% 0.0095 0.0199 0.0141
CNN-GRU 1.05% 0.0145 0.0344 0.0185
GRU 0.77% 0.0105 0.0175 0.0132
BIGRU 1.26% 0.0171 0.0337 0.0184
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Table 10. Capacity prediction result for battery B0006.

Battery Starting point Model MAPE/% MAE MSE/% RMSE

B0006 60

CNN-BiGRU 3.23% 0.0420 0.3560 0.0592
CNN-GRU 3.74% 0.0491 0.4185 0.0647
GRU 3.80% 0.0482 0.5271 0.0726
BIGRU 3.24% 0.0422 0.3578 0.0598

B0006 84

CNN-BiGRU 4.02% 0.0511 0.4910 0.0701
CNN-GRU 4.40% 0.0553 0.6239 0.0790
GRU 6.12% 0.0774 0.9690 0.0984
BIGRU 5.52% 0.0698 0.8144 0.0902

B0006 100

CNN-BiGRU 1.57% 0.0204 0.0703 0.0265
CNN-GRU 1.73% 0.0222 0.0772 0.0278
GRU 6.82% 0.0852 1.0754 0.1037
BIGRU 8.20% 0.1034 1.3734 0.1172

Table 11. Capacity prediction result for battery B0007.

Battery Starting point Model MAPE/% MAE MSE/% RMSE

B0007 60

CNN-BiGRU 0.83% 0.0128 0.0317 0.0178
CNN-GRU 1.29% 0.0201 0.0689 0.0263
GRU 0.95% 0.0145 0.0395 0.0199
BIGRU 1.35% 0.0207 0.0644 0.0254

B0007 84

CNN-BiGRU 0.87% 0.0130 0.0343 0.0185
CNN-GRU 1.34% 0.0197 0.0632 0.0251
GRU 1.60% 0.0238 0.0727 0.0270
BIGRU 1.46% 0.0222 0.0707 0.0266

B0007 100

CNN-BiGRU 0.67% 0.0097 0.0156 0.0125
CNN-GRU 2.00% 0.0291 0.1236 0.0352
GRU 1.30% 0.0190 0.0503 0.0224
BIGRU 1.75% 0.0256 0.0790 0.0281

According to the analysis in Table 12, the relative error of the remaining life prediction for lithium-
ion batteries based on the CNN-BiGRU algorithm using the B0005 battery ranged from 0% to 0.81%,
with an absolute error between zero and one. The relative error of RUL prediction based on the CNN-
GRU algorithm ranged from 0.81% to 13.71%with an absolute error between one and 17. Similarly,
based on the GRU algorithm, the relative error of RUL prediction ranged from 1.61% to 13.71% with
an absolute error between two and five. Based on the BiGRU algorithm, the relative error of RUL
prediction ranged from 4.84% to 6.45% with an absolute error between six and eight.
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Table 12. RUL prediction results for battery B0005.

Battery Starting point Model Real life Predicted life Real RUL Predicted RUL AE RE(%)

B0005 60

CNN-BiGRU

124

123

64

63 1 0.81
CNN-GRU 125 65 1 0.81
GRU 128 68 4 3.23
BiGRU 130 70 6 4.84

B0005 84

CNN-BiGRU

124

124

40

40 0 0.00
CNN-GRU 141 57 17 13.71
GRU 126 42 2 1.61
BiGRU 117 33 7 5.65

B0005 100

CNN-BiGRU

124

125

24

25 1 0.81
CNN-GRU 123 23 1 0.81
GRU 129 29 5 4.03
BiGRU 132 32 8 6.45

According to the analysis in Table 13, the relative error of remaining life prediction for the B0006
battery based on the CNN-BiGRU algorithm ranged from 0% to 2.78% with an absolute error
between zero and three. The relative error of RUL prediction based on the CNN-GRU algorithm
ranged from 0.93% to 12.04% with an absolute error between one and 13. Similarly, based on the
GRU algorithm, the relative error of RUL prediction ranged from 7.41% to 18.52% with an absolute
error between eight and 20. Based on the BiGRU algorithm, the relative error of RUL prediction
ranged from 5.56% to 20.37% with an absolute error between six and 22.

Table 13. RUL prediction results for battery B0006.

Battery Starting point Model Real life Predicted life Real RUL Predicted RUL AE RE(%)

B0006 60

CNN-BiGRU

108

108

48

48 0 0.00
CNN-GRU 99 39 9 8.33
GRU 128 68 20 18.52
BiGRU 102 42 6 5.56

B0006 84

CNN-BiGRU

108

107

24

47 1 0.93
CNN-GRU 107 47 1 0.93
GRU 116 56 8 7.41
BiGRU 116 56 8 7.41

B0006 100

CNN-BiGRU

108

111

8

51 3 2.78
CNN-GRU 121 61 13 12.04
GRU 116 56 8 7.41
BiGRU 130 70 22 20.37

According to the analysis in Table 14, the relative error of remaining life prediction for the B0007
battery based on the CNN-BiGRU algorithm ranged from 0% to 2.4%, with an absolute error
between zero and three. The relative error of RUL prediction based on the CNN-GRU algorithm
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ranged from 1.60% to 7.20% with an absolute error between two and nine. Similarly, based on the
GRU algorithm, the relative error of RUL prediction ranged from 3.20% to 7.20% with an absolute
error between four and nine. Based on the BiGRU algorithm, the relative error of RUL prediction
ranged from 5.60% to 8.00% with an absolute error between eight and nine.

Table 14. RUL prediction results for battery B0007.

Battery starting point Model Real life predicted life Real RUL predicted RUL AE RE(%)

B0007 60

CNN-BiGRU

125

122

65

62 3 2.40
CNN-GRU 116 56 9 7.20
GRU 116 56 9 7.20
BiGRU 115 55 10 8.00

B0007 84

CNN-BiGRU

125

127

41

43 2 1.60
CNN-GRU 129 45 4 3.20
GRU 132 48 7 5.60
BiGRU 115 31 10 8.00

B0007 100

CNN-BiGRU

125

125

25

25 0 0.00
CNN-GRU 123 23 2 1.60
GRU 129 29 4 3.20
BiGRU 132 32 7 5.60

In conclusion, when predicting the remaining life of lithium-ion batteries using the CNN-BiGRU
algorithm, this approach is more stable and accurate compared to the GRU, BiGRU or CNN-GRU
algorithms. This also demonstrates the effectiveness of using the CNN method as a battery health factor
for feature extraction, allowing for aging information to be effectively extracted from the battery health
factors. The combination of the BiGRU neural network with forward and backward propagation also
enables the CNN-BiGRU fusion algorithm to achieve higher accuracy in predicting both the capacity
and RUL of the battery.

5. Conclusions

This paper first extracted data from lithium-ion batteries as health factors including the time of
isovoltage discharge, average discharge voltage and average temperature and uses them as predictive
variables for capacity. Subsequently, the Pearson correlation coefficients between these health factors
and capacity were calculated, indicating a high correlation between the three health factors and
discharge capacity. This proved that extracting health factors is effective and prepares for predicting
the remaining service life of the battery. Furthermore, we proposed a CNN-BiGRU-based indirect
prediction model of the remaining service life of lithium-ion batteries and used the TPE adaptive
hyperparameter optimization method to optimize the CNN-BiGRU model’s hyperparameters.
Compared to grid search and manual tuning, the TPE algorithm is more convenient, has a larger
hyperparameter search space and provides better results. The experimental results showed that
compared to the CNN, GRU and BiGRU algorithms, the CNN-BiGRU algorithm optimized by TPE
hyperparameters achieved higher accuracy in predicting the remaining service life of lithium-ion
batteries without requiring manual parameter adjustment.
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This study achieved certain results in predicting the health status and remaining useful life of
lithium-ion batteries, but there are still some shortcomings and room for improvement. Because the
model fusion used in this study is the fusion of two data-driven models, future research can use the
method of fusing physical and data-driven models to study the health status and remaining service life
of lithium-ion batteries and increasing the model’s interpretability. Next, this study did not consider
the impact of environmental temperature on the prediction of battery health status and remaining
service life. Future experiments can be conducted to analyze temperature’s effect on lithium-ion
batteries.
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32. Yalçın S, Panchal S, Herdem MS (2022) A cnn-abc model for estimation and optimization of heat
generation rate and voltage distributions of lithium-ion batteries for electric vehicles. Int J Heat
Mass Transfer 199: 123486. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123486

AIMS Energy Volume 11, Issue 5, 896–917.



917

33. Wang F, Zhao Z, Ren J, et al. (2022) A transferable lithium-ion battery remaining useful life
prediction method from cycle-consistency of degradation trend. J Power Sources 521: 230975.
https://doi.org/10.1016/j.jpowsour.2022.230975

34. Chen D, Zheng X, Chen C, et al. (2022) Remaining useful life prediction of the lithium-ion battery
based on cnn-lstm fusion model and grey relational analysis. Electron Res Arch 31: 633–655.
https://doi.org/10.1177/01423312221114506

35. Xia M, Zheng X, Imran M, et al. (2020) Data-driven prognosis method using hybrid deep recurrent
neural network. Appl Soft Computing 93: 106351. https://doi.org/10.1016/j.asoc.2020.106351

36. Yao F, He W, Wu Y, et al. (2022) Remaining useful life prediction of lithium-ion batteries using a
hybrid model. Energy 248: 123622. https://doi.org/10.1016/j.energy.2022.123622

37. Zhou W, Lu Q, Zheng Y (2022) Review on the selection of health indicator for lithium ion batteries.
Mach 10: 512. https://doi.org/10.3390/machines10070512

38. Xu H, Peng Y, Su L (2018) Health state estimation method of lithium ion battery based
on nasa experimental data set. IOP Conference Series: Materials Science and Engineering
https://doi.org/10.1088/1757-899X/452/3/032067

39. Wu W, Lu S (2023) Remaining useful life prediction of lithium-ion batteries
based on data preprocessing and improved elm. IEEE Trans Instrum Meas
https://doi.org/10.1109/TIM.2023.3267362

40. Chen L, Zhang Y, Zheng Y, et al. (2020) Remaining useful life prediction of lithium-ion battery
with optimal input sequence selection and error compensation. Neurocomput 414: 245–254.
https://doi.org/10.1016/j.neucom.2020.07.081

41. Bischl B, Binder M, Lang M, et al. (2023) Hyperparameter optimization: Foundations, algorithms,
best practices, and open challenges. Wiley Interdiscip Rev: Data Min Knowl Discovery 13: e1484.
https://doi.org/10.1002/widm.1484

42. Ioannou G, Tagaris T, Stafylopatis A (2023) Adalip: An adaptive learning rate method per layer
for stochastic optimization. Neural Process Lett 2023: 1-28. https://doi.org/10.1007/s11063-022-
11140-w

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Energy Volume 11, Issue 5, 896–917.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Problem statement of RUL prediction of lithium-ion batteries
	The problem of RUL prediction of lithium-ion batteries
	Data set

	Indirect RUL prediction model for lithium-ion batteries based on CNN-BiGRU
	Extraction of health factors for lithium-ion batteries
	The fusion model of CNN-BiGRU

	Experiment
	Model evaluation metrics
	TPE hyperparameter optimization algorithm
	Result and analysis

	Conclusions

