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Abstract: Internal combustion engines (ICE) play a major role in converting the energy with its 

different types in order to benefit from it for various applications such as transportation, energy 

generation, and many others applications. Internal combustion engines use two main types of operation 

cycles, namely the Otto and Diesel cycles. Many development processes are carried out to improve the 

efficiency of the ICE nowadays such as working on the design of the combustion engine and the 

material selections and others. One of the main parameters which play an important role in 

improving the diesel engine is the fuel pressure. By increasing the fuel pressure injected into the 

engine, the efficiency, in consequence, will increase. This work investigates the injection pressure 

of the fuel (Diesel) and studies the effect of these changes on engine efficiency. It was found that the 

increase in injection pressure significantly affected the improvement in engine performance. Such 

improved engine subsystems will have a great impact on the energy extracted and used for various 

engineering applications. 
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1. Introduction 

Combustion engines are major energy converters. As they convert the chemical energy stored in 

different types of fuel into thermal energy after direct and indirect combustion, then into mechanical 

energy. Converted energy is used in various engineering applications like transport with its different 

types and other different applications [1–3]. Combustion engines can be classified into different 

classifications based on a set of bases upon which it depends, the most important of which is the 

combustion site. Combustion engines can be categorized according to the location of combustion in 

external and internal combustion engines [4–6]. The engine that burns the fuel out and then transfers 

the energy to it is called the external combustion engine. The engine that burns the fuel inside it and 

benefits directly from it is called the internal combustion engine [7–11]. 

Combustion engines are regarded as the foundation of processes to benefit from different energy 

applications of different types, both traditional and renewable. The engine input comes from different 

sources, but by using the engine the end product is achieved which is mechanical energy [12,13]. 

Internal combustion engines are considered the most popular nowadays because of their 

efficiency and ease of handling. These engines rely on various heat cycles, the best known of which 

are the Otto and Diesel cycles [14–16]. The difference in thermal cycles in the internal combustion 

engines is fundamental and depends on the type of fuel types used [17–21]. The primary fuel of the 

Otto cycle is gasoline and the diesel cycle is diesel fuel [22]. The difference in the type of fuel used is 

the main reason for the difference in the installation and design of the engine. It's because each kind 

of fuel has its own nature [23–27]. 

In the development processes of combustion engines, including internal combustion engines. 

Many researchers around the world have done research on this topic such as, Jafari [28] who concerns 

about developing an active thermo atmospheric combustion. Negoro et al. [29] study the development 

of Toyota cars by improving the control of the combustion to be an auto-ignition that ensures more 

stability inside the engines. Doppalapudi et al. [30] studied the effect of the thermal stresses on parts 

of the engines such as the piston, connecting rods, and the pin. Where they found that the pressure on 

the engine pistons of the engine plays an important role in transforming the engine load from the 

combustion chamber. Which is located inside the cylinder connected to the crankshaft of the engine 

through the connecting rod. 

Depending on the type of fuel used, this has an impact on the design of the engine [1,31–33]. The 

gasoline engine uses the spark plug to finish the combustion of the used fuel and thus complete the engine 

cycles and benefit from it [34–38]. In the case of the diesel engine, it adopts the self-combustion 

system. Results from increased the fuel pressure after pumping it through a sprayer until it reaches 

a point where the direct combustion condition is met. Thus completing the cycle and taking 

advantage of it [39–42]. 

Diesel engines are a major type of engines used nowadays. Due to their great advantages in 

various engineering areas, they provide high efficiency, and an ideal capability to complete various 

engineering operations.  One of the most important of these applications is the transportation of various 

types, either by land or marine [43–45]. Diesel engines are also used in energy generation, as 

conventional electric generators use diesel engines due to their durability [46,47]. Diesel engines are 

considered to be energy efficient. As their fuel consumption depends on the amount of load it performs 

which is considered less fuel consumption compared with other types of engines [48–52]. Diesel 

engines are also considered to be one of the safest engines, due to the difficulty of igniting diesel 
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compared to other types of fuel that are used in engines. One of the advantages of using diesel engines 

is that they produce more torque than other engines at lower rpm levels [53,54]. 

Since diesel engines were invented until now. The science of engines in general and diesel engines, 

in particular, has been extensively developed and improved to increase the efficiency of these engines. 

The developments that the engines have encountered are: the development of the shapes and designs 

of the combustion chambers, the surfaces of the engine cylinders, and the materials from which the 

engine is made with its different parts [55–60]. Beside the developments that occurred in the engine 

itself. It was accompanied by a series of improvements and developments in the auxiliary systems of 

the engine. Which led to the development of the engine's efficiency. These systems include cooling, 

lubricating, fueling, etc. [61–63]. 

Diesel engines operate within high altitude zone, where the air pressure and density gradually 

decrease with increasing in altitude. As a result, diesel engines are injected with less air during the 

intake stroke, causing a decrease in the efficiency of the diesel engine [64]. The turbocharger came as 

a solution to this issue, as the efficiency of using the turbocharger has been studied by many researchers 

around the world. Using a turbocharger is not easy because it requires much equipment and most 

medium and small diesel engines are not equipped with such technology [65–68]. A proposed solution 

to these problems is the use of different types of fuels in diesel engines, such as oils of various types 

and other types of fuel which may operate under these operating conditions. [69–73]. 

In this work, the effect of changing the pressure of the diesel injected into the engine has been 

investigated. To investigate the effect of pressure modification on engine performance.  It was found 

that by increasing the diesel fuel injection pressure significantly improved engine performance.  Where 

the used pressure in the first case was less than 500 bar, the second case a pressure between 500 and 800 

bar, the third case pressure within 800 to 1000, and the last case a pressure higher than 1000 bar. 

2. Theoretical background  

 

Figure 1. The P-V, and T-S diagrams of diesel cycle (A,B) respectively. 

Rudolf diesel in 1892 introduced the diesel cycle as an internal combustion engine compression 

cycle. Figure 1 shows the P-V and T-S diagrams (A, B) respectively. A diesel cycle consists of two 

isentropic processes where the entropy is constant, a process with constant pressure, and a constant 
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volume process. The 1–2 as well as 3–4 processes are isentropic processes, the 2–3 process is a constant 

pressure process, and the 4–1 is a constant volume process [74,75]. 

The heat input and output inside the diesel cycle can be calculated using Eqs 1 and 2 as following: 

                                                      𝑄 = 𝑚. 𝐶𝑝. (𝑇3 − 𝑇2)                                                                     (1) 

                                                      𝑄 = 𝑚. 𝐶𝑣. (𝑇4 − 𝑇1)                                                                      (2) 

The thermal efficiency of the diesel cycle can be calculated by the Eq 3. 

                                     𝜂 = 1 −  
𝑚.𝐶𝑣.(𝑇4−𝑇1)

𝑚.𝐶𝑝.(𝑇3−𝑇2)
      = 1 −  

1

𝛾
.

(𝑇4−𝑇1)

(𝑇3−𝑇2)
                                                        (3) 

The engine piston geometry is shown in Figure 2, which shows the top and bottom dead center 

pointes. Where the piston is moved within the different strokes of the engine cycle which are: the 

intake, the compression, the expansion, and the exhaust. In the illustration below the engine geometry 

can be studied.   

 

Figure 2. Geometry of the engine piston. 

                                           𝑠𝑖𝑛∅ =
𝑎

𝐿
. 𝑠𝑖𝑛𝜃                                                                                         (4) 

                                         𝑐𝑜𝑠∅ = √1 − 𝑠𝑖𝑛2∅                                                                                   (5) 

                                          𝑐𝑜𝑠∅ = √1 −
𝑎2

𝐿2
𝑠𝑖𝑛2𝜃                                                                              (6) 

The distance between the crank axis and the wrist pin axis (S) is given by: 

                                          𝑠 = 𝑎. 𝑐𝑜𝑠𝜃 + √𝐿2 − 𝑎2. 𝑠𝑖𝑛2𝜃                                                                 (7) 

Where the piston displacement from the TDC is given by: 

                                         𝑠 = 𝑎. 𝑐𝑜𝑠𝜃 + √𝐿2 − 𝑎2. 𝑠𝑖𝑛2𝜃                                                                  (8) 

Instantaneous piston speed is given by:  
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                                      𝑈𝑝 = 2𝜋𝑁 [𝑎. 𝑠𝑖𝑛𝜃 +  
𝑎2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

√𝐿2−𝑎2𝑠𝑖𝑛2𝜃
]                                                               (9) 

Mean piston speed is given by: 

                                       
𝑈𝑝

𝑈𝑝̅̅ ̅̅
=

𝜋

𝐿
𝑠𝑖𝑛𝜃 [1 +

𝑐𝑜𝑠𝜃

√𝑅2−𝑠𝑖𝑛2𝜃
]                                                                       (10) 

The power generated within the engine cylinder is referred to as indicated power. Whereas the 

real available power is called brake power. The difference between the indicated and breaking power 

is called the friction power. Overall, the mean effective engine pressure using the diesel cycle increases 

as the initial pressure increases.   

3. Results and discussion  

For the purposes of the present study, a four-stroke diesel engine was selected. The engine has 4 

cylinders with an inline framework cooled by liquid water. The bore diameter is 160 mm, the piston 

travel is 190 mm, the engine reveal is 300 rpm, and the compression ratio is 25. The ambient conditions 

related to this study are 1 bar atmospheric pressure, and 288 K as a normal temperature. The purpose 

of the study was to study the impact of diesel fuel injection pressure on engine efficiency. Where the 

selected pressure is below 500, 500–800, 800–1000, and above 1000 bar for each test. At each injection 

pressure change, the engine performance parameter is examined and listed below. 

The environment parameters of this study are fixed at the variable state of the injector pressure. 

As the static atmosphere pressure on the sea level is equal to 1 bar with a temperature of 288 K. The 

static ambient pressure and temperature are 1 bar and 288 K respectively. The exhaust backpressure is 

equal to 1 bar with the entire pressure of the injector selected. And the overall pressure after the 

induction air filter with a fixed value of 0.98 bar.   

Figure 3 shows the parameters of the efficiency and power of the selected diesel engine in this 

study. There was a significant increase in piston engine power. As the injector pressure selected 

ranges from 91.8 kW at the injector pressure of less than 500 bar to 130.5 kW at the injector pressure 

of more than 1000 bar (See Figure 3A). The brake means effective pressure as well as the brake torque 

increase with the increase of the injector pressure (See Figure 3A).  

The mass of fuel provided per cycle, specific fuel consumption, and specific fuel consumption 

in ISO are reduced. As the injector pressure increases where the values of the previous parameters 

are 0.127, 0.126, 0.126, and 0.126 g, 0.498, 0.376, 0.357, and 0.348 kg/kWh, and 0.50, 0.378, 0.358, 

and 0.349 kg/kWh respectively (See Figure 3B).  

The efficiency of the piston engine, the indicated mean effective pressure, and the indicated 

efficiency increase significantly with the injector pressure increase as the maximum values of the 

specified parameters are 0.24, 6.8, and 0.48 respectively (See Figure 3C). 

The friction means effective pressure as well as the mechanical efficiency of the piston engine 

are increased with the increasing of the injector pressure. The mean piston speed is remains constant 

with a value of 19 m/s with the increase in the injector pressure (See Figure 3D).  
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Figure 3. The parameters of efficiency and power. Piston engine power, and brake mean 

effective pressure, and the brake torque (A), the mass of fuel supplied per cycle, the 

specific fuel consumption, and the specific fuel consumption in ISO (B), the efficiency of 

the piston engine, the indicated mean effective pressure, and the indicated efficiency (C), 

and the mean piston speed, the friction means effective pressure, and the mechanical 

efficiency of the piston engine (D). 

Table 1 presents the parameters of the selected engine inlet and exhaust system based on the 

variation in injector pressure. There was a slight increase in the mean inlet manifold temperature and the 

mean inlet manifold wall temperature with the increase in the injector pressure as the minimum value 

was 291.5, and 297.5 K at less than 500 bar injector pressure and 292, and 298 K at more than 1000 bar 

injector pressure respectively. A number of inlet system parameters decrease slightly as the injector 

pressure increases. For example, the average velocity of gases in the intake manifold, the heat transfer 

coefficient in the intake manifold, and the heat transfer coefficient in the intake port. The maximum 

speed in a central section of the inlet port and the total area of the effective valve port gorge remains 

constant during the injector pressure change. The average exhaust manifold gas temperature as well as 

the average exhaust manifold wall temperature decreased with the increase of the injector pressure. A 

small decree occurs at some exhaust parameters as the injector pressure increases. These include the 

Strouhal number, the maximum speed in the mid-section of the exhaust port, and the heat transfer 

coefficient in the exhaust manifold. The entire effective valve port throat area remains constant with 

the increase in injector pressure. 
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Table 1. Intake and exhaust parameters.  
In

ta
k

e 
sy

st
em

 

Parameter Symbol 
Injector Pressure, bar 

Less than 500 500–800 800–1000 More than 1000 

Average intake manifold 

temperature, K 
T_int 291.5 291.9 292.1 292 

Average gas velocity in 

intake manifold, m/s 
v_int 48.45 48.3 48.2 48.2 

Average intake manifold 

wall temperature, K 
Tw_int 297.5 297.9 298.1 298 

Heat transfer Coeff. in 

intake manifold, 

W/(m2*K) 

hc_int 71.1 70.8 70.6 70.5 

Heat transfer Coeff. in 

intake port, W/(m2*K) 
hc_int.p 301 300 299.8 299.3 

Max velocity in a middle 

section of Int. Port, m/s 
v_int.p 95 95 95 95 

Total effective valve port 

throat area, cm2 
A_v.thrt 20.9 20.9 20.9 20.9 

E
x
h

a
u

st
 S

y
st

em
 

Average exhaust 

manifold gas 

temperature, K 

T_exh 909.2 851.9 823.8 805.5 

Average gas velocity in 

exhaust manifold, m/s 
v_exh 79.4 75.2 72.9 71.7 

Strouhal number: Sh = 

a*Tau/L (has to be: Sh > 

8) 

Sh 10 9.7 9.58 9.4 

Average exhaust 

manifold wall 

temperature, K 

Tw_exh 827.2 773.9 749.5 733.6 

Heat transfer Coeff. in 

exhaust manifold, 

W/(m2*K) 

hc_exh 215.5 210.2 207.9 206.7 

Heat transfer Coeff. in 

exhaust port, W/(m2*K) 
hc_exh.p 955.9 932.5 922.7 917.2 

Max velocity in a middle 

section of Exh. Port, m/s 
v_exh.p 145 140 137 134.9 

Total effective valve port 

throat area, cm2 
A_v.thrt 19.9 19.9 19.9 19.9 

The average inlet manifold pressure and the average exhaust manifold pressure remain constant 

at 0.96 and 1.04 bar as the injector pressure increases respectively. This provides an indication of the 

stability of the firing process inside the selected engine with the pressure variation of the injector. 

Figure 4 shows the combustion parameters of the selected engine of the study with the variation 

of the injector pressure. The maximum cylinder temperature and pressure inside the engine increased 

from 1473.2 K, 81.2 bar at less than 500 bar injector pressure to 1805.2 K, 99 bar at more than 1000 

bar respectively. Therefore, the engine combustion is enhanced by increasing the injector pressure (See 

Figure 4A). The maximum cylinder pressure angle remains constant at a value of 2 degrees as the 

pressure of the injector increases. During this time, the maximum temperature angle decreased as the 

injector pressure increased. Values were 26, 21, 18, and 17 degrees respectively with the chosen 

injector pressure values shown in Figure 4A. The maximum pressure rate rises sharply with the 

increase of the injector pressure (See Figure 4A). The maximum gas force acting on the engine piston 

and the maximum suction pressure increased with the increase in the injector pressure (See figure 4B). 
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The result indicates that engine performance is enhanced by increased injector pressure. Because the 

combustion temperature has increased in value each time. 

   

Figure 4. Max cylinder temperature, pressure, angle of Max. cylinder pressure, 

temperature, and Max rate of pressure rising (A), and Max. gas force acting on the piston, 

and suction injection pressure (B).    

 

Figure 5. The ecological parameters of the selected engine. 
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Figure 5 shows the ecological parameters of the engine chosen for the study with the injection 

pressure variation. The engine smoke level, the specific particulate emissions, the specific carbon 

dioxide emissions, and the synthetic NOx emissions decrease considerably with the increase in injector 

pressure. The maximum reported parameter values are 72.3, 4.25, 1605.6, and 15 at the injector 

minimum pressure (i.e., less than 500 bar) respectively. Minimum values are 34, 1.4, 1122, and 7 at 

maximum injector pressure (i.e., higher than 1000 bar). 

Table 2 shows the heat exchange parameter of the selected engine of the study with the variation 

of the injector pressure. The average equivalent temperature of the cycle, the average factor of heat 

transfers in the cylinder, and the average piston crown temperature are sharply increasing with the 

increase of the injector pressure as the average equivalent temperature of the cycle started to increase 

with the following values: 1020.4, 1088.4, 1118, and 1136.6 K respectively. The average factor of 

the heat transfers in the cylinder started to increase with the following values 449.7, 474.6, 485.68, 

and 495.09 W/m2. K respectively. The average piston crown temperature started to increase with the 

following values 524.47, 543.74, 552.21, and 558.46 K respectively. The average cylinder liner 

temperature, and the boiling temperature in the liquid cooling system remain constant with the 

variation of the injector pressure at a value of 405, and 398 respectively. The rest of the heat exchange 

parameters are the average head wall temperature, the average temperature of cooled surface head of 

cylinder head, the average factor of heat transfers from head cooled surface to coolant, the heat flow 

in a cylinder head, the heat flow in a piston crown, and the heat flow in a cylinder liner are sharply 

increased with the increase of the injector pressure. The heat exchange parameters show an 

enhancement in the performance of the selected engine which reflects a result that indicates an increase 

of the injector pressure will enhance the engine performance with the same amount of the supplied 

fuel. This will result in more energy being used from the fuel energy supplied to the engine and less 

engine losses.  

Table 2. Heat exchange parameters.  

Parameter Symbol 
Injector pressure, bar 

Less than 500 500–800 800–1000 More than 1000 

Average equivalent temperature of cycle, K T_eq 1020.4 1088.4 1118 1136.6 

Aver. factor of heat transfer in Cyl., W/m2, K hc_c 449.7 474.6 485.7 495.1 

Average piston crown temperature, K Tw_pist 524.4 543.7 552.2 558.5 

Average cylinder liner temperature, K Tw_liner 405 405 405 405 

Average head wall temperature, K Tw_head 477 494.3 502 507.7 

Average temperature of cooled surface head 

of cylinder head, K 
Tw_cool 378.2 379.9 381.2 381.8 

Boiling Temp. in liquid cooling system, K Tboil 398 398 398 398 

Average factor of heat transfer, W/(m2*K) 

from head cooled surface to coolant                      
hc_cool 9826.1 10337 10670 10841 

Heat flow in a cylinder head, J/s q_head 4915.5 5668.6 6014.7 6260.7 

Heat flow in a piston crown, J/s q_pist 4484.2 5196.9 5524.7 5755.1 

Heat flow in a cylinder liner, J/s q_liner 5704.9 5408.2 5195.6 5035 

4. Conclusions  

This study highlights the effect of the injection pressure increase on the engine to complete the 

ignition cycle and examines the impact of this increase on engine performance. All performance 

parameters were observed to be affected by the increase in injector pressure. Consequently, the engine's 

performance improved. 
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The compression stroke temperature was increased sharply with the increase of the injector 

pressure as the temperature for the four trials was 1092, 1097, 1099, and 1101 K for the injector 

pressure of less than 500, 500–800, 800–1000, and more than 1000 respectively. Temperature rise is 

an indicator of the performance improvement of the engine selected in this study. 

The increase of the injector pressure aids in enhancement on the emission that comes out of the 

engine during the operation as the amount of the carbon dioxide, SOx, and NOx are sharply decreased 

by increasing the injector pressure. It is noted that the increase in the injector pressure enhanced the 

heat exchange inside the engine as the coefficients of the heat transfer inside the engine affected 

positively by that increment in the injector pressure.  

The exhaust parameter reflects an improvement in engine performance as all exhaust parameters 

demonstrate a positive impact on engine performance. As a result of that, the average exhaust manifold 

gas temperature sharply decreased from 909 to 805 K in this study, which is an indicator of the 

enhancement that occurred to the engine. 

Such investigation will aid in improving the performance of the internal combustion engines by 

highlighting the points where the development can perform and expand to affect the design of the 

engine to face the new needs. 
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