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Abstract: Despite the increase in electric mobility, fossil fuels still dominate the transport sector. For 
a sustainable management of these fuels, environmental policy plays a significant role. It is key to 
know if higher taxes are effective to moderate demand, which will depend on demand elasticities. 
While price elasticities determine the effectiveness of higher taxes, income elasticities are important 
for macroeconomic policy considerations. Furthermore, in dynamic societies and economies, it is 
possible that elasticities change over time or as a response to certain events, determining the need to 
adjust policies. We study the case of a small, open economy, highly dependent on fuel imports: 
Portugal. Our estimation of price and income elasticities for gasoline and diesel demand control for 
breakpoints and uses a dynamic perspective. The period covered (1995–2015) includes important 
macroeconomic events, such as the fuel market liberalization and a severe economic crisis. Results for 
the whole period show that long-run price elasticities are −0.368 for diesel and −0.911 for gasoline. 
Hence, taxes are more effective to moderate gasoline demand than diesel demand. Long-run income 
elasticities are 2.338 for diesel and 0.877 for gasoline, demonstrating the strong dependence of diesel 
consumption on the level of economic activity. The breakpoint analysis indicates that contrarily to the 
fuel market liberalization process, the economic crisis impacted elasticities. Furthermore, we find 
variability in elasticities around the period of the economic crisis, which justifies the need for a flexible 
policy. Dynamic policies can use specific periods as opportunities to promote technical and behavioral 
desirable changes.  
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1. Introduction 

Fuel demand increased greatly over the last decades due to factors such as continuous economic 
growth, global integration leading to higher transportation needs, and increased access to private 
cars. Despite the recent increase in electric mobility, traditional fuels are expected to dominate at 
least until 2050 [1] which raises environmental concerns. To mitigate climate change, the need to 
reduce fuel consumption, namely for road transport, remains unquestionable. Hence, governments 
worldwide continue to implement policies to efficiently manage fuel demand. To design environmental 
policy, it is vital to properly understand fuel demand determinants, namely its response to price and 
income changes, and its variability over time. 

The study of fuel demand responses to price and income changes has been common in the 
literature, especially after the 1970's oil crisis. The abundance of studies induced surveys and meta-
analysis to understand different results (e.g., [2–5]). The fact that estimates for price and income 
elasticities of fuel demand vary according to the methodology used, the country under analysis, the 
period covered, the variables included in the model, among other aspects [4], makes the process of 
understanding fuel demand harder and often country specific. Hence, the determinants of fuel demand 
are still poorly understood [6].  

An important distinctive aspect in the literature is the type of fuel under analysis. Generally, diesel 
demand is less sensitive to price changes and more sensitive to income changes than gasoline 
consumption since this fuel is used both for domestic and freight transport purposes [7]. As referred 
by Frondel and Vance [8], most existing studies focus on gasoline demand (e.g., [9–14]). However, 
the increasing share of diesel-powered passenger cars [9] encouraged authors to also consider diesel 
demand in their analysis (e.g., [7,15–17]). Table 1 provides a summary of selected relevant studies in 
the literature.
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Table 1. Selected studies of the literature. 

Reference Fuel type Country Period Method 
Price elasticity Income elasticity 

Short-run Long-run Short-run Long-run

[7] 

Gasoline, 

diesel and 

jet fuel 

South 

Africa 

1982–
2010—

quarterly 

data

ARDL model  

[−0.44; −0.59] for 

gasoline; −0.21 for 

diesel 

 
[0.62; 0.82] for gasoline; 1.56 

for diesel 

[9] Gasoline 

14 

European 

countries 

1990–2004 

Several 

dynamic panel 

methods

[−0.029; −0.19] [−0.314; −0.84] [0.036; 0.155] [0.166; 0.614] 

[10] Gasoline 
South 

Africa 
1978–2005 

ARDL bound 

testing and 

cointegration

 −0.47  0.36 

[12] 
Gasoline and 

total fuel 

Switzerla

nd 

1970–
2008—

quarterly 

data

Cointegration 

−0.092 for 

gasoline; −0.082 

for total fuel 

−0.339 for gasoline; 

−0.267 for total fuel 

0.025 for 

gasoline; 0.103 

for total fuel 

0.673 for gasoline; 0.755 for 

total fuel 

[13] Gasoline Brazil 1974–1999 Cointegration −0.092 −0.465 0.122 0.122

[14] Gasoline China  1980–1999 

Cointegration 

and error 

correction

−0.19 −0.56 1.64 0.97 

[15] 

Gasoline, 

diesel and 

total fuel 

Spain 2000–2007 
Several 

methods 

−0.264 for 

gasoline; [−0.231; 

−0.243] for diesel

[−0.558; −0.815] for 

gasoline; [−0.88; 

−1.667] for diesel 

[0.058; 0.069] 

for gasoline; 

[0.217; 0.3] for 

diesel

[0.122; 0.228] for gasoline; 

[1.086; 1.564] for diesel 

[16] 
Gasoline and 

diesel  
Spain 1998–2006 

Several 

dynamic panel 

methods

 

[−0.292; −0.417] for 

gasoline; [−0.027; 

−0.083] for diesel

 Non-significant variable 

Continued on next page 
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Reference Fuel type Country Period Method 
Price elasticity Income elasticity 

Short-run Long-run Short-run Long-run

[17] 
Gasoline and 

diesel 
Spain 1999–2015 

Several 

methods 

[−0; −0.067] for 

gasoline; [−0.015; 

−0.071] for diesel

[−0; −0.191] for 

gasoline; [−0.043; 

−0.203] for diesel 

[0.015; 0.257] 

for gasoline; 

[0.018; 0.318] 

for diesel

[0.043; 0.734] for gasoline; 

[0.051; 0.91] for diesel 

[19] Gasoline Lebanon 

2000–
2010—

monthly data

Cointegration 

techniques 
[−0.258; −0.623]  [0.309; 0.815]  

Furthermore, a flexible policy design requires understanding how demand responses change over time. Price and income elasticities may 
react to specific events by presenting structural breakpoints in the long-run [17]. This can happen due to an economic crisis, or even due to 
unexpectable events such as the recent COVID-19 situation. Even though these breaks have deep policy implications and often require policy 
updates and adjustments, only few studies acknowledge elasticities fluctuations over time [5]. Regarding the existence of breakpoints, mixed 
results appear in the literature. For example, Bentzen and Engsted [18] found no structural breakpoint on energy demand due to the 1973–74 oil 
shock in Denmark. Bakhat et al. [17] realized that the 2008 economic crises in Spain resulted in a slight increase in price elasticities and a slight 
decrease in income elasticities for gasoline and diesel demand. Some authors searched for endogenous breakpoints in data, e.g, Boshoff [7] for 
South Africa and Ben Sita et al. [19] for Lebanon. Both authors found that breakpoints existed and their inclusion improved model adjustments. 
Mixing the two approaches, Baranzini and Weber [12] tested the data for endogenous structural breakpoints and studied the impacts of the oil 
shocks and changes in the mineral oil tax. The authors concluded that those events created breakpoints in elasticities. Hughes et al. [20] investigated 
the existence of a shift in short-run elasticities of gasoline demand for the U.S., because of specific events. Without testing for structural break 
points, the authors contrasted estimations for the periods 1975–1980 and 2001–2006. Results showed that price elasticity was significantly different 
for the two periods while income elasticities was not. Rare studies implemented methodologies to test for time-varying elasticities. Exceptions 
include Park and Zhao [11] and Neto [21] which both focused on gasoline. Park and Zhao [11] used a cointegration regression and found evidence 
of time-varying price and income elasticities of gasoline demand in the U.S. for the period 1976–2008. Neto [21] used a methodology based on 
Chebyshev time polynomials with quarterly data from 1973 to 2010 and found time varying gasoline demand elasticities for Switzerland.
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Our contribution to the literature is twofold. Firstly, we study the dynamic behavior of both 
gasoline and diesel demand elasticities, combining structural breakpoint analysis and estimation of 
time-varying elasticities with the rolling windows methodology. We focus on the impacts of relevant 
events (the fuel market liberalization and the economic crisis) providing a breakpoint analysis and 
time-varying estimations of elasticities. To the best of our knowledge, this is the first study covering 
the dynamic behavior of both gasoline and diesel demand elasticities. The methodology used can be 
extended to other case studies. Secondly, we provide updated estimates of price and income gasoline 
elasticities for Portugal, and the first estimations for diesel demand elasticities. Fuel elasticities were 
rarely calculated for Portugal. The two exceptions are Sterner et al. [22] and Sterner [23]. The case of 
a small, open economy, totally dependent on fuel imports is relevant due to regional specificities [17]. 
Focusing on periods of change, such as economic crises and fuel market liberalization can be relevant, 
not only for the country under analysis, but also for other similar countries and for other events such 
as the unexpected COVID-19 crisis. Hence, our results intend to shed some light into the desired 
temporal evolution of policy instruments, such as fuel taxes, which can be applied to any country 
experiencing periods of macroeconomic change.  

The remaining of the paper is organized as follows: after this Introduction, Section 2 presents the 
data and the model used in our study, Section 3 depicts our main results, and finally, Section 4 
concludes the article and provides some policy implications. 

2. Material and methods 

2.1. The Portuguese case 

Portugal is 100 per cent dependent on transport fuel imports despite its fragile economic situation. 
It has one of the highest levels of fuel taxes in Europe despite its low economic growth and average 
income levels [23]. Commercial road transport is vital due to its peripheral location in the Iberian 
Peninsula and limitations of alternative transport means. Hence, the number of commercial vehicles 
increased from 152000 in 1974 to 1313219 in 2015, while the number of passenger vehicles increased 
from 692000 in 1974 to 5970710 in 2015 (National Statistics Institute—INE)1. This can be partly 
explained by the weak public transportation network. Furthermore, an increasing share of the private 
fleet works on diesel, which is referred in the literature as the ‘dieselization’ process [9,16]. According 
to the Automobile Association of Portugal (ACAP), regarding passenger vehicle sales, the diesel 
share increased from 45.6% in 2003 to 67.5% in 2015, while the gasoline share decreased from 54.3% 
to 29.8% in the same period. The share of other types of vehicles (LPG, hybrid and electric) increased 
from 0.1% in 2003 to 2.7% in 2015.  

Over the last decades, Portugal faced important macroeconomic changes. The fuel market 
liberalization process was concluded on the 1st of January 2004. As a result, the maximum retail price 
for fuels was eliminated. Sellers could set their prices freely, despite the obligation to communicate 
weekly average prices to the General Direction of Energy and Geology (DGEG). Additionally, new 
commercial retailers entered the fuel market. This liberalization process occurred in many European 
countries, but its effect on consumers' behavior has never been studied in detail. Additionally, Portugal 
faced a critical budgetary imbalance and a severe economic crisis, with the financial intervention of 

 
1 https://www.ine.pt/xportal/xmain?xpgid=ine_main&xpid=INE&xlang=pt 
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the European Commission, the Central European Bank, and the International Monetary Fund. This 
intervention was also designated Troika intervention. It started in 2011 and finished in 2013. During 
this period, Portugal received financial support from the three designated institutions and as a 
counterpart the country had to comply with several restrictive policies following a fiscal contraction 
and structural reforms. To the best of our knowledge, the impact of all these economic phases in fuel 
demand responses has never been studied for Portugal. 

2.2. Data 

We use data on gasoline and diesel consumption per capita (tons), Real Gross Domestic 
Product (GDP) per capita (€), and fuel real prices (€). Fuel consumption and prices were from DGEG, 
while GDP data was from INE. We cover a long period, 1995–2015, where important behavioral and 
technological changes occurred. We use quarterly data, which allows capturing short-term variations 
and faster speed of adjustment to shocks [7,12,19]. Figure 1 depicts the variables related to gasoline 
and diesel consumption. It is visible that gasoline consumption decreased over the years, while diesel 
consumption slightly increased. Gasoline prices are higher than diesel prices, but present similar 
fluctuations. 

 

 

Figure 1. Diesel and gasoline consumption (tons), diesel and gasoline price (€). 
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The descriptive statistics of the real fuel prices, real income and fuel consumption per capita are 
presented in Table 2. 

Table 2. Descriptive statistics. 

Variable N. of observations Mean Max Min. Std. dev. 

diesel p.c. (tons) 80 0.1045 0.1197 0.0750 0.0127 

gasoline p.c. (tons) 80 0.0403 0.05359 0.0256 0.0092 

diesel pr. (€) 80 1.0635 1.4635 0.7648 0.2288 

gasoline pr. (€) 80 1.3329 1.6632 1.1010 0.1735 

gdp p.c. (€) 80 4037.7 4385.8 3366.2 243.19 

From Table 2, it is visible that diesel consumption per capita is higher than gasoline consumption 
per capita, which relates to its commercial use. Additionally, diesel prices are lower (mainly due to 
lower taxation), which has contributed to the ‘dieselization’ process. GDP per capita is relatively low 
in average terms and does not show a large interval between its minimum and maximum. 

2.3. Model 

To study price and income elasticities of fuel demand, we adopt the Autoregressive Distributed 
Lag Model (ARDL) proposed by Pesaran and Shin [24], Pesaran et al. [25]. This methodology has also 
been used in, e.g., Boshoff [7], Akinboade et al. [10]. The ARDL (𝑛 , 𝑛 , 𝑛 ) model is generally 
defined as follows: 

𝑞 , 𝑎  ∑ 𝛾
,

𝑞 ,   ∑ 𝛾
,

𝑝  ∑ 𝛾 𝑧  𝜖                (1) 

where t is the time subscript, 𝑞 ,  stands for fuels consumption where the subscript i can be g for 
gasoline or d diesel, p is fuel price and z is GDP. 𝑎  is the constant term, 𝛾

,
 are the coefficients for 

the lags of the consumption variable, 𝛾
,
 and 𝛾  are the coefficients for the lags of prices and GDP, 

respectively. The residuals, 𝜖 , are assumed to be spherically distributed and white noise. The lag orders 
𝑛 , 𝑛  and 𝑛  are obtained using an information criteria (either the Akaike (AIC) or Bayesian (BIC)). 

The model is reparametrized in a conditional error-correction representation: 

             Δ𝑞 , 𝑎 𝜑 𝑞 , 𝜃 𝑝 𝜃 𝑧 ∑ 𝜔
,

Δ𝑞 , ∑ 𝜓
,

Δ𝑝 ,

                                                                                                                  ∑ 𝜙 Δ𝑧 𝜖                   (2) 

where Δ is the first difference operator. The first part of Eq 2 indicates the long-run or equilibrium 
relationship, while the second part (coefficients 𝜔

,
, 𝜓

,
 and 𝜙 ) represents the short-run dynamics. 

The coefficient 𝜑 1 ∑ 𝛾
,
 denotes the speed of adjustments to the long run equilibrium and 

𝜃 ∑ 𝛾
,

𝜑⁄  and  𝜃 ∑ 𝛾 𝜑⁄  are the long-run coefficients of price and income, 

respectively.  
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3. Results 

3.1. Statistical results 

3.1.1. Stationarity tests 

Table 3 shows the results for several unit root tests for the variables in levels and after the first 
difference. In general, all tests indicate that variables have one unit root and become stationary after 
the first difference. These results validate the necessity to use our ARDL model. 

Table 3. Stationarity results. 

Variable ADF lags DFGLS lags

Phillips-

Perron, Zp lags/bandwidth KPSS lags/bandwidth

𝑞  1.054 0 −2.5762 0 1.05 4 1.05*** 7 
∆𝑞  −10.267*** 0 −10.773*** 0 −10.203*** 5 0.53** 5 
𝑝  −1.037 2 −1.6984 2 −1.441 2 0.95*** 7 
∆𝑝  −9.757*** 1 −9.687*** 1 −8.272*** 1 0.14 13 

𝑧 −3.756*** 1 −2.3815 1 −3.509** 3 0.78*** 6 

∆𝑧 −11.634*** 0 −12.484*** 0 −11.271*** 5 0.62** 4 

𝑞  −3.131** 3 −1.8401 1 −2.697* 4 0.49** 7 

∆𝑞  −3.382** 2 −11.692*** 0 −10.708*** 5 0.54** 5 

𝑝  −1.614 1 −2.3702 1 −1.418 2 1.01*** 7 

∆𝑝  −6.767*** 1 −6.7684*** 1 −6.603*** 2 0.12 1 

Notes: ***, **, * denotes a t-ratio significant at the 1, 5, 10% level 

For ADF tests, the number of lags was selected on the basis of the AIC, BIC and HQIC; For KPSS and Phillips-Peron tests, the number 

of lags was selected by automatic bandwidt selection, and autocovariances weighted by Bartlett kernel 

3.1.2. Model selection and cointegration results 

We started by selecting the adequate lags for each variable. These results can be seen in Table 4 
where, additionally, we show the bounds tests for cointegration. The optimal lag length is selected 
according to using the Schwarz Bayesian Criteria (BIC). As can be observed, the computed F-statistics 
supports (at 5% significance level) the existence of a long-run cointegrating relationship among all 
variables. 

Table 4. Model selection and cointegration results. 

 Diesel Gasoline 

Explanatory variables 𝑞 , 𝑝 , 𝑧 𝑞 , 𝑝 , 𝑧  

Selected model (optimum lag order): (2, 0, 2) (3, 0, 4) 

F-statistic 5.380 14.040

Critical values (5%)  

Upper bounds 3.88 3.88

Lower bounds 3.235 3.235

Notes: the optimum lag order is obtained according to the Akaike Information Criterion (AIC) 
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The optimal lag number is higher for gasoline consumption than for diesel consumption, meaning 
that households take longer to respond to price and income changes than firms. Interestingly, the 
optimal lag number for prices is zero for both fuels, hence, consumption only responds to 
contemporaneous price changes.  

Table 5 depicts the main estimates concerning the ARDL long-run estimates and the results for 
several robustness tests. 

Table 5. ARDL estimates. 

 Diesel Gasoline 

Variable Coefficient Coefficient 

Const. −4.362** 

(0.328)

−2.167*** 

(0.861) 

𝑝  −0.074*** 

(0.023)

−0.223*** 

(0.033) 

𝑦  0.932*** 

(0.192)

0.461*** 

(0.162) 

𝑞  0.516*** 

(0.111)

0.389*** 

(0.107) 

𝑧  −0.209 

(0.246)

0.005 

(0.188) 

𝑞  0.283*** 

(0.104)

0.219* 

(0.111) 

𝑧  −0.254 

(0.218)

−0.037 

(0.200) 

𝑞   0.147 

(0.097) 

𝑧   −0.457*** 

(0.185) 

𝑧   0.243 

(0.161) 

Trend 0.000 

(0.000)

−0.002*** 

(0.001) 

Adj.R2 0.9749 0.9962 

𝜒  
2.092 

(0.719)

2.817 

(0.589) 

Ramsey's RESET 
0.048 

(0.827)

0.031 

(0.862) 

Jarque-Bera 
1.382 

(0.501)

2.389 

(0.326) 

𝜒  
18.595 

(0.010)

9.3607 

(0.498) 

𝐹   

Long Run:  

Continued on next page
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 Diesel Gasoline 

Variable Coefficient Coefficient 

𝛽  −0.368 

(0.142)

−0.911 

(0.182) 

𝛽  2.338 

(0.249)

0.877 

(0.253) 

Notes: Robust standard errors in parenthesis.  

***, **, * denotes de t-ratio significant at the 1%, 5% and 10% respectively 

𝜒 —Breusch- Godfrey Serial Correlation LM test 

𝜒 —White Heteroskedasticity test 

𝐹 —Bounds based F test 

𝛽  is long-run price elasticity and 𝛽  is long-run income elasticity 

In general, our model passes the diagnostic tests for serial correlation (LM statistic), 
heteroscedasticity (Breusch-Pagan-Godfrey), normality of residuals (Bera-Jarque statistic), and 
functional form (Ramsey's RESET) at the 5% statistical level. Estimated coefficients have the expected 
signs and show that long-run price elasticities are −0.368 for diesel and −0.911 for gasoline while long-
run income elasticities are 2.338 for diesel and 0.877 for gasoline. The relatively high long-run value 
encountered for gasoline demand price elasticity may be explained by the relatively low disposable 
income in Portugal, since as referred by Baranzini and Weber [12], higher income countries may be 
less sensitive to price changes while lower income ones respond more to price changes. Additionally, 
diesel demand is highly responsive to income changes, reflecting the strong effect of economic activity 
on (commercial) diesel demand. 

Our coefficient of the time trend is zero and statistically non-significant for diesel (as in 
Polemis [26]) and is negative and statistically significant for gasoline (as in Bakhat et al. [17]). 
Technical changes and other modifications have slightly decreased gasoline consumption but had no 
effect on diesel demand. 

The results for the Error Correction Model (ECM) regressions are provided in Table 6. 

Table 6. ECM regressions. 

 Diesel ARDL (2,0,2) Gasoline ARDL (3,0,4) 

Variable Coefficient Coefficient 

Const.  −4.362*** 

(0.922) 

−2.169*** 

(0.282)

∆𝑞 1   −0.283*** 

(0.096) 

−0.366*** 

(0.091)

∆𝑞 2  

 

−0.147 

(0.088)

∆𝑝  
∆𝑧  0.932*** 

(0.174) 

0.461*** 

(0.146)

∆𝑧 1  0.254 

(0.206) 

0.251 

(0.154)

Continued on next page
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 Diesel ARDL (2,0,2) Gasoline ARDL (3,0,4) 

Variable Coefficient Coefficient 

∆𝑧 2  

 

0.214 

(0.157)

∆𝑧 3  

 

−0.243 

(0.151)

ecmt-1 −0.201*** 

(0.042) 

−0.245*** 

(0.032)

Notes: Robust standard errors in parenthesis.   

***, **, * denotes de t-ratio significant at the 1%, 5% and 10% respectively 

The coefficient of the error term (ecmt-1) is statistically significant and has a negative sign, 
supporting evidence about the established long-run relationship among fuel consumption per capita, 
income per capita and prices. The importance of price and income to explain fuel demand is also 
confirmed in the short-run. The coefficient associated with ecmt-1 can be interpreted as the speed of 
adjustment of demand towards its long-run level after a certain shock. This is frequently calculated in 
the literature. In our model, adjustment speed, i.e., the adjustment that occurs in the first quarter after 
a shock, is 20.1% for diesel and 24.5% for gasoline. Hence, after a shock, fuel demand adjusts to its 
long-run equilibrium approximately within the first year. In Baranzini and Weber [12] these values 
were 37% and 27% for diesel and gasoline, respectively, while in Boshoff [7] they were of 48% 
and 20%, respectively. From the presented cases, ours is the only one where gasoline adjusts faster 
than diesel. This can be explained by the higher flexibility of households´ behavior when compared to 
firms’ behavior. Given these fast responses, some authors defend that high frequency data such as our 
quarterly data (rather than annual data) is more suitable for this type of analysis [19]. On the other 
hand, authors using annual data frequently conclude that only a small part of the adjustment takes place 
in the first year (e.g., Eltony and Al-Mutairi [27]).   

3.2. Structural breakpoints 

In this sub-section, we test for endogenous structural breakpoints in our data. Using a trimming 
of 15% of the observations, we apply the Quandt-Andrews breakpoint test for one or more unknown 
structural breakpoints in the sample period (1995Q1–2015Q4). The three statistic measures for LR and 
Wald F-statistic clearly reject the null hypothesis of no structural breaks. Results show (Table 7) that 
diesel and gasoline consumption have a breakpoint in 1999Q4 and 2011Q3, respectively. Contrarily 
to Wu et al. [28] and Fattouh et al. [29], who found significant effects of the fuel market liberalization 
in the countries under analysis, we found no such evidence for Portugal, since there is no breakpoint 
around 2004. The breakpoint found for gasoline may, to a certain degree, be related to the economic 
crisis, which determined the need for the financial intervention of Troika in 2011. The breakpoint for 
diesel can be related to some new legislations in the fuel market, namely, the compromise of the prime 
minister to not increase the diesel price for a certain period, but it is also relevant that Portugal started 
using the euro in this year. Besides the change in currency, which is likely to have influenced agents´ 
behavior, there were important economic boosts such as increases in investment and decreases in 
borrowing costs.   
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Table 7. Structural Breakpoints. 

 Diesel Gasoline 

Date 1999Q4 2011Q3

Maximum LR F-statistic 
1115.933 

(0.000)

87.763 

(0.000)

Exponential LR F-statistic 
53.927 

(0.000)

40.785 

(0.000)

Average LR F-statistic 
35.733 

(0.000)

27.246 

(0.000)

Note: Robust standard errors in parenthesis 

Distributions of statistics are provided by Andrews (1993).   

Dates for maximum statistics are in line “Date” 

3.3. Rolling Estimation 

Now, we study the dynamic behavior of elasticities. We use the rolling ARDL to gain further 
insights on the long-run fuel demand determinants and time-varying elasticities. Rolling ARDL 
estimates were carried out on moving windows with a length of 60 quarters since a reasonably long 
period of data may be necessary to capture the presence of long-term relationships. Optimal lags were 
obtained in each iteration using the BIC criteria.  

In line with, e.g., Park and Zhao [11], our dynamic estimations show some variability in time-
varying elasticities. Figure 2 shows the results for price elasticities, where the vertical lines represent 
the beginning and the end of the financial intervention in Portugal, also designated Troika intervention. 
During that period Diesel demand price elasticity is relatively steady around −0.5. From 2011Q2 
to 2013Q3, it increases in absolute value, i.e., consumption became more sensitive to price changes 
during the period of the economic crisis and the Troika intervention. This is consistent with studies for 
other countries [17] and makes economic sense, because when faced with financial restrictions 
economic agents pay more attention to price changes. Gasoline demand price elasticity evolves around 
the mid value of −0.75. Until 2012Q3, values are relatively stable, but after that, they become irregular 
and face some peaks. Our results indicate that, with a certain delay, gasoline consumption also appears 
be affected by the economic crisis. However, the effect is not as predictable as in the diesel case. These 
results are in line with the findings for Spain [17] which showed higher effects for diesel than for 
gasoline. The explanation is probably related to the fact that households have more flexible behaviors, 
which can be erratic at times. In general, firms have a more stable and predictable behavior. For both 
cases, the higher sensitivity to fuel price fluctuations is justifiable since the economic crisis decreases 
disposable income and affects agents’ expectations.  
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Figure 2. Price elasticity for diesel (left) and gasoline (right) using rolling windows (Notes: 
Dashed lines are 2SE bands). 

Figure 3 shows that a similar pattern is observed for income elasticity for diesel during the same 
period, i.e., consumption became more sensitive to price changes. After 2013Q4, this elasticity 
decreases probably due to the crisis since diesel is highly used for commercial purposes. Gasoline 
income elasticity evolves around 1 with a certain degree of variability, despite not necessarily 
associated with the period of the economic crisis and not as accentuated as for diesel. After the 
economic crisis, a decrease in income elasticities appears to exist, i.e., gasoline consumption became 
less responsive to income changes. A tendency that affected Portugal and may have affected other 
southern European countries (e.g., Spain according to Bakhat et al. [17]). 

  

Figure 3. Income elasticity for diesel (left) and gasoline (right) using rolling windows 
(Notes: Dashed lines are 2SE bands). 

4. Conclusions and policy implications 

Predicting fuel demand responses to price and income changes is fundamental for a proper 
environmental policy analysis. The transport sector is responsible for a large share of polluting 
emissions and it is urgent to implement measures to mitigate this problem. The usual static analysis 
may lead to inadequate results since it does not anticipate changes in demand responses due to specific 
events, such as an economic crisis. That approach does not consider fluctuations in price and income 
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elasticities over time and it does not provide hints for a flexible and efficient policy design. To explore 
this issue, we estimate gasoline and diesel price and income elasticities for Portugal covering the period 
from 1995 to 2015. We give special emphasis to the dynamic behavior of elasticities combining 
structural breakpoint analysis with time-varying estimations.   

Our ARDL model shows evidence of a long run cointegration relationship between 
gasoline/diesel consumption per capita, prices, and income per capita. Results indicate that long-run 
price elasticity is −0.911 for gasoline and −0.368 for diesel. Gasoline consumption is more sensitive 
to price changes than diesel, which is directly related to diesel use for commercial purposes. 
Households have more transport options and can adopt more flexible behaviors when gasoline price 
increases. Long-run income elasticity is 0.877 for gasoline and 2.338 for diesel. The higher sensitivity 
of diesel consumption to income changes is also according to the literature and has the same 
explanation as for price elasticities [5]. Hence, fuel taxes are more effective to moderate gasoline than 
diesel demand. Diesel is strongly used for commercial purposes and is, therefore, very dependent on 
economic conditions. Furthermore, results show that technical changes and other modifications 
slightly decreased gasoline consumption but had no effect on diesel demand. 

Regarding the structural breakpoint analysis, we find no evident effect of the market liberalization 
in Portugal. Our dynamic estimations show some fluctuations in time-varying elasticities. There is 
evidence that the economic crisis affected diesel and gasoline demand elasticities, since after the crises, 
consumers appeared to become more sensitive to price and income changes. This can be seen as a 
reaction to lower disposable income. The variability in elasticities suggests a need to adjust policy 
tools, specially at times of economic stress and can also be an opportunity to implement desirable 
changes. Considering a static analysis is therefore not enough to predict policy effects. For instance, 
during periods of economic crisis, fuel taxes will have a stronger impact on fuel demand. It is then 
advisable to adjust taxes periodically which requires updated and dynamic estimates of elasticities. 
Governments can take advantage of these times to promote necessary behavioral and technical changes. 
When agents become more responsive to price changes, higher taxes combined with, e.g., promotion 
of better public transportation systems, or incentives to electric vehicles, can lead to important long-
term changes, such as a transition to a less fuel intensive transport sector. Also, agents can be 
incentivized to adopt fuel saving driving behaviors. Tax revenues can be used to finance those 
environmental purposes. 

In sum, our results highlight the importance of considering time-varying elasticities for policy 
design, not only after an economic crisis, but also after any other impacting event such as, for example, 
the recent COVID-19 crisis. The challenges brought by this period can be used as opportunities to, 
with the best policy combinations, contribute to the desirable energy transition.  
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