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Abstract: Planning and operation of Smart energetic have become more complex to analyse due to 
structural changes in the energy sector. The inclusion of distributed generation sources, generation 
with renewable sources, storage systems, and the dislocation of information between the different 
organization levels and actors lead to the inherent difficulty of defining appropriate models that help 
decision making. Nowadays, decisions in planning and operation are made level by level rather than 
integrated manner. To address this problem, this work proposes a multi-level methodological 
framework based on Key Performance Indicators and System of Systems concepts. Involving 
methods, both quantitative and qualitative, this work serves as guidance to managers, planners, or 
political decision-makers from any electrical enterprise to help them find suitable solutions for 
planning and operation of smart grid projects. 
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1. Introduction 

During the last years, the smart grid concept has revolutionised the energy field. This concept 
is in charge to add non-conventional energy sources of distributed generation and a bunch of 
information technologies (IT) to national electric system to bring suitability, security and efficiency 
to energy supply [1]. Likewise, the enterprises show an opportunity to develop new services through 
the functionality that it represents, to build profitable business models and to provide value-added 
service, as their users as themselves [2]. 
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Nevertheless, the inclusion of this concept as a new technological paradigm creates significant 
challenges, not least among them the technical feature [3], because of the migration of the current 
electrical network, which has unidirectional flows and centralised generation to disperse loads, 
needs to be turning to bidirectional power flows; this issue will require a sophisticated model to 
generate, supply, and operate energy [4] in addition to a reliable communication network for 
sensing, data collecting, and controlling assets. On operational level, the uncertainty associated with 
power generation from non-dispatchable energy sources creates the need to include storage 
technologies and forecasting strategies [5]. It is evident that the stability of the system depends on a 
continuous reading and a permanent control of the assets that assure the correct dispatch of energy 
and an active management of the electrical load. Although installing this type of infrastructure can 
be very costly [6], its benefits include increased reliability, reduced energy consumption, and 
consumer participation in power generation [7]. This means that planning is as important as 
operation in ensuring the proper functioning of the smart grid. Besides, other challenges appear to 
add more complexity: they not only have to evaluate the efficiency or technical effectiveness and 
their economic profit, but also they have to include environmental, social, and governmental 
political issues into a legal and strategy frame which are relevant to each region where applicable [8]. 

As a consequence, the complex multidimensional nature (NP-hard type) [9] in development 
and planning of smart grid projects could not be addressed as a unidimensional problem. Instead 
these require the use of optimisation techniques which consider the imbalance between stated 
objectives by different areas into the same energetic structure to decision-making. Worldwide 
authors consider that a multi-level structure could work better to build and planning smart grid 
projects [10], because of the possibility to coordinate and identify problems which require a 
commitment between the objectives of two or more interacting entities ordering by hierarchical 
structures with isolated objectives, maybe in dissonance. In the last decade, the use of multi-level 
decision-making approaches is becoming a powerful tool in the abstraction and conceptualisation of 
hierarchical organisation models with decentralised management problems [11]. Decision-making in 
several levels has promoted the researching about decision models [12], solution perspectives [13], 
and applications to build smart cities and smart grid projects [10]. 

Likewise, one of the main challenges that energetic field confront during the building a smart 
grid project has been the development of tools to support the decision-making process [14,15]. Into 
this area, operators in charge must face non-structured problems, which must bring decisions, 
evaluations and acknowledges based on the concern. It is necessary to use qualitative approaches 
that allow becoming expert human judgement to mathematical representations as analytic hierarchy 
process (AHP) or quality function deployment (QFD), which process uncertain or diffuse 
information in the smart grid field. 

Finally, the use of key performance indicators (KPIs) is standing out for smart grids and smart 
cities projects due to they bring adequate and detailed information to actors who represent each 
level into organisations using multi-level approaches [16,17]. Currently, several programs and 
methodological proposes have tried to coordinate every one of these levels and to evaluate from 
different points of views, potential benefits that bring the development of smart grid projects, such 
as the method of multi-level maturity evaluation developed by Yue He [18], smart grid status and 
metrics reports designed by Energy Department of United States and the Electric Power Research 
Institute [19,20], and diverse evaluation cost-benefit methodologies from smart energy network 
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projects developed in European Union [21–23]. All these are becoming invaluable evaluation tools 
with hierarchical structured KPIs. 

This paper embeds all these concepts into a systematic approach called System of Systems (SoS), 
to make a novelty methodological tool that supports managers, planners, or political decision-
makers to make optimal or near-optimal decisions about the use of smart grid assets. The provided 
solutions for this approach must fix all aims raised to each level in the organisation and give 
contributions to the energetic development in the region.  

The paper is organized as follows. Section 2 defines the types of decision problems, shows a 
review of quantitative and qualitative decision support tools in the field of Smart Grids, shows the 
role of Key Performance Indicators (KPI) in energy organizations, and the concept of Systems of 
Systems applied to smart grids planning. Section 3 shows the proposed framework. Section 4 
presents the application of the framework in a case study. Finally, Section 5 shows the conclusions. 

2. Background 

The development of tools to support decision-making in smart grids projects requires solving 
problems of quantitative and qualitative nature at different levels of an organization. This section 
explains each type of this problems and shows a series of methods currently being used as solutions. 
Furthermore, introduces the Key performance indicators and System of Systems as an essential 
concept for the development of an integrated decision-making framework. 

2.1. Classification of decision problems in the organisational field 

Decision problems in an organisation can be classified by their degree of complexity in: 
structured, semi-structured and unstructured [24]. The structured ones, which are within the 
operating management, can be raised through the use of classical mathematical models, such as 
linear programming or statistical methods. At the other end of the decision management structure, 
there are the unstructured ones related to strategic planning; they are often vague, uncertain and 
imprecise, for which there is no standard solution method that allows obtaining an optimal 
solution [25]. Human intuition is usually the basis for decision making in an unstructured 
problem [26]. Typical unstructured problems are finding in business planning, job evaluation for 
large organisations [27,28], or in the development of a set of policies for a particular social 
problem [29]. 

Finally, semi-structured decision problems, that involve tactical management contain 
structured and unstructured characteristics which reflect a better approach to real situations [30]. 
The solution to these problems involves a combination of programming optimisation and human 
judgment solution procedures; also, it is necessary the support of related intelligent information 
processing and fuzzy inference techniques. For both these and unstructured problems, 
computational techniques help notably to provide information that improves the quality of the 
decision and therefore, its efficiency [31]. 

Taking into account the dynamics of decision-making and its decision structure, many of the 
problems that arise in an organisation require multi-level optimisation, which allow us to find the 
balance point of the most appropriate decisions. From this, the different actors involved in the 
decision-making process obtain benefits from the operational, tactical and strategic levels [17]. In 
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the literature, it is common to find problems that involve two or three levels of decision which try to 
optimise their objectives under certain limitations and act and react sequentially. In these cases, they 
are called bi-level decision-making (BLDM) and tri-level decision-making (TLDM) [31]. 

2.2. Multi-level optimisation as a quantitative method in smart grid projects 

In most of the literature consulted, energy management is addressing through decision 
techniques such as multi-objective models, multicriteria analysis, genetic algorithms, decision 
support systems (DSS), GIS-based decision support, and energy management system (EMS). 
However, these are implementing from a single level perspective. Raffaele Carli in [10] notes: 
‘There is a lack of techniques that analyse existing decision levels in an integrated manner rather 
than level by level’; from this perspective, analysing smart grids as a single-level system is not an 
appropriate approach since should be considered different actors that are directly or indirectly 
involved in decision-making. 

A multi-level optimisation problem is a type of mathematical programming that solves 
decentralised planning problems, with decision entities that interact and are distributing through a 
hierarchical organisation. The execution of decisions is sequential, from the upper level to medium 
level and then to the lower level. For example, in Figure 1, each decision-maker in units from 1 to K 
independently optimises their objectives but is affected by the actions of other decision-makers at 
other levels [11]. The decision units at the upper level and the lower level are called leader and 
follower, respectively. 

 

Figure 1. Hierarchical multilevel structure. 

According to Lu et al. [11], there are two fundamental problems in multi-level decision-making 
processes: the first is how to develop a model capable of describing a complex decision-making 
process, such as the hierarchical multi-level model; the second is how to find an optimal solution to 
such a process. For the first problem, decision-making models have been proposed in the literature 
of two [32,33] and three levels [34,35], which in some cases, include multiple objectives [36]. For 
the second problem, a set of solutions that solve these models has been developed, based on 
classical methods such as the mixed-integer linear programming (MILP) [37,38], Karush-Kuhn-
Tucker (KKT) [39,40], Stackelberg [41,42], and computational algorithms such as genetic 
algorithms [33,43], particle swarms optimization (PSO) [33,36]. 
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2.3. Qualitative models for decision making in smart grid projects 

The multi-level optimisation technique mentioned in the previous section is useful for solving 
complex real-world problems, especially those that are based on quantitative data or have a tactical 
or operational scope. However, for strategic planning decisions, the decision-makers face 
unstructured problems. Therefore, they must provide judgments, assessments, and knowledge about 
the problem definition [44]. For this, it is necessary to deal with qualitative techniques or models 
that could transform the human judgments of experts into mathematical representations. Methods 
such as analytic hierarchy process (AHP), quality function deployment (QFD), ELECTRE, 
PROMETHEE, MAUT, Delphi method, and the fusion of these methods with fuzzy set theory, 
provide more sophisticated algorithms to process uncertain or inaccurate information in the field of 
the smart grids [45]. 

The fuzzy set theory resembles human reasoning in how it uses information and uncertainty to 
generate decisions. It was explicitly designed to mathematically represent uncertainty and 
ambiguities, and provide formal tools to deal with the intrinsic inaccuracy of many problems [46]. 
This work considers AHP and QFD as qualitative methods, due to the ease of capturing human 
judgments and that these have been implemented in the field of smart grids successfully. 

The fuzzy AHP is a theory of measurement through peer comparison, which is then assembled 
in the expert judgment to obtain priority scales. Here, the decision-makers (experts) methodically 
evaluate each element to be compared with each other; these comparisons are making to determine the 
importance of each of them [47]. When making comparisons, experts can use concrete (quantifiable) 
data of the elements that are necessary or can use their judgments according to their level of 
relevance. The comparisons follow the numerical scale proposed by Saaty [48]. The AHP and fuzzy 
logic have been used successfully to support decision-making in smart grid project planning [14,49], 
renewable energy [50,51], microgrid projects [52], demand response programs [53], electric 
mobility [54], energy storage [55,56], and smart energy cities [57]. 

On the other hand, the QFD developed initially by Japanese professors in the 60's, Yoji Akao 
and Shigeru Mizuno, provides an excellent mechanism that helps identify and translate customer 
requirements into technical specifications for the design, process, and production of a product or 
services. It is also possible to use the QFD as a strategic planning tool for an intangible product, 
such as a program or activity. Customer requirements could interpret as corporate or commercial 
requirements of senior management. The team members in the QFD exercises must be mostly senior 
managers and all other functional level managers in the strategy formulation stage, and 
implementation engineers for the formulation of the action plan. Decision attributes are sometimes 
strategic objectives or tactical policies rather than specific objective values of product design 
variables. Therefore, it is more difficult to quantify and develop a mathematical model for 
evaluation [58]. The QFD has applied in the development of business strategies, software 
development, product management, vendor selection, and other applications. Eventually, the QFD 
has also implemented in the energy sector and smart grid projects [59,60]. In [61] and [62] are 
detailed the models, methods, concepts, and applications of both techniques. 
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2.4. Key performance indicators and their use in Smart Grid projects 

A key performance indicator is a tool widely used worldwide in industries and business 
environments to quantify and evaluate progress and performance concerning the goals and 
objectives of an organization [63]. To increase awareness of the status of energy sector projects and 
facilitate their monitoring, the actors in charge have some of these indicators to monitor in a 
comfortable and detailed way the fulfilment of the objectives. 

The sector has formulated some KPIs and their applicability in smart grid projects [64,65], 
microgrids [66,67], monitoring and planning architectures [68,69], energy efficiency and demand 
response [16,70], energy management systems (EMS) [71,72] and smart cities [10,73]. However, 
the methods are predominantly qualitative, as the selection of KPIs comes from a review of the 
literature, validation with stakeholders, or discussion with energy industry actors and experts [17]. 
The difficulty is due to the constant evolution of ‘Smart or Smartness’ term and the lack of clarity of 
the concept [74]. It also emphasises the absence of an indicator system that is capable of providing a 
uniform approach to what is measured, and of being comparable over time, or between different 
regions [18]. 

Another critical challenge that KPIs represent in the field of smart grids is in the allocation of 
weights and their impact on strategic energy objectives. To obtain these weights, some authors 
like [16] use interviews and consensus with project experts as an evaluation tool (direct assignment 
methods). In [65,66] introduced a methodology for the evaluation of microgrids and smart grid 
technologies, determining each evaluation core with an equal magnitude of importance. Although, 
in [75] and [76] they consider more rigorous mathematical processes for the determination of 
weights, in the first investigation it is not necessary to obtain the results of quantifiable KPIs, and 
unlike what was done by [16], they did not consider the participation of experts for qualitative 
evaluation. The second investigation presents a binary evaluation approach; therefore, those projects 
that have an intelligent criterion mildly or intensely will obtain the same score. The six categories, 
where the indicators are examining, were assigned with the same weight to calculate the overall 
score, giving them the same importance to each. In [64], the authors use a multicriteria AHP 
technique to determine the relative weights of indicators proposed in the field of smart grid projects 
in China. The work carried out by Kazumi in [46], considers the QFD with fuzzy logic. The work 
shows an example through a simulation to achieve the prioritisation of energy indicators as inputs 
for software development in energy management in a company. 

Due to the above, it is favourable to establish a quantitative and systematic method that allows 
weighting and validating KPIs based on the identification of the functionalities of the smart grid 
asset. For this, this work considers what has been done by the Department of Energy (DOE) in [77]. 
Regarding the prioritisation of KPIs based on the strategic objectives of the company, section 3 
presents a new procedure for assigning significant weights using the QFD-AHP with fuzzy logic. 

2.5. The System of Systems concept as the basis for multi-level decision making in Smart Grid 
project planning 

Finally, the SoS concept would allow joining the concepts mentioned above and adequately 
guide the strategic investments made in the modernisation of the conventional electricity grid [78,79]. 
Also, it serves as the basis for developing requirements and standards, making design decisions, 
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acquiring solutions and managing any type of smart grid or smart energy city project [80,81]. Each 
of these projects could consider being typically composed of hardware, software, processes, 
procedures, policies and actors; what makes the project designer, or in this case of the system, have 
to analyse each of these factors holistically [10]. 

For this, the systems development life cycle (SDLC) is a conceptual model that allows 
obtaining an overview and describe the stages and tasks involved in each phase of a system. The 
SDLC allows a process to be broken down into smaller segments or phases for ease of management 
and for managers to verify successful completion of initial project phases before allocating 
resources to subsequent phases [82]. In general, systems development includes requirements 
analysis, design/planning, testing, implementation and operation phases. However, these can be 
divided differently depending on the organisation involved. The SDLC is similar to the life cycle of 
any smart grid project. In fact, in many cases, the SDLC allows defining the policies, personnel, and 
budgetary limitations of a large-scale project implemented in an organisation [83]. This model also 
allows to capture the needs and objectives of the actors and transform them into a holistic solution 
through a balanced life cycle that meets the minimum design requirements and maximises the 
overall efficiency of the system [84]. Figure 2 presents a general model of the SDLC and the 
methodological proposal developed in this work for the evaluation of smart grid projects. The 
actions in the phase of defining the technical process, design and, operation and maintenance (O&M) 
present the innovation of this work, which are explaining in more detail in the following section. 
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Figure 2. Proposed methodology. 

3. Methodological approach 

Based on the methodology proposed in [81], where is pointed that any smart grid project can 
consider as an SoS, here we present an innovated methodology divided into three phases of SDLC: 
technical processing definition, planning/design, and operation. The first phase uses fuzzy QFD as 
qualitative methods to help in the decision-making procedure; it also includes actors and objectives 
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as tactical as strategy levels. The other phases are addressing as a multi-objective bi-level 
optimisation problem, i.e., they represent the quantifiable method. 

Here, the leader or upper-level problem is represented as the planning/design phase while the 
operation phase is the follower or the lower level problem. Similar to traditional energetic sector 
problems, planning/design is a long-term procedure while the operation is a short one. Although 
they look different, these are strictly related, and therefore, a bi-level decision-making model can 
interact to get optimal modelling [85]. The upper level gets input information from the planning 
horizon (i.e., technical processing definition), the maximum load, the available assets, and the 
economic parameters. When it chooses a matching design, i.e., the number of assets for the smart 
grid project, under input information and constraints, then the second level is enabled. Thus, data 
from the upper-level are using as parameters in the lower-level with a function which defines the 
problem's feasible region. Then, the lower-level defines the operational solutions for assets such that 
loss functions as the emissions, the operational costs, the SAIDI, and other requirements achieve a 
minimal cost. Once the solutions are getting from lower-level, these go back to upper-level to 
evaluate the total cost during the planning horizon. This procedure continues until achieving both 
the design and the optimal operative combination. After a set of solutions are obtained by the 
optimisation model, the enterprise stakeholders use fuzzy AHP in order to select the best fitted 
solution. Each of these steps is explaining below. 

3.1. Technical processing definition phase 

This is a five-steps phase where the information and data of the projected is obtained and used 
to define specific KPIs and objectives. 

3.1.1. Step 1. Smart grid project characterisation 

Following the work presented in [86], the technical processing definition phase takes the 
project general summary, the available technologies, elements, and objectives, which imply to bring 
the project scale and dimension, i.e., user support for the smart grid, energy consumption per year, 
load profile, generation data from solar, wind, or others. 

3.1.2. Step 2. Turn the smart grid asset to KPIs 

This step comes from [77]. The implementation takes the smart grid investment 
characterisation using turnings from 1) smart grid assets based on functionalities, 2) functionalities 
turn on benefits, 3) benefits to KPIs, and 4) obtaining the mathematical representation of each KPI. 

3.1.3. Step 3. Define the KPI project baseline 

By using the methodology presented in [86], the step aims to compare new scenarios against 
the current one to know the cost and benefit differences. This work includes the next scenarios: 

- Scenario A (Baseline): This scenario shows the system conditions before implementing the 
smart grid project. 

- Scenario B: Setting conditions and polities in the proposed smart grid system. 
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3.1.4. Step 4. Set enterprise-level strategy and smart grid tactic objectives 

Here, the strategic objectives are set based on the needs and goals from each energetic 
enterprise which implements a smart grid project. This step also includes the smart grid tactic 
objectives such as was presented in [87]; these are strictly relating with issues as climatic change, 
traditional energy scarcity, and problems in security, quality and supply.  

3.1.5. Step 5. Definition of actors and Fuzzy QFD implementation to calculate the smart grid 
weights 

Fuzzy QFD is applied to find the relationship between KPIs and the energetic enterprise-level 
strategic objectives.  

From Table 1, we get the enterprise-level strategic objectives prioritisation (HOW). While 
Table 2 define WHAT is the importance to satisfy a KPI to achieve an enterprise objective. 

Table 1. QFD matrix to determinate the relative importance weights of Enterprise level 
strategic objectives. 

Smart Grid tactical objectives (WHAT) Enterprise level strategic objectives (HOW) 
 ObjE1 ObjE2 ObjE3 ObjE4 ObjEm 
OTSG 1 𝑄1ଵଵ 𝑄1ଵଶ 𝑄1ଵଷ 𝑄1ଵସ 𝑄1ଵ୫
OTSG 2 𝑄1ଶଵ 𝑄1ଶଶ 𝑄1ଶଷ 𝑄1ଶସ 𝑄1ଶ୫
. . . . . . 
. . . . . . 
. . . . . . 
OTSG n 𝑄1୬ଵ 𝑄1୬ଶ 𝑄1୬ଷ 𝑄1୬ସ 𝑄1୬୫
Relative importance weights of 
Enterprise level strategic objectives 

Weight 1 Weight 2 Weight 3 Weight 4 Weight m

Table 2. QFD matrix to rank the project KPI. 

QFD matrix Enterprise level strategic objectives (HOW) KPI Ranking 
 ObjE1 ObjE2 ObjE3 ObjE4 ObjM  
KPI1 𝑄2ଵଵ 𝑄2ଵଶ 𝑄2ଵଷ 𝑄2ଵସ 𝑄2ଵ୫ Ranking KPI1 
KPI2 𝑄2ଶଵ 𝑄2ଶଶ 𝑄2ଶଷ 𝑄2ଶସ 𝑄2ଶ୫ Ranking KPI2 
. . . . . . . 
. . . . . . . 
. . . . . . . 
KPIn 𝑄2୬ଵ 𝑄2୬ଶ 𝑄2୬ଷ 𝑄2୬ସ 𝑄2୬୫ Ranking KPIn 

The results from Tables 1 and 2 come from [88] and [89], where were added some 
modifications and fuzzy logic to get the linguistic enhancement and the prioritisation of smart grid 
objectives. However, it is necessary to define some expert actors into the smart grid field and the 
energy companies; some of them come from [17], where was detailed the participation during the 
life cycle of smart grid project. 
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3.2. Planning/design and operation phases 

This is a three-steps phase where the information of the project and the selected KPIs are 
integrated into an optimization model in order to obtain the best solution. 

3.2.1. Step 6. Mathematical model of the system's assets 

This step must represent the operative constraints from project formulation in a precise way; 
therefore, each proposed asset from step 2 must model adequately. 

3.2.2. Step 7. Mathematical representation of KPIs 

From step 2, it is necessary to develop the mathematical representation of each KPI. Each one 
has operative and planning constraints which help to obtain optimal solution during the optimisation 
procedure. 

3.2.3. Step 8. Multi-objective bi-level optimization model 

To optimise the planning/design and operation phases in a coordinated fashion, we introduce 
the multi-objective bi-level optimisation model which is composed of the leader located in the 
upper-level (planning/design) and the follower located in the lower-level (operation). (1) presents its 
mathematical representation. 

min 𝐹ሺ𝑥௉௅, 𝑦௉௅, … , 𝑧ேሻ ൌ ሾ𝐹௉௅ଵ, 𝐹௉௅ଶ, … , 𝐹௉௅ேሿ 

𝑠. 𝑡. ቐ
𝐺ሺ𝑥௉௅, 𝑦௉௅, 𝑧ேሻ ൑ 0
𝐻ሺ𝑥௉௅, 𝑦௉௅, 𝑧ேሻ ൌ 0
𝑊ℎ𝑒𝑟𝑒, 𝑥௉௅, 𝑦௉௅, 𝑧ே 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚: 

                     min 𝑓ሺ𝑥௉௅, 𝑦௉௅, 𝑧ே … , 𝑡ሻ ൌ ሾ𝑓௢௣ଵ, 𝑓௢௣ଶ,…,𝑓௢௣௡ሿ

                      𝑠. 𝑡. ൝
𝑔ሺ𝑥௉௅, 𝑦௉௅, 𝑧ே … , 𝑡ሻ ൑ 0
ℎሺ𝑥௉௅, 𝑦௉௅, 𝑧ே … , 𝑡ሻ ൌ 0

1 ൑ 𝑡 ൑ ℎ𝑜𝑢𝑟𝑠

     (1) 

where, 𝑥௉௅, 𝑦௉௅, … , 𝑧ே are the arguments to be optimised, and 𝐹௉௅ଵ, 𝐹௉௅ଶ, … , 𝐹௉௅ே are the objective 
functions, and 𝐺ሺ⋅ሻ 𝑦 𝐻ሺ⋅ሻ  are the set of planning constraints located in the upper-level. The lower-
level has 𝑧ே, 𝑡 which are the decision arguments, where t is the operation time, 𝑓௢௣ଵ, 𝑓௢௣ଶ,…,𝑓௢௣௡ are 
the loss function, and 𝑔ሺ⋅ሻ 𝑦 ℎሺ⋅ሻ are the operative constraints. 

The multi-level optimisation is currently a high-interest topic into the science of administration, 
economics, and engineering. Here, the bi-level model preserves the relationship between both levels. 
While the planning/design phase has its objectives into a decision profile, indirectly defined by the 
operational level, it helps to turn the conditions for a new optimisation procedure into the lower-
level when the control is delivered. This model allows interacting between the objectives in both 
levels, as the decision-makers find a logic relationship into an energy project. 

However, this kind of problems considered as NP-hard due to intrinsic complexity between 
two levels are hard to solve; even, the simplest case, being continuous and linear functions, is still 
considered as NP-hard [90]. Thus, the use of meta-heuristic algorithms is necessary to solve this 
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kind of problems [91]. The solution obtained by the optimization model is not unique. Thus, it is 
necessary to apply a method in order to find the best solution weighting the Smart Grid objectives. 
The relative weights are calculated based on energetic regional polities using AHP approach (See 
Table 3). In [92] are explained the axioms, theorems, and mathematical foundations to establish the 
priorities obtained with the fuzzy AHP. 

Table 3. AHP methodology to rank 4 Smart Grid tactical objectives. 

AHP matrix 
Smart Grid 
objective 1 

Smart Grid 
objective 2 

Smart Grid 
objective 3 

Smart Grid 
objective 4 

Ranking 

Smart Grid 
objective 1 

1 𝐴𝑊ଵଶ 𝐴𝑊ଵଷ 𝐴𝑊ଵସ 1st 

Smart Grid 
objective 2 

1
𝐴𝑊ଵଶ

 1 𝐴𝑊ଶଷ 𝐴𝑊ଶସ 2nd 

Smart Grid 
objective 3 

1
𝐴𝑊ଵଷ

 
1

𝐴𝑊ଶଷ
 1 𝐴𝑊ଷସ 3rd 

Smart Grid 
objective 4 

1
𝐴𝑊ଵସ

 
1

𝐴𝑊ଶସ
 

1
𝐴𝑊ଷସ

 1 4th 

4. Results 

In the following, we present a step-by-step example procedure to apply the proposed 
methodology. 
Step 1. The Mexican government aims to structure sustainable energy projects to reduce the use of 
fossil fuels in the Yucatan Peninsula. They want to observe through the simulations the feasibility of 
building an isolated smart energy hub (SEH) to provide the energy service of the population present 
there. For the case study, the planning horizon is 30 years and operating 48 hours. The SEH 
considers the following four assets: combined cycle generating (400 MW), solar farms (295 W per 
panel), wind farms (2 MW turbine), and Advanced Adiabatic Compressed Air Energy Storage 
system AA-CAES (210 MW). 
Step 2. Figure 3 presents the functionalities of the assets transformed into benefits and these into a 
measurement parameter KPI, where are identifying two functionalities, five benefits, and twelve 
KPIs. 
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Figure 3. Transformation of smart grid assets into KPIs. 

Step 3. Table 4 presents a comparison between the current scenario (scenario A) and the scenario 
with the smart grid project (Scenario B). 

Table 4. Before and after comparison of a Smart Grid project. 

Project 
Scenario A 
(Baseline) 

KPIs Baseline 
Scenario B (With 
Smart Grid 
project) 

KPIs  

 
Energy generation 
project 
 

Generation with 
conventional 
energy sources 

Energy bill cost 
[kW/h] 

Creating value for 
the energy 
company and 
social and 
environmental 
benefits due to the 
generation with 
clean energy 
sources. 

Minimize 
operation and 
investment costs 
[$] 

CO2 emissions 
[%] 

Minimize CO2 
emissions [%] 

NO2 and SO2 
emissions [%] 

Minimize NO2 and 
SO2 emissions [%]

Step 4. Figure 4 shows the six strategic objectives defined by the energy company executing the 
project and the smart grid objectives established in the Mexican energy framework. 

Smart Energy Hub

Energy generation and management

O&M cost 
reduction

Increased 
power supply 
reliability

Energy bill 
reduction

Ancillary 
services 

(Voltage and 
frequency 
regulation)

Renewable 
energy 

deployment 
and carbon 
footprint 
reduction

Functionality

Increased 
GD capacity

SAIFI 
reduction

Technical 
losses 

reduction

Increase the 
time to 
supply 
energy 
using GD

SOx 

emissions 
reduction

Nox 
Emissions 
reduction 

CO2 

emissions 
reduction

SAIDI 
reduction

Capital and 
O&M cost 
reduction

Energy 
shortages 
reduction

Levelized 
cost of 
energy 
(LCOE) 

reduction

Increase the 
time using 
renewable 
energy 
sources 

Smart grid asset

KPIS

Benefits
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Figure 4. Strategic and tactical Smart Grid objectives. Taken from the Federal 
Electricity Commission (CFE) and the National Energy Control Center (CENACE). 

Step 5. Tables 5 and 6 show the evaluations given by the actors of the energy company for the 
assessment of objectives and KPIs using the Fuzzy-QFD tool. 

Table 5. Assessment given by 3 actors (A1, A2, A3) of the Smart Grid project to each 
of the KPIs in the six strategic objectives. 

 

Strategic 

Objective 1 

Strategic 

Objective 2 

Strategic 

Objective 3 

Strategic 

Objective 4 

Strategic 

Objective 5 

Strategic 

Objective 6 

KPIs A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 

KPI1 H L L VH L L M H M H L L VH M H VH H VH

KPI2 H M L L L L VH H M L L L VH H H M VH VH

KPI3 VH H VH VH M M L H VH L L M H H H VH H VH

. 

. 

. 

. 
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. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

KPI12 L H H L M M M VH VH L L M M M M VH VL VL 
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Universal Access
Security and 

quality
Sustainability Competitiveness
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company 
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Business 

diversification

Better customer 

experience

Sustainable 

development
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development
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Enterprise level strategic objectives



641 

AIMS Energy Volume 8, Issue 4, 627–651. 

Table 6. Assessment given by 6 actors of the Smart Grid project to each of the Smart 
Grid tactical objectives in the six strategic. 

 

Strategic 

Objective 1 

Strategic 

Objective 2 

Strategic 

Objective 3 

Strategic 

Objective 4 

Strategic 

Objective 5 

Strategic 

Objective 6 

Smart Grid 

Tactical 

Objectives 

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

Accessibility H VH M M L VH VH M L L L L L VH H H M L 

Quality and 

safety 
M H VL L M H H L M VH L L M H VH M L VH

Competitivene

ss 
H H VH VH VH VH VH L L H M H H H M H M L 

Sustainability M M VL M H VL H M M M VL L VH M VH VH VH VH

Table 7 shows the valuations given with their respective fuzzy number, where the labels are: 
VL = Very Low, L = Low, M = Medium, H = High, and VH = Very High. 

Table 7. Linguistic scale to Fuzzy-QFD. 

Assessment FN 
Very Low VL 1 1 1 
Low L 2 3 4 
Medium M 4 5 6 
High H 6 7 8 
Very High VH 8 9 10 

After mathematically processing the assessments given by the project actors the essential KPIs 
are as follows: First KPI3, second KPI2 and third KPI9. 
Step 6. As a brief example, two of four assets considered in this study are presented in (2) for a 
photovoltaic subsystem model and in (3) for a wind turbine subsystem model. However, energy 
storage technologies, such as batteries and compressed air energy storage, and non-renewable 
energy sources must be considered in the methodology. 

𝑃௉௏ሺ𝑡ሻ ൌ 𝐺ሺ𝑡ሻ ∗ 𝐴 ∗ 𝜂௉௏           (2) 

𝑃ௐ் ൌ ൞
𝑃ோ ∗ ௏ି௏಴

௏ೃି௏಴
𝑉஼ ൑ 𝑉 ൑ 𝑉ோ

𝑃ோ 𝑉ோ ൑ 𝑉 ൑ 𝑉ி
0 𝑉 ൏ 𝑉௖   ó   𝑉 ൐ 𝑉ி

        (3) 

Step 7. Similarly to step 6, (4) and (5) presents two mathematical models of twelve KPIs considered 
in the study. KPI4 is represented by the System Average Interruption Duration Index (SAIDI) while 
KPI9 is represented by the Levelized Cost of Energy (LCOE). 

𝐾𝑃𝐼ସ ൌ 𝑆𝐴𝐼𝐷𝐼 ൌ
∑ ௎∗ேೠ

೙
೔సభ

ேೠ೅೚೟
          (4) 
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𝐾𝑃𝐼ଽ ൌ 𝐿𝐶𝑂𝐸 ൌ
ூ೚ା∑ ಲ೟

ሺభశ೔ሻ೟
೙
೟సభ

∑
ಾ೐೗

ሺభశ೔ሻ೟
೙
೟సభ

         (5) 

Step 8. In this paper, we used a Bi-Level Multi-Objective Particle Swarm Optimization algorithm 
(BLMOPSO). 

Table 8 shows 16 reasonable solutions at the planning/design level for the case study; Figure 5 
shows the solutions given by the algorithm at the operation level. In the proposed scenario, there is a 
low generation with renewable energy sources on the second day of operation as a result of not too 
windy and not too sunny. The algorithm compensates this deficit with combined cycle generation 
plants; in some cases, as solution three at 1:00 AM, the combined cycle generation supplies 685 
MW; In the first 24 hours of operation of all 16 solutions, a high penetration of renewable sources is 
observed, in some cases, as solutions nine, fourteen, fifteen and sixteen, these required the use of 
AA-CAES. 

Table 8. List of the best solutions obtained on the Planning/Desing phase for the case study. 

Solution 
Number of solar 
panels 

Number of wind 
turbines 

Number of combined 
cycle generators 

Number of 
AA-CAES 

1 410,247 916 2 2 
2 715,597 904 2 3 
3 806,641 919 2 2 
4 922,907 915 2 3 
5 1,120,319 938 2 2 
6 1,218,766 1,457 2 2 
7 1,221,467 897 2 3 
8 1,408,529 908 2 1 
9 1,658,098 1,405 2 2 
10 1,721,997 906 2 2 
11 1,801,552 954 2 1 
12 1,879,551 904 2 2 
13 1,892,838 1,003 2 1 
14 2,241,523 1,599 2 2 
15 2,315,210 1,045 2 1 
16 2,352,912 1,100 2 1 
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Figure 5. Best solutions at operation level. 

Table 9 presents the optimised KPI and baseline KPI values for the case study. Figure 6 shows, 
the percentage difference of KPI9 (minimise LCOE). Notice that all solutions are more expensive 
than the baseline; solution 14 with an LCOE of $ 0.27/kWh is considered the most expensive with 
the 33% above on the baseline. 
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Table 9. Optimized KPI for the case study. 

KIPs KPI1 KPI2 KPI3 KPI4 KPI5 KPI6 KPI7 KPI8 KPI9 KPI10 KPI11 KPI12 

Solution [%] [%] [%] h/year 
Events

/year 

MWh

/year

GWh/ 

30 

years 

Millions of 

$ in 30 years 
$/kWh 

ktCO2/ 

30 

years 

tSOx/ 

30 

years 

tNOx/ 

30 

years 

1 7.4 75 

100 0.1 0.0001 0.1 

0 11,506 0.21 4,255 2,122 1,927 

2 7.8 72 0 11,603 0.21 4,271 2,118 1,900 

3 8.1 71 0 11,670 0.21 4,301 2,113 1,888 

4 8.3 70 0 11,731 0.21 4,304 2,108 1,875 

5 8.9 68 0 11,874 0.21 4,352 2,098 1,850 

6 15.3 55 0 14,226 0.25 4,826 1,828 1,586 

7 8.7 68 0 11,764 0.21 4,320 2,112 1,856 

8 9.1 66 0 11,815 0.21 4,363 2,112 1,842 

9 15.9 52 0 14,161 0.25 4,833 1,851 1,574 

10 9.8 63 0 11,959 0.21 4,389 2,103 1,809 

11 10.5 62 0 12,169 0.22 4,447 2,081 1,783 

12 10.1 62 0 12,010 0.21 4,405 2,101 1,795 

13 11.3 60 0 12,422 0.22 4,501 2,054 1,750 

14 20.4 45 3,174 15,253 0.27 5,139 1,792 1,473 

15 12.8 56 211 12,772 0.23 4,601 2,037 1,701 

16 13.6 54 885 13,032 0.23 4,664 2,016 1,677 

Base 

line 
1.36 93 100 0.3 0.53 1,802 0 11,526 0,20 145,593 1,735 440,564

 

Figure 6. Percentage difference between the KPIs of the model and the baseline. 

Figure 7 shows the initial investment and operation and maintenance costs for the case study. 

LCOE reduction
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Figure 7. Initial investment, operation and maintenance costs. 

Next, the prioritisation of the smart grid tactical objectives obtained from the fuzzy AHP tool is 
presenting in Figure 8. The evaluation to get the prioritisation consisted of 67 actors in the energy 
sector and experts in the field. 

As it can be seen in Figure 8, the 𝐹஺௎  (Universal Energy Access) objective was the most 
important with 50%, followed by 𝑓௦௖ (Security and Quality of energy supply) with 30%, and finally 
𝐹஼௢௠௣ (competitiveness for the company) and 𝑓௦ (environmental sustainability) with 10% each one, 
respectively. After weighting both KPIs and objectives, it is possible to determine a feasible 
solution. For the case study, the solutions one, two, and three are potential candidates due to they 
present the lowest cost and the least tons of carbon dioxide t CO2, sulfur oxides kg SOx and nitrogen 
oxides kg NOx. However, the obtained relative weights with the use of the AHP mean that the 
solution tends to be more linked to Universal Access, which was the essential objective with a 50% 
relative weight of importance. Therefore, by introducing these weights in the algorithm, solution 
nine is the best solution for the case study. 
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Figure 8. Priority of Smart Grid objectives using fuzzy AHP. 

5. Conclusions 
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abstraction of the organisational hierarchy and turned it into a multi-level decision process 
architecture. For this, it was necessary to have a systemic approach which allowed, first to identify 
and describe the elements of the project, the key actors and their interests, the objectives, and 
relationships for each decision level. In the other two subsequent phases, planning/design and 
operation, we implemented an innovative multi-level multi-objective decision model to get a set of 
solutions using PSO. This procedure was applied in the Yucatan Peninsula in Mexico to validate the 
proposed methodology. 

As a contribution, this work helps to gradually fill the gap in the literature regarding those 
techniques that analyse decision levels in an embedded way instead of level by level, being 
particularly important in the current era of smart cities and smart grid projects, due to they are 
considered as a complex network of systems, and therefore require analysis in a holistic way and not 
separately. Additionally, the methodology allows the use of KPIs to measure the performance of 
any project, being important since in the not too distant future they will have to develop action plans 
to improve the objectives in terms of energy efficiency and environmental sustainability, such as 
they are starting to demand in most governments around the world. 

Since the methodology involves the asset and its functionality as a crucial part, this framework 
can be applied on any smart grid project despite its size, architecture or use of technologies. This 
includes on-grid and islanded configurations, AC or DC architectures, and centralized or 
decentralized topologies. However, to take full advantage of the framework it is important to define 
KPIs, tactical objectives and strategic objectives that highlight the benefits of each configuration or 
topology. 

Currently, the methodology is within the problems of optimisation of two levels and with 
multiple objectives. As future work, the integration of several subsystems would be crucial to turn 
the problem into a multi-follower or multi-leader into a cooperative, semi-cooperative or non-
cooperative nature. Thus, the planning and operation of several smart grid projects might carry out 
simultaneously. 
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