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Abstract: Solar power integration has shown a significant growth in many power systems during the 

last decade. The intermittent nature of solar irradiance tends to vary the amount of solar power in the 

system and an accurate solar power forecasting method can be used to tackle this in power system 

planning and operation. In this paper, authors have proposed a generalized ensemble model 

integrating deep learning techniques to generate accurate solar power forecasts for 21 solar 

photovoltaic facilities located in Germany. Most important weather parameters for solar power 

generation are selected through a feature selection process. In addition, a weather classification 

approach is used to cluster the dataset and for each cluster, a separate ensemble algorithm is assigned. 

Finally, considering the prediction errors in each cluster, a novel ensemble model is developed. The 

proposed models are evaluated using root mean square error and results are compared with single 

machine learning techniques and available forecasting models in the literature. Compared to deep 

belief network, support vector regression and random forest regression models, the proposed 

ensemble model with cloud classification reduces RMSE error by 10.49%, 7.78%, and 7.95% 

respectively. Results show that the weather classification approach reduces the forecasting error by a 

considerable margin and the proposed ensemble model provides a better forecasting accuracy than 

single machine learning methods. 
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1. Introduction 

Solar power integration to the power grid is significantly increasing in many countries [1]. 

Strong government policies towards greener power grid and other technological and economic 

factors have accelerated the growth of renewable energy generation. The growth of solar PV in 2017 

was unprecedented; solar PV accounted for the 27% of overall renewables growth, followed by 

hydropower (22%) and bioenergy (12%) [2,3]. A large proportion of future electricity demand must 

be satisfied by renewable energy due to the global warming effects of conventional thermal 

generation. Costs of solar PV panels have reduced by more than 75% over the last decade [2]. This 

will continue to reduce further due to the strong focus on reducing the costs of manufacturing PV 

modules. Reductions in costs involve the use of thinner wafers, manufacturing wafers without ingot 

slicing, use of microinverters and use of multijunction solar cells [2]. Moreover, the conversion 

efficiency can also be increased up to 30–50%, especially by using multijunction solar cells [2]. 

The integration of renewable energy mostly depends on the system characteristics and further 

integration of renewable energy would require various types of system enhancements with an 

additional cost. With a large proportion of solar power in the power grid, system reliability will be 

drastically reduced. Large battery storage systems [4] or pump storage power plants are required to 

enhance the system reliability for the addition of more solar power. Accurate and reliable solar 

power forecasts can be used to overcome the above issues. In addition, solar power forecasting helps 

system control engineers to efficiently dispatch hydro and thermal power plants, manage the 

spinning reserves and transmission line constraints. 

Solar power generation depends on seasonal changes, weather parameters, intra-hour variability 

and the technology used. Weather parameters such as direct irradiance, diffuse irradiance, wind 

speed, temperature, humidity and cloud cover can be used to model the solar power generation [5]. 

Thus, forecasted weather parameters can be used to obtain future solar power generation using the 

developed model. This is called point forecasting. Statistical methods such as regression models and 

Machine Learning (ML) methods can be used for modeling solar power generation. 

Modeling complex and nonlinear systems using ML is a popular research field. Support Vector 

Machine (SVM) is a supervised ML algorithm which is used for solving classification and regression 

problems. SVM regression models are used to model the relationship between weather parameters 

and solar power generation [6–14]. Yang et al. [8] proposed a hybrid model consists of classification, 

training and forecasting stages. A self-organizing map (SOM) and learning vector quantization (LVQ) 

networks are used to classify the historical solar power generation data into different weather 

conditions e.g., rainy, sunny, etc. Then, several support vector regression (SVR) models are trained 

for different diurnal variations and weather conditions. In the forecasting stage, the most suitable 

SVR model is selected by the fuzzy inference method. Li et al. [9] have proposed SVR and Neural 

Network (NN) models for solar power forecasting. Time, historical power information and 

meteorological forecasts are used as inputs to the models. In [6,12], authors have proposed weather 

classification approaches with SVR forecasting. Days are classified into four categories: clear sky, 

cloudy, foggy and rainy. Separate SVR models are used to forecast solar power generation in each 

category. Fentis et al. [11] have compared feed-forward NN and SVM forecasting results using Root 

Mean Square Error (RMSE), Mean Square Error (MSE) and Mean Absolute Error (MAE). SVM 

model outperforms the NN model by a slight margin. Bouzerdoum et al. [13] have proposed a 

hybrid model consists of the SVM model and a seasonal Auto-Regressive Integrated Moving 
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Average (ARIMA) method. In [14], authors have proposed a hybrid forecasting model combining 

Wavelet Transform (WT), Particle Swarm Optimization (PSO) and SVM for day-ahead power 

generation forecasting of a solar PV system. The parameters of the SVM are optimized and fine-

tuned by PSO to achieve a higher forecasting accuracy. 

In [15–35], various types of NNs are proposed for solar power forecasting. Deep learning NNs 

such as Deep Belief Network (DBN), Long Short-Term Memory (LSTM) and Auto encoder-based 

LSTM are used to model solar power generation using weather parameters [22]. In [15,20], a 

modified Levenberg-Marquardt learning algorithm and Bayesian learning technique are used to 

determine the initial weights of multilayer perceptron NN instead of contrastive divergence method [36] 

used in [22]. Weather classification can be incorporated with NNs to improve the forecasting 

accuracy [19,23,24,31,33]. Separate NN models for different weather categories are trained to 

provide future solar power generation in each weather condition. Weather conditions can be 

categorized as cloudy, sunny, foggy, etc. [24]. A comparison of different learning rules and 

activation functions used in the multi-layer perceptron forecasting model is done in [21]. PSO 

techniques are used to update weights of feedforward NN in [26]. Two Numerical Weather 

Prediction (NWP) sources are used to improve the reliability and accuracy of a NN model in [27]. 

In [30], a one-hour-ahead solar power forecasting model is proposed using a combination of WT and 

artificial intelligence (AI) techniques. A novel PV power forecasting model based on NN is proposed 

in [32], considering aerosol index data as an additional input parameter. NNs consists of many 

hidden layers and hidden neurons (extreme learning machines) are used to model solar power 

generation in [35]. 

Similarity search-based models are proposed in [37–39]. The solar power forecasting is done by 

searching historically similar weather conditions and mapping the respective power generation 

values into the given NWP data. Authors have proposed a novel and efficient approaches for time 

series database search, similarity evaluation and assembling of similar clusters to an overall forecast. 

Ensemble models integrate two or more ML techniques to provide a better forecast [5,40–45]. 

In [40], several forecasting models were implemented for predicting short term i.e. , one hour 

ahead solar PV output. They include ARIMA, SVM, ANN, Adaptive Neuro-Fuzzy Inference 

System (ANFIS), and the combination models using Genetic Algorithm (GA). In [41], an ensemble 

model is proposed using auto-regressive, radial basis function (RBF) and forward NN models. The 

forward NN and RBF are trained using PSO to improve forecasting performance. In [5], an ensemble 

consists of seven ML techniques (decision tree, gradient boosting, K-nearest neighbors (KNN) with 

uniform weights, KNN with distance-based weights, Lasso, Random forests (RFs) and ridge) is 

proposed. Haque et al. [44] have proposed an ensemble algorithm that uses a combination of WT and 

fuzzy ARTMAP (FA) network. WT is used for data filtering and the ensemble model is optimized by 

a Firefly (FF) algorithm. In [45], an RF model is used as an ensemble learning method to combine 

the forecasts generated by SVMs. 

Probabilistic models based on higher-order Markov chain and Bayesian methods are proposed 

in [46,47] respectively. An Intelligent solar power forecasting model based on Fuzzy logic is 

proposed in [48]. The forecasting model is applied for different types of days such as clear, hazy, 

partly cloudy and cloudy. Solar irradiance forecasting is a crucial factor in solar power forecasting.  

In [49], authors have proposed a corrective algorithm for improving the accuracy of global horizontal 

irradiation. An ANN is used to improve solar irradiance forecasts which are obtained from numerical 
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weather prediction. In addition, descriptive reviews on available solar power forecasting methods can 

be found in [50,51]. 

According to the present literature, ensemble models show better forecasting performance than 

single machine learning methods [5,6,8,12,19,23,24,40–45]. Ensemble models are implemented in 

two different ways. One way is to cluster the dataset and apply a separate ML technique to each 

cluster [6,8,12,19,23,24,42]. The second method is to use different ML techniques on the same 

dataset and to derive more accurate forecasts by aggregating the ML results [5,40,41,43–45]. In this 

paper, the authors have combined the above two approaches to provide a more accurate solar power 

forecast. Cloud cover data are used to cluster the dataset and ensembles consist of three ML 

techniques (RF, SVM, DBN) are used to model the solar power generation separately for each 

cluster. Moreover, it can be observed that the previously proposed ensemble models lack deep 

learning techniques such as DBNs, LSTM networks, etc. [5, 40–45]. This limitation is addressed in 

this work by integrating a DBN to the proposed ensemble model. The results of three case studies are 

used to design the proposed ensemble model. This research extends the previous work proposed by 

the same authors in [52]. The proposed RF, SVM and DBN models in [52] are utilized in this work 

to implement stacking and averaging ensemble models. Then, by combining these two ensembling 

approaches, a generalized ensemble model is proposed. The proposed solar power generation model 

is applied to different clusters of the dataset to precisely capture the relationship between solar power 

generation and weather parameters. The accuracy of the proposed solar power forecasting model is 

compared with that of single machine learning techniques and several models present in literature. 

Forecasted weather parameters are used as inputs to the proposed ensemble model. The weather 

parameters can be forecasted using NWP and have shown good accuracy in the short-term [53]. The 

forecasting horizon can be varied. However, for long-term forecasting, there will be a large error in 

the NWP. In this work, all the error terms are presented without the NWP error. 

The paper is organized as follows. The design and implementation of the proposed ensemble 

model and several related case studies are described in Section 2. Section 3 presents a discussion on 

the outcomes of the proposed model. Section 4 concludes the paper. 

2. Implementation 

The implementation procedure of the proposed ensemble model is explained in this section. 

Results of three case studies are analyzed to design the forecasting model which can predict the solar 

power generation with minimum forecasting error. The dataset explained in section 2.1 is used for 

training and validating the forecasting models implemented in case studies. Section 2.2 explains the 

feature selection procedure which is used to identify the most relevant weather parameters that affect 

the solar power generation. The performance measure is described in section 2.3. Brief descriptions 

of three ML algorithms which are used to build the ensemble model are given in section 2.4. In 

Section 2.5, case studies and results are presented. Feature selection and ensemble design are done 

by R programming language which is widely used for statistical computing. R Studio, free and open-

source software is used as the development environment. 
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2.1. Dataset 

The data set of 21 German Photovoltaic (PV) facilities has been used in this study [22]. The 

nominal capacity of PV facilities ranges between 100 kW and 8500 kW i.e., the PV facilities range 

from rooftop solar arrays to solar farms. Historical NWP data and respective solar power outputs 

for 990 days are recorded in a three-hour resolution for each facility. The PV facilities are distributed 

throughout Germany as shown in Figure 1. The data set is normalized to improve the training 

performance of the DBN. Min-max normalization is used to normalize the weather parameters 

between 0 and 1. Solar power generation data are normalized by dividing the measured output power 

by the nominal output capacity of the corresponding PV facility. This helps to compare the 

forecasting accuracy without considering the PV capacity. All the observations are shuffled and 0.75 

and 0.25 proportions of that are selected for training and testing, respectively. 

 

Figure 1. The locations of PV facilities. 

2.2. Feature selection 

The dataset contains more than 30 weather parameters. Therefore, to reduce the complexity of 

the ML algorithms, most important weather parameters should be identified. Feature selection 

algorithms such as Boruta can be used to identify the strong correlations between solar power 

generation and weather parameters [54]. In feature selection, Boruta expands the given dataset with 

permuted copies of all independent features. Then, the data in those permuted copies are shuffled to 

remove the dependencies with the target variable. These shuffled permuted copies are called shadow 

features. After that, an RF classifier is applied on the combined dataset and Boruta applies a feature 

importance measure such as mean decrease in accuracy to evaluate the importance of each variable. 

Finally, the classification algorithm stops either when all features get confirmed or rejected or it 

reaches a defined limit of RF iterations. Table 1 shows the most important weather parameters 
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according to the Boruta algorithm. All the features with importance equal to or greater than 5 are 

selected as inputs to the ensemble model. 

2.3. Performance measure 

RMSE is used to evaluate the forecasting performance of the proposed ensemble models. It is 

the standard deviation of the prediction errors as shown in Eq 1. In RMSE calculation, the errors are 

squared before they are averaged. Therefore, the RMSE increases significantly when there are large 

prediction errors. Thus, RMSE is a more useful performance measure than MAE especially when 

large prediction errors are undesirable. 

                               
 

 
     

      
 
                                                  (1) 

where N is the total number of predictions,   
  is the n

th
 predicted value and    is the n

th
 actual value. 

Table 1. Most important weather parameters for solar power generation obtained by the 

Boruta algorithm. 

Weather parameter Importance 

Lower wind speed 8.08 

Sun position solar height 8.86 

Sun position theta Z 8.91 

Clear sky (direct) 9.12 

Sun position extraterrestrial 9.21 

Wind component U at 0m 9.33 

Clear sky (diffuse) 9.49 

Potential vorticity at 1000m 9.59 

Clear sky global 9.70 

Wind component U at 100m 9.94 

Dewpoint temperature at 0m 10.14 

Potential vorticity at 950m 10.98 

Temperature at 0m 11.03 

Clear sky diffuse aggregated 11.06 

Clear sky global aggregated 11.77 

Clear sky direct aggregated 12.15 

Sun position solar azimuth 12.45 

Solar radiation diffuse at 0m 12.89 

Surface pressure at 0m 12.94 

Albedo 14.62 

Solar radiation global at 0m 16.86 

Solar radiation direct at 0m 17.28 

Total cloud cover at 0m 18.36 

Relative humidity at 1000m 18.38 

Relative humidity at 950m 18.51 

Relative humidity at 0m 19.03 
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2.4. Machine learning techniques used to build the ensemble models. 

ML algorithms can be used to model ill-defined and complex systems (for e.g., solar PV facility) 

without considering the unknown nonlinear relationships within the system. Three ML algorithms 

i.e., DBN, SVM, and RF explained in [52] are used in this work to implement the proposed ensemble 

models. Moreover, the design parameters of each algorithm are explained in detail in [52].  

2.4.1. Support vector machine regression 

In SVR, the model inputs i.e. forecasted weather parameters are mapped to a high dimensional 

feature space using a Kernel function such as polynomial or Gaussian. Then, a linear regression 

function is computed which has at most ε deviation from the actual model outputs for all the training 

data. At the same time, the linear regression function should be kept as flat as possible. A 

symmetrical loss function is used to train the SVR model. Hence, a flexible cylinder of a minimal 

radius is symmetrically wrapped around the regression function to ignore the absolute values of 

errors less than ε.  

The Kernel function of the SVR model is selected as Laplace which is a general-purpose Kernel 

used in both classification and regression applications. The cost of violation of constraints and the ε 

are obtained using the trial and error method and found to be 10 and 0.1 respectively. 

2.4.2. Deep belief network  

DBN is a type of deep neural network which comprises of multiple hidden layers. Multiple 

Restricted Boltzmann Machines (RBMs) are stacked to build the DBN. Firstly, greedy layer-wise 

training is done sequentially starting from the bottom layer (input layer). Each RBM layer learns a 

higher data representation of the preceding layer. This pre-training procedure allows better 

initialization of the weights of all the layers. Gibbs sampling based Contrastive Divergence (CD) 

method [36] is used for this initial pre-training process of stacked RBMs. Then, the weights are fine-

tuned to improve DBN accuracy. The optimal values of the weights are calculated in this fine-tuning 

process which is generally done using the back-propagation method. In this study, two hidden layers 

are integrated to the DBN. The number of neurons per each layer is obtained using the trial and error 

method. The most appropriate number of neurons for the first and second hidden layers is found to 

be 7 and 4 respectively. The Sigmoid activation function is used in the RBMs. The number of 

training epochs is selected as 1500. 

2.4.3. Random forest regression 

RF is an ensemble learning method which can be used for both regression and classification 

problems. It provides predictions by aggregating decisions from a set of base models such as 

decision trees or SVMs. A technique called bootstrap aggregation (bagging) is used to train each 

base model on a different data sample in which the sampling is done with replacement. In this work, 

decision trees are used as the base models in the RF. The cross-validation method is used as the 

resampling method and the number of resampling iterations is selected as 10. 
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2.5. Ensemble models 

Two basic ensemble models have implemented in this work i.e., stacking ensemble and 

averaging ensemble. In subsections 2.5.1 and 2.5.2, brief descriptions of stacking and averaging 

ensembles are given. 

2.5.1. Stacking ensemble 

In the stacking ensemble, ML algorithms are stacked in a way such that the outputs of one-layer 

are considered as inputs of the following layer. This can be schematically illustrated as in Figure 2. 

The input training dataset X consists of m observations and n features. Then, an M number of ML 

models are trained using X. Each single ML algorithm provides prediction y which are then cast into 

a second-level training dataset consists of m observations and M features. The main contribution of 

the second-layer ML model is to minimize the regression error of the preceding ML models. In other 

words, a second regression model is trained to learn the error that first regression models have made. 

The integration of the estimated errors to the outputs of the first layer models can provide an 

improved prediction. 

2.5.2. Averaging ensemble 

In averaging ensemble model, the layer 2 model illustrated in Figure 2 is replaced with Eq 2. 

                                                                             (2) 

where            are the weights assigned to the outputs of layer 1.  

 

Figure 2. A schematic diagram of the ensemble approach. 

The contribution of each ML method residing in layer 1 is weighted proportionally to the trust 

or performance of the member. 
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2.6. Case studies and results 

Three case studies are conducted to find out the most accurate way of modeling solar power 

generation using ensemble forecasting techniques. Stacking and averaging based ensemble learning 

methods are used in this work. In the first case study, the ensemble models are used to forecast solar 

power generation without clustering the dataset. In case study 2, weather type classification is 

applied on the dataset and an ensemble model is implemented on the clustered dataset for forecasting 

solar power generation. In case study 3, the results of case studies 1 and 2 are analyzed to identify 

the contributions and limitations of the weather classification approach. Then, a new ensemble model 

is implemented incorporating the benefits of weather classification while eliminating the limitations. 

2.6.1. Solar power forecasting using ensemble models without weather classification approach 

DBN, SVM, and RF algorithms are used to build the stacking and averaging ensemble models. 

Figure 3 illustrates the ensemble models. In the stacking model, filtered weather parameters are 

given to the three ML algorithms as inputs. The three outputs i.e. solar power forecasts of DBN, 

SVM, and RF models are used as inputs to another DBN which provides the final output i.e., the 

forecasted solar power generation. The average RMSE of predictions given by this model is 0.0636. 

Furthermore, authors have used SVM and RF models as the second layer of the stacking model and it 

is found that the respective average RMSE values are 0.0701 and 0.0687. Hence, the forecasting 

error is minimum with the DBN model. The second ensemble is a simple model which provides the 

weighted average of DBN, SVM and RF forecasts as the solar power generation. The most suitable 

weights for each single ML technique are determined by the trial and error method. The weights 

providing the lowest RMSE are selected. In this problem, weights of DBN, SVM, and RF are found 

to be 5, 3 and 8 respectively.  

 

                              (a) 

 

(b) 

Figure 3. (a) Stacking ensemble model. (b) averaging ensemble model. 
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When considering a generalized ensemble model applicable for any PV facility, the ensemble 

model i.e., either stacking or averaging model providing the minimum training error (t_err) should be 

assigned to the respective PV facility. Figure 4 illustrates this generalized ensemble model. 

Solar PV output mainly depends on both direct and diffuse solar irradiance i.e., the total solar 

irradiance received by the tilted solar panel. If the tilted irradiance is zero (for e.g., in nighttime), the 

solar panel output will be zero. Therefore, if the total irradiance is zero, the solar PV output is set as 

zero without utilizing the forecasting model. This nighttime filter will decrease the forecasting error 

and the computational time in the testing stage. Thus, the forecasting accuracy and the computational 

efficiency of the ensemble model will be increased. 

The Ensemble models shown in Figures 3 and 4 are used to predict solar power output of 21 

solar facilities located in Germany. The RMSE values of solar power predictions for different PV 

facilities are tabulated in Table 2. In addition, the RMSEs of DBN, SVM, and RF predictions are 

shown in Table 2 allowing comparison between single and ensemble ML techniques. 

2.6.2. Solar power forecasting using ensemble models with weather classification approach 

The stacking and averaging ensembles explained in section 2.5.1 are used in this case study as 

well. In addition, training data set, feature selection, nighttime filter, and the performance measure 

remains the same for this section. In weather classification approach, the dataset is clustered to train 

and test each cluster separately. 

 

Figure 4. Generalized Ensemble model. 
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Table 2. RMSE values of single ML methods and ensemble models. 

PV facility 

Single models RMSE values Ensemble models RMSE values 

DBN SVM RF Stacking 
weighted 

average 
Generalized 

PV1 0.0589 0.0569 0.0573 0.0544 0.0561 0.0544 

PV2 0.0573 0.0551 0.0558 0.052 0.0545 0.052 

PV3 0.0419 0.0415 0.0427 0.0417 0.0412 0.0412 

PV4 0.0441 0.0405 0.0413 0.0393 0.0405 0.0393 

PV5 0.0519 0.0501 0.0513 0.0554 0.05 0.05 

PV6 0.0607 0.0587 0.0592 0.0659 0.0576 0.0576 

PV7 0.0823 0.0782 0.0805 0.0798 0.078 0.078 

PV8 0.0826 0.0779 0.0783 0.07 0.0773 0.07 

PV9 0.0604 0.0607 0.0595 0.0555 0.0586 0.0555 

PV10 0.0464 0.0467 0.0465 0.0475 0.0457 0.0457 

PV11 0.0871 0.0871 0.0881 0.0891 0.0855 0.0855 

PV12 0.097 0.095 0.0923 0.0875 0.0925 0.0875 

PV13 0.0927 0.0928 0.0911 0.1046 0.0906 0.0906 

PV14 0.0607 0.0597 0.0601 0.0543 0.0586 0.0543 

PV15 0.0602 0.0586 0.0615 0.0634 0.0586 0.0586 

PV16 0.0672 0.0659 0.0644 0.0606 0.0643 0.0606 

PV17 0.0615 0.0604 0.0606 0.0639 0.0596 0.0596 

PV18 0.0568 0.0561 0.0569 0.0598 0.0552 0.0552 

PV19 0.0643 0.0639 0.0639 0.0697 0.0626 0.0626 

PV20 0.0664 0.0662 0.0641 0.0671 0.0641 0.0641 

PV21 0.0714 0.0662 0.0649 0.0547 0.0649 0.0547 

Average RMSE 0.0653 0.0637 0.0638 0.0636 0.0627 0.0608 

The dataset is clustered into three categories based on the cloud cover data. Then, three 

generalized ensemble models are trained for these three categories separately. In other words, for 

each weather condition, a separate generalized ensemble model (Figure 4) is assigned. The clustering 

process is done using the below rules. 

 Clear (Sunny) - cloud cover between 0 and 0.25  

 Overcast (Cloudy) - cloud cover between 0.75 and 1  

 Partly cloudy - cloud cover between 0.25 and 0.75 

The average number of clear, overcast and partly cloudy observations in the dataset is 1400, 

3260 and 1356 i.e., 23.27%, 54.19% and 22.54%, respectively. The ensemble model with weather 

classification is illustrated in Figure 5 in which ensembles 1, 2 and 3 are three generalized ensemble 

models. The RMSE values of solar power predictions of stacking and averaging ensembles with 

weather classification are shown in Table 3. However, the ensemble model with weather 

classification approach may require further modifications according to the forecasting errors of each 

cluster. 
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Figure 5. Ensemble model with weather classification. 

2.6.3. Design a new ensemble model by identifying the contributions and limitations of weather 

classification  

The results of case studies 1 and 2 can be used to evaluate the contributions and limitations of 

the weather classification approach. However, the results of case study 1 are not categorized w.r.t 

different weather conditions. Hence, RMSE values shown in the fifth and sixth columns of Table 2 

are categorized according to the respective weather conditions and then tabulated in Table 4. 

Tables 3 and 4 show that the RMSE of the predictions in clear weather situation is less when 

cloud classification is applied. In other words, the forecasting error is less in clear weather condition 

if the clear ensemble i.e. ensemble 1 is trained only by clear data. But the error values are higher 

when partly cloudy and overcast models are trained separately by the data of each weather category. 

Therefore, a modification is required to acquire the forecasting performance improvement in the 

clear weather condition and reduce the forecasting errors in partly cloudy and overcast weather 

conditions. By comparing Tables 3 and 4 results, it can be observed that when the stacking and 

weighted average ensemble models are is trained with the whole dataset, the forecasting performance 

is better in overcast and partly cloudy weather situations. A new ensemble is developed considering 

these facts. Figure 6 illustrates the modified ensemble model. Ensembles 1 and 2 illustrated in Figure 

6 are two generalized ensemble models. Ensemble 1 is trained using only clear weather data and it is 

used to forecast solar power generation in clear weather conditions. On the other hand, ensemble 2 is 

trained by the whole dataset and it is used to forecast solar power generation in partly cloudy and 

overcast weather conditions. Table 5 shows the RMSE values of predictions of the modified 

ensemble model illustrated in Figure 6. 
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3. Discussion 

In this section, the results obtained from the case studies are discussed in detail. Section 3.1 

analyzes the results obtained from case study 1 which is conducted without clustering the dataset. 

Then, the results of the weather classification approach are discussed in section 3.2. The benefits of 

weather classification approach and the percentage error reductions of the proposed ensemble w.r.t 

single ML techniques are presented in section 3.3. 

Table 3. RMSE values of the stacking and averaging based models with weather classification. 

PV facility 

Clear Partly cloudy Overcast 

Stacking 
weighted 

average 
Stacking 

weighted 

average 
Stacking 

weighted 

average 

PV1 0.0501 0.0474 0.0724 0.0727 0.0532 0.056 

PV2 0.0312 0.0454 0.0679 0.0689 0.0621 0.0578 

PV3 0.0254 0.0283 0.0707 0.0596 0.0507 0.0415 

PV4 0.0361 0.0386 0.04 0.0563 0.0393 0.0426 

PV5 0.0307 0.0421 0.0614 0.0573 0.0538 0.0498 

PV6 0.0875 0.0773 0.0716 0.0794 0.0361 0.0511 

PV7 0.052 0.0585 0.0873 0.0852 0.0776 0.0844 

PV8 0.0777 0.075 0.1191 0.1031 0.0772 0.0703 

PV9 0.0561 0.051 0.0796 0.0694 0.066 0.0582 

PV10 0.0336 0.0389 0.0487 0.0502 0.0505 0.0477 

PV11 0.0964 0.0928 0.1106 0.1081 0.0764 0.0759 

PV12 0.1035 0.1042 0.1186 0.1135 0.0762 0.0848 

PV13 0.0898 0.0854 0.1006 0.1051 0.0849 0.0709 

PV14 0.0533 0.0546 0.0689 0.0625 0.0491 0.0564 

PV15 0.0418 0.0651 0.0741 0.07 0.0621 0.0608 

PV16 0.0831 0.0681 0.0955 0.0726 0.0587 0.0622 

PV17 0.0623 0.06 0.0592 0.0631 0.0581 0.0561 

PV18 0.0455 0.0447 0.0477 0.0561 0.0635 0.0538 

PV19 0.055 0.0566 0.0793 0.075 0.0636 0.0566 

PV20 0.0704 0.0638 0.0859 0.0773 0.0658 0.0631 

PV21 0.0625 0.0717 0.0829 0.0911 0.0487 0.0535 

Average 

RMSE 
0.0592 0.0604 0.0782 0.076 0.0606 0.0597 

3.1. Solar power forecasting using ensemble models without weather classification approach 

The results of case study 1 show that the SVM model has a better forecasting ability than RF 

and DBN models. Thus, predictions having the lowest average RMSE of 0.0637, the SVM model is 

the most suitable forecasting model in the single ML method’s category. However, the average 

RMSE of RF is also very close to that of SVM. Even though DBN model predictions have the largest 

average RMSE, it provides the lowest RMSE values for PV10 and PV11 plants. These results show 

that it is difficult to specify a forecasting technique in common for all PV facilities to obtain solar 

power forecasts with the highest accuracy. It can be observed that the stacking ensemble method 
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provides better results for 1, 2, 4, 8, 9, 12, 14, 16, 21 PV plants and the weighted average method 

provides better results for the remaining PV plants. Both the stacking method and the weighted 

average method gives approximately equal average RMSE values for all 21 PV facilities. The 

generalized model RMSE is the minimum of RMSE of either stacking model or weighted average 

model. Generalized ensemble model without weather classification reduces the average RMSE by 

7.4%, 4.77%, and 4.93% w.r.t DBN, SVM and RF models respectively. 

Table 4. RMSE values of the stacking and averaging based ensembles for different 

weather conditions (without weather classification). 

PV facility 

Clear Partly cloudy Overcast 

Stacking 
weighted 

average 
Stacking 

weighted 

average 
Stacking weighted average 

PV1 0.0678 0.0473 0.0771 0.0707 0.0583 0.0517 

PV2 0.0336 0.0454 0.0706 0.064 0.0468 0.0535 

PV3 0.0435 0.0332 0.0446 0.0522 0.043 0.0386 

PV4 0.0253 0.0309 0.0594 0.0515 0.0401 0.0395 

PV5 0.0436 0.0404 0.046 0.0554 0.0553 0.0511 

PV6 0.0846 0.0711 0.0813 0.0666 0.0533 0.0488 

PV7 0.0768 0.0709 0.0933 0.0872 0.0832 0.0768 

PV8 0.1229 0.076 0.0967 0.0823 0.067 0.0756 

PV9 0.049 0.0538 0.0994 0.0706 0.0514 0.0555 

PV10 0.0335 0.0397 0.0511 0.0537 0.0384 0.0445 

PV11 0.1053 0.095 0.0736 0.0927 0.0685 0.0774 

PV12 0.0997 0.1053 0.1073 0.1073 0.081 0.0784 

PV13 0.1027 0.0923 0.1185 0.1065 0.0796 0.0827 

PV14 0.0429 0.0512 0.0739 0.074 0.0493 0.055 

PV15 0.0571 0.0545 0.076 0.0643 0.0593 0.0577 

PV16 0.0684 0.0656 0.0638 0.0679 0.051 0.0625 

PV17 0.0517 0.0617 0.0639 0.0633 0.0597 0.0567 

PV18 0.047 0.047 0.084 0.0655 0.0599 0.0537 

PV19 0.0496 0.057 0.0722 0.0735 0.0522 0.0601 

PV20 0.0636 0.0641 0.0728 0.0696 0.0606 0.0622 

PV21 0.0737 0.0794 0.0754 0.0809 0.0539 0.0527 

Average 

RMSE 
0.0639 0.061 0.0762 0.0724 0.0577 0.0588 
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Figure 6. Modified ensemble model with weather classification. 

Table 5. RMSE values of modified ensemble model with weather classification. 

PV facility RMSE 

PV1 0.0557 

PV2 0.0486 

PV3 0.0379 

PV4 0.0398 

PV5 0.0464 

PV6 0.0572 

PV7 0.0743 

PV8 0.0725 

PV9 0.0556 

PV10 0.0408 

PV11 0.0760 

PV12 0.0910 

PV13 0.0878 

PV14 0.0541 

PV15 0.0562 

PV16 0.0571 

PV17 0.0567 

PV18 0.0545 

PV19 0.0568 

PV20 0.0631 

PV21 0.0597 

Average RMSE 0.0591 

3.2. Solar power forecasting using ensemble models with weather classification approach 

The results of case study 2 show that the average RMSEs of stacking and averaging ensembles 

are 0.0647 and 0.0639 respectively. It can be clearly observed that these error values are larger than 
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those of the case study 1. Therefore, the weather type clustering approach does not improve the 

forecasting accuracy. Instead, it increases the forecasting error. To identify the most effective way of 

applying weather type classification, the results of case study 1 should be categorized into different 

weather conditions. Hence, case study 3 is conducted to find out the most effective method of 

clustering dataset. 

3.3. Ensemble forecasting with partial weather classification approach 

As can be seen in Table 4, the forecasting performance is higher in overcast weather situations 

than partly cloudy and clear weather conditions. This can happen due to two reasons. Firstly, the 

number of overcast observations in the dataset is more than twice as the partly cloudy or clear data 

and the error is obviously get reduced when the data set is large. Secondly, the variation of cloud 

cover is not rapid in overcast weather. Although there is a smaller number of clear weather data, the 

forecasting performance is high for clear weather conditions, as there are no rapid changes in the sky 

when the sky is clear. Forecast error depends on the variability of solar irradiance [55]. Variability is 

the largest in partly cloudy conditions and that is the main reason for the differences in forecast error. 

The forecasting error is high for partly cloudy weather conditions. This may happen due to two 

reasons. When the sky is partly cloudy, the cloud cover can rapidly change, unlike in clear or 

overcast weather conditions and that can greatly affect the accuracy of solar forecasting. Secondly, 

the number of observations available for this weather category is less when compared to the overcast 

weather condition. 

In case study 3, a new modified ensemble model with partial weather classification is 

implemented according to the results presented in Tables 3 and 4. The average RMSE of the 

ensemble implemented in case study 3 is 0.0591 which is less than that of the generalized ensemble 

without weather classification (0.0608). Thus, it shows approximately 3% reduction in the 

forecasting error.  

Compared to single DBN, SVM and RF models without cloud classification, this new ensemble 

model with cloud classification reduces RMSE error by 10.49%, 7.78%, and 7.95% respectively. In 

addition, the results of the proposed model can be compared with the available literature which uses 

the same dataset for training the forecasting models [22,38]. The RMSE error reductions compared 

to the work presented in [22] and [38] are 20.64% and 27.58% respectively. 

4. Conclusions 

This paper proposes a novel ensemble model for solar power forecasting. The results show that 

the proposed ensemble model performs better than single machine learning techniques. In this study, 

the used training data set mostly consists of cloudy weather data i.e. more than half of the total 

observations belong to the overcast range. Therefore, the performance increase due to the weather 

classification is somewhat small (approximately 3% error reduction). The forecasting accuracy will 

further be increased for tropical countries because of the large proportion of clear data in the dataset. 

In other words, if clear data contribute to the higher proportion of the dataset, the reduction of RMSE 

from sunny solar predictions increases and hence, the forecasting ability of the ensemble will be 

increased. The ensemble can be improved by adding more machine learning algorithms such as 

convolutional neural networks, LSTMs, etc. It should be noted that the error terms do not incorporate 
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NWP errors. Therefore, in the real-world application, the error terms may increase further. The 

longer the forecasting horizon the larger the forecasting error. Even though the model is trained using 

data having the 3-hour resolution, the solar power forecasts can be generated for any time period 

resolution as it depends on the resolution of forecasted weather parameters. It can be concluded that 

the combination of weather classification approach and ensemble learning technique provides more 

accurate solar power generation forecasts than conventional single ML techniques. 
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