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Abstract: This paper aims to investigate the conditional dependence structure between crude oil 

prices and three US dollar exchange rates (China, India and South Korea) from a new perspective 

using a copula-GARCH approach. Various kinds of copulas both time-invariant and time-varying 

dependence dynamics are fitted. Over the 2008–2018 period, the findings provide evidence of 

significant dependence in terms of symmetric structure between the oil prices and the exchange rate 

returns. Further, the tail dependence and dynamic dependence between two variables add a 

supplement to the explanatory ability of the model. Empirical results indicate the intercorrelation 

between crude oil and exchange rate movements, and provide benefits in risk diversification and 

inflation targeting. The findings also have significant implications for risk management, monetary 

policies to determine the behavior of fiscal policy in oil-exporting countries. 
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1. Introduction 

Crude oil (WTI) is one of the most crucial commodities of the real economy and financial 
markets. The high volatility of oil prices has been taken into account responsible for economic 
recessions, high inflation, trade deficits and low values for stocks and bonds because the US dollar is 
the major invoicing and settlement currency in international oil markets [1]. The suggestions and 
causes of the fluctuations in oil have attracted attention from academic researchers and practitioners, 
especially in the aftermath of the oil price shocks of the 1970s. Past studies reveal that oil price 
movements considerably impact economic activity and equity markets [2]. For instance, oil price 
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shocks negatively influence GDP [3], oil prices Granger- cause economic growth in Japan, South 
Korea, and Thailand [4], both asymmetric and nonlinear linkages between oil price shocks and 
macroeconomic variables [5]. Furthermore, Beckmann and Czudaj [6] confirm that a weak US dollar 
exchange raises the purchasing power of oil-importing nations, while negatively impacting oil 
exporting countries. The oil prices have been dramatically affected by countless elements, such as 
nation policy, seasonal aspects, geopolitics, supply and demand [7]. As a result, research of how the 
oil prices and exchange rate movements is of great interest for policymakers and international 
investors since it has significant implications for policy design and investment management. 

As regards theory, the interrelation between the oil market and the exchange rate market is 
firmly established. Krugman [8] points out that an oil-exporting (oil-importing) country may 
experience exchange rate appreciation (depreciation) when oil prices rise, and depreciation (appreciation) 
when oil prices fall. Golub [9] documents the potential importance of oil prices in explaining 
exchange rate movements. Bloomberg and Harris [10] explore the considerable influence of currency 
markets on oil price movements. Over the last few years, several studies show that there is a negative 
relationship between two variables, which results in portfolio diversification and hedging strategy 
between commodities crude oil (WTI) and the US dollar [11]. 

There are several reasons why the present study selecting three main currencies of countries (China, 
South Korea and India) in Asian as a case study is that the diplomatic history of Asia has lacked 
correspondence rather than an association between different parts of the continent, especially 
between Northeast Asia and South Asia. According to Brewster [11], China, South Korea and India’s 
size and power have served to divide the region rather than unite it strategically.  Additionally, these 
countries are better examples of the political, economic, and strategic interrelatedness than the 
disconnection among China, South Korea and India. Further, three countries are emerging economies 
and in terms of economic power, the World Bank ranks China 4th, South Korea 5th and India 77th 
by the ease of doing business. Finally, the development of these countries has been gradually 
sustainable and stable in terms of the objective of cooperation in trade and investment, agriculture, 
climate, culture, defense, education, energy, health, science, technology, poverty alleviations and 
social development. Explicitly, their oil-dependent economies depend on foreign labor, so their 
foreign exchange markets illustrate themselves as a good comparative case study for investigating 
sudden changes or intercorrelations in variance and the existence of relatedness in comparison to 
markets in other regions [12]. 

Although voluminous empirical studies have employed a wide range of econometric techniques 
to highlight the interaction of oil price and exchange rate, and its influence on macroeconomic and 
currency policy, little is known about oil price–exchange rate co-movements using Copula-GARCH 
approach. Several outstanding past studies, for example, Wu et al. [7] apply copula-based GARCH 
models to capture the economic value of co-movement between oil price (WTI) and exchange rate (US 
dollar index). Aloui et al. [2] also use a copula-GARCH approach to study the conditional 
dependence structure between crude oil prices and US dollar exchange rates. Exchange rates 
correspond to the amount of US per each five major currencies (the Euro, the Canadian Dollar, the 
British Pound Sterling, the Swiss Franc and Japanese Yen). In a same vein, Reboredo [1] considers 
the exchange rate data referred to European Union countries (Germany, France, Italy, Netherlands, 
Belgium/Luxembourg, Ireland, Spain, Austria, Finland, Portugal, Greece, Slovenia, Cyprus, Slovakia 
and Malta), Australia, Canada, United Kingdom, Japan, Norway and Mexico when implementing to 
examine the links between crude oil and these currency markets. Sebai and Naoui [13] study the 
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connectedness between oil prices and the US dollar exchange rate using a copula approach and the 
DCC-MGARCH model. Our empirical work attempts to fill this gap by reexamining the oil-
exchange rate dependence structure in three major countries in Asia (China, South Korea and India) 
through static and time-varying copulas. We believe that the results of this study will improve 
understanding of the oil price-exchange rate connectedness in the selected countries.  

This paper significantly contributes to the existing literature in the following ways. First, we 
take a novel approach in studying the dollar exchange rate movements in three major countries in 
Asia (China, India and South Korea), which has not been investigated in the literature. This paper 
also remarkably contributes to the systematical understanding of intercorrelation between crude oil 
prices and exchange rate returns in the selected nations and could be best depicted by a time-varying 
Gaussian copula. Second, this study makes methodological advancements by introducing the copula-
based GARCH models to comprehensively report the volatility and dependence structure of crude oil 
prices and dollar exchange rate returns. The copula-based GARCH models may also put on show 
asymmetric and tail dependence as well as skewness and leptokurtosis of oil and exchange rate 
returns [7]. This research has employed the copula-based GARCH models to get the better of the 
drawbacks of multivariate GARCH models and provide a more accurate result for the dependence 
structure [14]. 

The rest of this paper is structured as follows: Section 2 provides a review of past literature. 
Section 3 presents the methodology and data. Section 4 provides empirical results. Lastly, a 
conclusion is drawn in Section 5. 

2. Literature review 

This section briefly reviews several articles that investigate the connectedness between oil 
prices and exchange rates in Asian countries. In recent years, some methods have been used to 
address the issue of the relationship between two variables. For example, Nusair and Olson [15] 
investigate the effects of oil price shocks on Asian exchange rates using quantile regression analysis 
and verify that positive and negative oil price shocks have asymmetrical influences on exchange rate 
returns, which vary in significance, size, and sign throughout the distribution of exchange rate 
returns. Hussain et al. [16] employ a detrended cross-correlation approach to examine the co-
movements of the oil price and exchange rate in 12 Asian countries (China, Hong Kong, India, 
Indonesia, Japan, Korea, Malaysia, Pakistan, the Philippines, Singapore, Sri Lanka, Taiwan). The 
findings demonstrate a weak negative cross-correlation between oil price and the exchange rate for 
most Asian countries included during the sample period. Chen et al. [17] present the impacts of oil 
price shocks on the bilateral exchange rates of the US dollar against currencies in 16 countries, and 
point out that the responses of dollar exchange rates to oil price shocks differ greatly depending on 
whether changes in oil prices are driven by aggregate demand. Nusair and Kisswani [18] use the 
Johansen cointegration test to determine the long-run relationship between Asian real exchange rates 
and oil prices in the presence of structural breaks, and provide evidence of a stable long-run 
relationship in all but Japan and the Philippines. Specifically, the results reveal unidirectional 
causality from exchange rates to oil prices in Korea, the Philippines, and Singapore. Turhan et al. [19] 
employ VAR models to examine the role of oil prices in explaining the dynamics of selected 
emerging countries’ exchange rates using daily data. Authors show that a rise in oil prices results in 
the significant appreciation of emerging economies’ currencies against the U.S. dollar. Further, this 
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article recommends that oil price dynamics change significantly in the sample period and the 
relationship between oil prices and exchange rates became more apparent after the 2008 financial 
crisis including the case of South Korea, the Philippines and Indonesia. At the same time, Beckmann 
and Czudaj [6] deliver evidence for various causalities replying on the dataset including in nominal 
terms, effective depreciation of the dollar triggers an increase in oil prices when analyzing the 
connectedness between oil prices and the dollar exchange rate applying Markov-switching vector 
error correction model. Basher et al. [20] use a SVAR to model the dynamic linkages between real 
oil prices, an exchange rate index for major currencies, emerging market stock prices. Employing 
monthly data from 1972 to 2005, the authors find that positive shock to oil prices tend to depress 
emerging stock prices and the trade-weighted US. dollar index in the short run. Lizardo and Mollick [21] 
make a great contribution to the monetary model of exchange rates by adding oil price variable, and 
document that oil prices accurately describe movements in the value of the U.S. dollar (USD) against 
major currencies from the 1970s to 2008. Using Causality tests, cointegration and VECM approaches, 
Bénassy-Quéré et al. [22] study cointegration and causality between real oil prices and the dollar 
exchange rates using monthly data from 1974 to 2004, and point out that a 10 % increase in the oil 
price coincides with a 4.3% appreciation of the dollar in the long term, and that the causality runs 
from real oil prices to the dollar exchange rates. Chen and Chen [23] focus on the long-run 
relationship between real oil prices and real exchange rates using a monthly panel of G7 countries, 
and verify that real oil prices might have been the presiding source of real exchange rate movements 
and there exists a connectedness between real oil prices and real exchange rates.  

As a short summary, despite the wealth of literature concerning the relationship between oil 
prices and exchange rates, especially in the Asian area, very limited research has been carried out in 
China, South Korea and India market context. Furthermore, the most often used methods for 
connectedness analysis between these variables do not implicate the fundamental time-varying 
changes in the dependence structure and are not relevant when marginal distributions are 
sophisticated. As a result, the aim and primary contribution of this current investigation are to fill this 
gap. 

3. Methodology 

The commodity market and exchange rate movements vary all the time and their dependencies 
might not be vividly depicted by static and linear models. As per Bai and Lam [14], asymmetric and 
time-varying correlations of the financial time series and volatility clustering are modelled by the 
copula function. We first start with the brief introduction to copula functions, then represent uniform 
marginals for return distributions, the alternative families of copula models of conditional 
dependence structure between the variables. 

3.1. Copula function 

A copula presents the cumulative distribution function of a multidimensional distribution with 
uniform marginal distributions [24]. Sklar [25] shows that a copula function illustrates the interaction 
between a bi-dimensional distribution and its two marginal distributions, apprehending the 
dependency structure [26]. They can state that a 2-dimensional joint distribution function F  with 

continuous marginal 1F  and 2F  has been defined as follows 
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 1 2 1 1 2( , ) ( ), ( )F x x C F x F x                 (1) 

where C  is the copula function and 1 2,F F  are the marginal functions which have the uniform 

distributions. Copulas could be applied to measure rank dependence as well as tail dependence. 
Kendall’s tau rank correlation is utilized to capture monotonic dependence structures: 

( ) / ( )m n e f            (2) 

where m and n are the numbers of concordant and discordant pairs respectively. The coefficient of 
Kendall’s tau could be defined as below [26]: 

   
1 1

1 2 1 1 2 2 1 2 1 2

0 0

, 4 ( ), ( ) 1 ( , ) ( , ) 1X X E C F X F X C u u dC u u             (3) 

where 1u  and 2u  are the cumulative distribution functions. Further, copulas also could measure the 

tail dependence. The lower tail dependence is referred to as the probability of having an utmost small 
value of one variable given an extremely small value of another variable. The upper tail dependence 

 ( 0,1 )u   can be written as 

   1 1
1 2 2 2 1 11
, lim ( ) | ( )u q

X X P X F q X F q 
 


        (4) 

where 1 2,X X  are continuous variables. 1
iF   is the quantile function and the lower tail dependence is 

defined symmetrically. 

3.2. Marginal specifications 

We look in the interdependence between crude oil and each of the three US dollar exchange rate 
returns. We combine the copula functions with the AR-GARCH model of conditional 
heteroscedasticity because many financial time series have been shown to have problems of 
leptokurtosis, volatility clustering, long memory and leverage effect [14]. BIC criterion is determined 

the amount of AR lag terms. Given a time series ty , the GARCH (1,1) model can be written as 

1 1 , 1 , ,, |t t p t p t i t t i t i ty y y z                      (5) 

2 2 2
1 1t t t                (6) 

, ~ ( | , )i t i i iz skewed t z                   (7) 

where (5) is the conditional mean equation and (6) presents the conditional variance equation. 2
t  is 

the conditional variance of return series at time t, with the following conditions: 0, 0, 0      
and 1    to confirm a stationary GARCH process. The skewed Student-t distributions are fitted 
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for the shocks with   degree of freedom and   being the skewness parameter in order to successful 
capture the possibly asymmetric and heavy-tailed characteristics of oil price and exchange rate 
returns. 

3.3. Copula models of conditional dependence structure 

A diversity of copula models was adopted in this study, which allowed us to capture the both 
symmetric and asymmetric structure of extreme dependence between variables, including Gaussian, 
Student-t, Clayton (survival), Gumbel (survival), Frank, Joe, Clayton-Gumbel survival and Joe-
Clayton. 

The bivariate Gaussian copula is defined as 

   
1 1( ) ( )

1/2 ' 1( , ) 1/ 2 exp ( , ) ( , ) / 2
u v

C u v R u v R u v dudv
 


 



 

      (8) 

where   presents the univariate standard normal distribution function u and v and R refers to as the 

correlation matrix. 
The bivariate Student-t copula is defined as 

             
1 1( )

( 2)/21/2 1, ; , 2 / 2 / / 2 1 1/ , ' ,
n nt u t

n

tC u v R n n R n n n u v R u v dudv
 

  

 

       (9) 

where 1( )nt u  is the inverse of the CDF of the standard univariate Student-t distribution with v degree 

of freedom. R is also the correlation matrix. 
The Clayton copula function proposed by Clayton [27] is defined as  

  1/
( , ) 1 , 0C u v u v

  
            (10) 

where   is copula parameter. 
Gumbel copula (Gumbel [28]) is defined as 

    1/

( , ) exp ln ln , 1C u v u v
               (11) 

Frank copula (Genest [29]) is defined as 

         , 1 / ln 1 exp exp 1 / exp 1 , \{0}C u v u v R                 (12) 

The Joe copula (Joe [30]) is given by 

         
1/

, 1 1 1 1 1 , 1C u v u v u v
                  (13) 
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The Clayton-Gumbel and Joe-Clayton copulas (Joe and Hu [31]), which are known as BB1 and 
BB7.  

BB1 model is defined as 

     
1/1/

, 1 1 1C u v u v
  


           

      (14) 

BB7 model is defined as 

      
1/1/

, 1 1 1 1 1 1 1 1C u v u v
  

                   
    (15) 

where 0   and 1  , 1/ 1/2 , 2 2L U      

Cech [32] defined the survival copulas as  

180 ( , ) 1 (1 ,1 )C u v u v C u v            (16) 

3.4. The dependence parameters of the time-varying copula 

In this paper, we also considered dynamic dependence for Gaussian copula by assuming the 
copula dependence. According to Tang et al. [26], parameters vary over time following to the lag-

one dependence 1t   and historical information   1 10.5 0.5t tu v   . The process follows: 

   1 1 10.5 0.5t c c t c t tA u v                (17) 

where  ln (1 ) / (1 )t tA x x     is the logistic transformation, which is to make sure that the 

dependence parameter belongs to the interval (−1,1). 

3.5. Estimations of copula parameters 

We employ the two-step estimation method to capture copula parameters, that is the Inference 
Functions for Margins (IFM) method developed by Shih and Louis [33]. 

Let 1 2,a a  be two random variables, where ia  is cumulative distribution function (cdf) ( , )i i iF a b  

and ( , )i i if a b  is its destiny functions. 1 2,b b  and c  are the parameters to be estimated for the 

marginals and the copula respectively. The ia  of the marginal are measured by 

1

ˆ arg max ln ( , ), 1, 2
T

i i ti i
t

a f a b i


         (18) 

We estimate unknown parameter c of the copula as 
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 
T

c 1 t1 1 2 t2 2 c
t=1

ˆ ˆθ̂ =arg max lnc F (a ; b ),F (a ,b );θ      (19) 

3.6. Goodness-of-fit tests 

Crame-von Mises (CvM) statistic is applied to capture goodness-of-fit tests for the copula 
models which can be written as 

    2

1

ˆ, ; ,
n

n k t t n t t
t

S C u v k C u v


         (20) 

Genest et al. [34] provide a parametric bootstrap procedure to calculate the p-value of the test. 

3.7. Data 

Our dataset contains weekly West Texas Intermediate (WTI) crude oil prices and exchange 
rates correspond to the amount of USD per one unit of each of three major currency in Asian trade: 
the Chinese Yuan Renminbi (CNY), the Indian Rupee (INR) and the Korea (South) Won (KRW) for 
the period 1 June 2008 to 30 December 2018 (573 observations), which are obtained from 
Bloomberg database. The way we calculated the returns on crude oil price and exchange rates was to 
take the logarithm difference of the two successive weekly prices. The choice of the three countries 
is justified as those are the top countries in terms of exports of goods and services as well as 
emerging economy in Asia [26], and these nations have not been taken into account the questions of 
the interrelatedness between the oil price and exchange rate movements when we made a comparison 
with most previous investigations. 

The graph in Figure 1 shows the time-paths of returns and the price developments of the crude 
oil (WTI), the US. Dollar against Chinese Yuan Renminbi (CNY), Indian Rupee (INR) and Korea (South) 
Won (KRW) over the study period. It is clear from the weekly return graphs that return of oil was 
highly volatile during the research period after completing the global financial crisis (2007) and less 
for currencies, while the weekly prices experienced a dramatical fluctuation. 

The reason for this phenomenon because new investment or speculation opportunities might be 
derived by traders based on the connectedness between the oil and US dollar exchange rate 
markets [7]. As a result, there are volatility clustering effects for all selected variables, giving a 
justification for the manipulation of GARCH models. 
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Figure 1. Weekly close prices and returns, June 1, 2008–December 30, 2018. 

The descriptive statistics and distributional characteristics for crude oil and exchange rate 
returns are summarized during sample period 2008–2018 in Table 1, which reveals that the standard 
deviation of oil returns is higher than that of exchange rate returns, consistent with general results in 
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the literature that commodities have higher volatilities. All four series illustrate negative skewness 
except CNY and kurtosis that is higher than normal, thereby implying that negative returns take 
place more often than large positive returns and the distribution of returns has larger, deeper tails 
than the normal distribution. Therefore, it is more plausible to apply skewed Student-t distributed 
error terms in the AR-GARCH models [14]. Similarly, the Jarque-Bera statistics are large and 
significant, so the assumption of skewed Student-t is more appropriate in our investigation. Ljung-
Box (LB) Q statistics of order 10 show the persistence of autocorrelation in all the return series. 
Finally, results of the Lagrange Multiplier tests indicate the presence of ARCH effects in the return 
series, thus supporting to apply the GARCH-based approach. 

Table 1. Descriptive statistics of return series. 

 WTI CNY INR KRW 
Mean −0.0011 0.0000975 0.001005 0.000306 
Maximum 0.24472416 0.02890333 0.04179342 0.07867303 
Minimum −0.28381920 −0.01373338 −0.05160288 −0.10886315 
Std.dev 0.051120527 0.003606234 0.010529856 0.015732963 
Skewness −0.44979824 1.15297540 −0.01116092 −0.21979474 
Kurtosis  4.030170 9.977774 2.248166 7.894281 
Jarque-Bera 410.54* 2517.5* 122.24* 1501.7* 

Q(10) 39.99* 55.42* 11.00*** 48.70* 

ARCH 192.9* 198* 167.8* 112.8* 

AR(p) 4 4 4 1 

Notes: ARCH is the heteroscedasticity test. Liung-Box Q-statistic is the test for autocorrelation using 10 lags. *,**,*** deno

te significance at 1%, 5% and 10% respectively. AR(p) represents the best AR lag selected by BIC criterion. 

4. Empirical results 

4.1. Results of the marginal models 

In a preliminary step, we consider several limitations of the general marginal model before 
using copula methods for measuring the degree of interdependence among variables. The optimal 
AR(p) lags are determined by BIC criterion as indicated in Table 1. Table 2 reports the parameters of 
the corresponding skewed-t AR(p)-GARCH(1,1) parameters for each return series.  

As we can see from Table 2, skewness and shape parameters are statistically significant, thereby 
implying that the skewed-t distribution of the errors term is appropriate for the four series. This is 
consistent with the evidence documented in Table 1. Additionally, the coefficients of  and   in 

the GARCH specifications are statistically significant and meaning that WTI, CNY, INR and KRW 
returns have volatility clustering effects. Meanwhile,    is close to 1, which thus shows that 

conditional volatility is past-dependent and quite persistent to all four series. Further, the Ljung-Box 
Q and ARCH-LM statistics are not statistically significant, which illustrates that there does not exist 
autocorrelation and GARCH effects under consideration. Hence, we can conclude that the marginals 
are clearly specified. 
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Table 2. Parameter estimates for the marginal models. 

 WTI CNY INR KRW 
Mean equation     
  −0.000814 

(0.001731) 
−0.000053 
(0.000041) 

0.000693 
(0.000451) 

−0.000428 
(0.000498) 

1  0.048516 
(0.042782) 
 

0.056369 
(0.043765) 

0.069738**

(0.042719) 
0.052243 
(0.044742) 

2  −0.027193 
 

0.078344 
 

0.031599 
 

−0.067292***

(0.043430) 
Variance equation     
  0.000040*** 

(0.000027) 
0.0000001 
(0.000001) 

0.000002 
(0.000011) 

0.000007 
(0.000014) 

  0.091130* 

(0.026328) 
0.157551*

(0.034526) 
0.095571 
(0.130006) 

0.136854**

(0.079289) 
  0.895217* 

(0.029140) 
0.841449* 
(0.029802) 

0.891268*

(0.136581) 
0.831484*

(0.044155) 
  8.078940** 

(2.556187) 
3.863446* 
(0.404775) 

5.893756**

(3.130839) 
8.110733**

(3.599319) 
  0.832369* 

(0.050615) 
1.000965* 
(0.046719) 

1.045379*

(0.072858) 
1.061891*

(0.063671) 
Q(5) p-value 0.9562 0.9998 0.9998 0.9636 
ARCH p-value 0.5916 0.9978 0.5233 0.9596 

Notes: Ljung-Box is the test for autocorrelation using 5 lags. ARCH is heteroscedasticity test. The numbers in parenthese

s are standard errors. *,**,*** denote significance at 1%, 5% and 10% respectively. 

4.2. Copula results 

Figure 2 demonstrates several copula contour plots under skewed-t marginal distribution to 
monitor how the dependency structures would be among divergent filtered series before fitting into 
various kinds of the copula. These plots illustrate that the marginal difference causes great 
dissimilarly when using the same copula. As such, this paper employs the copula model to provide 
an adaptable approach of constructing bivariate distributions given the marginal distributions, and 
the dependence structures separately. Next section, we document the static copulas and time-varying 
copula fitted to the residuals from marginals.  
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Figure 2. Contour plots based on Student-t copula. 

Table 3 represents the copulas parameters of static and time-varying dependence between 
various returns series. We employ the method of simulation for standard errors of the two-staged 
parameter estimator proposed by Patton [35]. For each pair under consideration, the copulas are 
classified based on both AIC and Log-likelihood (LL) criterion. According to Bai and Lam [14], 
Cramer-von Mises tests can be applied to get extra evidence of good-of-fit of models as indicated in 
Table 4. The large p-value demonstrates that the copula provides a better fit to the model [26,14]. 
The following sections elaborate the various dependence structures between each of pair. 

The estimations for the static copulas document in panel A of Table 3 show that the dependence 
parameters for 10 copula functions (Gaussian, Student-t, Gumbel, Frank, Clayton, Joe, BB1, BB7, 
Survival Clayton, Survival BB1, Survival Gumbel) are, as expected, highly significant and positive 
for almost all the pairs under consideration. The dependence somewhat varies across pairs of the 
crude oil and exchange rate. These findings properly support the hypothesis of significant 
dependence between oil and exchange rate returns over the research period. 

For the dependence between WTI and CNY could be adequately explained by Survival Gumbel 
copula based on the AIC criterion, which is also found out by the CvM test. The finding suggests that 
the connection between WTI and CNY is symmetric and similar during sample period. The 
conditional linear correlation picked up from time-varying copulas is also plotted in Figure 3, which 
simply get a systematical understanding of the dependence structure. The linear correlation from 
time-varying Gaussian copula provides strong evidence of interrelatedness between WTI and CNY 
since 2008. The correlation coefficients fluctuate around zero prior to 2009, then gradually decreases 
to about 0.09 and stay below zero ever since. The findings from the copula could draw the 
conclusion that the crude oil WTI and CNY exchange rate are weak negatively correlated, which 
implies that the volatility of crude oil causes the extreme movements of China currency. The findings 
are in line with Hussain et al. [16] and Chen et al. [17]. 
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Figure 3. Conditional dynamic dependence estimates with critical value of 10% between 
crude oil and exchange rates from China, India and Korea. 

Survival Gumbel copula also provides the best fit for the case of WTI and INR, while Student-t 
copula fully explains for the dependence between WTI and KRB based on AIC criterion. 
Additionally, LL differences between survival Gumbel and Student-t copula for this case are quite 
small. WTI-INR has systematic tail dependence with Student-t copula selected for the static case. As 
we can see from the average linear correlation, the dependencies between WTI and KRW, CNY are 
all very strong. Namely, KRW has the highest correlation with the crude oil price (0.24) followed by 
CNY (0.166) and INR (0.15). 

In order to capture a better picture of the time-varying evolution, we plot the dynamic 
dependence parameter estimates between the crude oil and exchange rate movements over the 
sample period from the GARCH-copula model in Figure 3. It can be seen that the crude oil and the 
selected exchange rate have a different conditional dependence structure. We can summarize some 
interesting results from the figures of the dynamic copula as follows: First, the conditional 
correlation of the selected exchange rate with crude oil varies overtimes. Second, overall, it is 
significantly negative in all periods and positive in some periods. Specifically, the dependence 
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structure between crude oil and exchange rate returns maintains a lower level or zero dependence 
during the research period. This result supports for the studies of Lizardo and Mollick [21]; Bénassy-
Quéré et al. [22]; Nusair and Kisswani [15]. This would be because US government policy caused 
the US dollar to decrease dramatically in value in connection with most other countries’ currencies 
so as to assist its exports as well as reduce the international trade deficit [7]. 

The goodness-of-fit test results to prove that the copula can fit well to the variables except for 
several cases. The paper follows the approach suggested by Aloui et al. [2]; Bai and Lam [14] using 
Cramer-von Mises tests to estimate p-value of the bivariate goodness-of-fit for different copulas. The 
test indicates that all market pairs are significant for all copulas used in the paper at the 5% level, 
providing that all the copulas can fit all the pair very well. 

Briefly, the findings from the copulas could shed light on some key features. Firstly, the results 
point out the negative interconnectedness between crude oil prices and the selected exchange rate 
returns. The reasonable explanation for this negative relationship might be (i) oil-exporting countries 
wish to stabilize the purchasing power of their export revenues to keep away from losses they may 
take on currencies pegged to the US dollar. (ii) the depreciation of the US dollar creates oil more 
inexpensive for consumers in non-US dollar regions, to change their crude oil demand. (iii) a falling 
US dollar reduces the return on the US dollar denominated financial assets, increasing the 
attractiveness of oil and other commodities to international investors [7]. Furthermore, the 
dependency between WTI and CNY has been higher than the rest of pairs, which is attributed to the 
high volume of traded currencies in terms of neither net exporters nor significant importers of oil 
relative to their total trade in China. These dependences also exist significant time-varying 
correlations between the crude oil price and the exchange rate returns (CNY, INR and KRW). 
Finally, the dependence structure is asymmetric (tail dependence) for almost all market pairs, 
meaning that joint extreme co-movements are more likely to occur during the study period. 

Table 3. Estimates for copula models. 

 WTI-CNY WTI-INR WTI-KRW 
Panel A: static copula    
Gaussian    
  0.168*(0.0408) 0.16*(0.041) 0.234*(0.0392)
LL 7.84 7.05 15.5 
AIC −13.7 −12.1 −29.1 
Student-t    
  0.166*(0.0434) 0.15*(0.0448) 0.24*(0.042) 

1v  0.103(0.0402) 0.0983(0.0403) 0.155(0.016) 
LL 8.95 10.3 17.9 
AIC −13.9 −16.5 −31.9 
Clayton    
  0.96*(0.0504) 0.202*(0.0516) 0.218*(0.0825) 
LL 7.17 8.47 7.91 
AIC −12.3 −14.9 −13.8 
Gumbel    
  1.10*(0.0292) 1.09*(0.0281) 1.18*(0.0341) 
                        Continued on next page
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 WTI-CNY WTI-INR WTI-KRW 
Panel A: static copula    
LL 6.25 5.41 21.2 
AIC −10.5 −8.81 −40.5 
Frank    
  0.96*(0.256) 0.897*(0.256) 1.43*(0.258) 
LL 7.01 6.11 15.5 
AIC −12 −10.2 −28.9 
Joe    
  1.12*(0.0384) 1.1*(0.0361) 1.26*(0.047) 
LL 4.04 3.09 19.7 
AIC −6.07 −4.17 −37.4 
Survival Clayton    
  0.173*(0.0639) 0.151*(0.0647) 0.329*(0.0543) 
LL 5.72 4.48 18.3 
AIC −9.45 −6.96 −34.7 
BB1    
  0.12(0.0684) 0.162(0.069) 0.001(0.000434) 
  1.05*(0.0384) 1.03*(0.036) 1.18*(0.0355) 
LL 8.23 8.89 21.2 
AIC −12.5 −13.8 −38.4 
Survival BB1    
  0.123(0.0368) 0.04(0.131) 0.29(0.0844) 
  1.05*(0.0649) 1.09*(0.0374) 1.03*(0.0412) 
LL 9.88 9.73 18.6 
AIC −15.8 −15.5 −33.1 
BB7    
  1.06(0.0609) 1.04(0.0466) 1.22(0.0575) 
  0.154*(0.0498) 0.181*(0.0602) 0.0871*(0.0645)
LL 8.08 8.87 20.7 
AIC −12.2 −13.7 −37.4 
Survival Gumbel    
  1.11*(0.03) 1.101*(0.0307) 1.15*(0.0299) 
LL 9.27 9.5 10.8 
AIC −16.5 −17 −19.5 
Panel B: dynamic copula    
Dynamic Gaussian 
copula 

   

c  0.0031*(0.044) 0.0180*(0.0124) 0.0541*(0.0201) 

c  0.801(0.1320) 0.380***(0.0730) 0.1260(0.0910) 

c  −0.501(0.3001) 0.228(0.1045) 1.360(0.1722) 

LL 3.24 1.20 3.01 
AIC −7.1 −0.12 −4.7 

Notes: Standard errors are in parenthesis. LL and AIC value for different specifications are presented. *,**,*** denote signif

icance at 1%, 5% and 10% respectively. LL stands for Log-Likelihood. 
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Table 4. CvM goodness-of-fit test. 

 WTI-CNY WTI-INR WTI-KRW 
Gaussian 0.11454 0.10711 0.18075 

Student-t 0.44233 0.32518 0.24887 
Clayton 0.98201 0.86547 0.16709 

Gumbel 0.72832 0.55810 0.90412 
Frank 0.50043 0.50834 0.96106 

Joe 0.40014 0.49200 0.29606 

Survival Clayton 0.62061 0.41903 0.18085 
Survival Gumbel 0.62421 0.45076 0.18029 
BB1 0.62110 0.30753 0.17999 
Survival BB1 0.60097 0.17753 0.20166 
BB7 0.0001 0.04775 0.78007 

Notes: p-values report from the goodness-of-fit tests. Insignificant p-values are highlighted in bold. 

5. Conclusion 

This study intended to investigate both the static and time-varying conditional dependence 
between weekly crude oil prices and three US dollar exchange rates by a conditional copula-GARCH 
model. To account for tail dependence time-invariant and time-variant dependence, a range of 
copulas are employed to model the interconnectedness between the crude oil price and exchange rate 
returns from the three leading countries, including South Korea, China and India with the sample 
size of 573 observations from 1 June 2008 to 30 December 2018.  

Overall, the findings show that oil price and exchange rate returns are skewed and leptokurtic. 
The interrelatedness structure between crude oil and exchange rate returns also demonstrates an 
asymmetric or tail dependence structure. The GARCH model with the survival Gumbel copula 
possesses the better explanatory ability for correlation for oil-exchange rate market pairs during the 
research period. The results of the copula-based GARCH models provide evidence of the negative 
correlation between two variables. Put differently, the increase in crude oil prices are found to 
coincide with the depreciation of the dollar.  

In addition, our findings clearly show that the oil market affects the exchange rates of the three 
Asian countries, this can be beneficial to investors by conducting a strategic asset-allocation decision, 
and more importantly, policymakers need to be cautious because the influence of oil price 
innovations varies by countries, whether the oil price innovation is positive or negative. 
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