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Abstract: Biochar, a hydrophobic biomaterial produced from lignocellulosic biomass is a promising 
alternative to conventional filler materials. Although a variety of feedstocks have been analyzed for 
producing biomaterials to a limited extend, a complete LCA study of Miscanthus biochar is scarce. 
This study evaluates the life cycle of biochar produced from Miscanthus that is grown on the 
marginal land in Ontario, Canada. Life cycle environmental impacts are determined by using the 
SimaPro LCA software adopting the TRACI method. The global warming potential (GWP) of the 
life cycle of biochar is found to be 117.6 kg CO2 eq/t. Miscanthus cultivation (93.0 kg CO2 eq/t) is 
the main contributor in the life cycle of Miscanthus biochar followed by pyrolysis (23.3 kg CO2 eq/t) 
and transportation (4.8 kg CO2 eq/t). Miscanthus cultivation is also the main contributor to 
acidification potential and non-carcinogenic potential; however, transportation and pyrolysis are the 
hotspots in the case of eutrophication, smog and ecotoxicity, and carcinogenic potential, ozone 
depletion potential and fossil fuel depletion, respectively. The sensitivity analysis reveals that the 
environmental impacts decrease with an increase of Miscanthus yield. The study provides 
information on the life cycle environmental impacts of biomaterial which would facilitate in 
selecting environmentally favorable filler material to replace conventional filler materials to mitigate 
environmental impacts. 
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1. Introduction  

It is well-known that the marketing of biomass as a green alternative is important in today’s 
market, whether for combustion purposes, bioproduct fabrication, bioprocessing into transportation 
fuels or as a filler in composite [1]. Biochar produced from biomass has gained attention because of 
its renewability and environmental benefits. However, the concern about intensive agricultural inputs 
and land use change directed the researchers towards energy crops [2]. The environmental benefit of 
biomaterials is an important element in marketing and its application in the automotive industry in 
the future [3]. Consequently, there is an opportunity for Ontario biomass producers to move into the 
emerging biomaterial markets [4]. Miscanthus is a perennial grass that can grow on marginal land 
almost in all regions of Canada which are not suitable for food crops [5,6]. The benefits of 
Miscanthus cultivation include good water use efficiency, rapid growth, low nutrient requirement, 
high yields, low ash content, improve soil fertility, high energy output, and reduce farmers’ risks for 
crop production on the marginal land [7]. In Canada, several authors have evaluated the 
environmental impacts of heat and power from biomass [8,9]. Although biochar obtained from 
lignocellulosic biomass recognized as environmentally friendly filler material [10], most of the 
studies are limited to GWP [8–12]. In order to confirm the environmental benefit of biochar from 
Miscanthus, a complete life cycle assessment (LCA) is desired [8,13,14].  

Biochar is a promising alternative to conventional filler materials [15,16] for producing lighter 
composites for automotive industry mitigating GHG emissions from this sector [16,17]. The 
environmental benefits achieved from renewable filler materials mainly because of weight reduction 
resulting fuel saving opportunity during the use phase of automotive components that incorporates 
renewable filler materials [15,16]. A wide range of energy crops has been identified as a suitable 
candidate for biochar production; however, Miscanthus is noted to be the most promising feedstock 
compared with others [18–21]. Although a variety of feedstocks have been analyzed either for 
bioenergy, or biomaterials as a soil supplement to a limited extend (i.e., most of the studies deal with 
GWP only) [8–12], a complete LCA study of Miscanthus biochar is scarce. For example, life cycle of 
biochar from switchgrass [21], and forest residues [9] and Miscanthus [18] have been evaluated 
where various environmental impact categories were not reported, except the GWP. On the other 
hand Sanscartier et al. [8] have evaluated the GWP of bioenergy from Miscanthus grown on the 
marginal land in Ontario. Therefore, this study conducts a complete life cycle assessment to evaluate 
the environmental impacts of Miscanthus cultivation as well as the life cycle of biochar produced 
from Miscanthus grown on marginal land in Ontario, Canada.  

2. Materials and method 

In order to evaluate the life cycle impacts of Miscanthus biochar, the unit process models 
(Miscanthus cultivation, transportation and pyrolysis) are developed with Simapro software. In 
addition, the unit process model for electricity is modified with Ontario production data. The US EPA 
Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI, v2.1) 
method is used to calculate various impact categories. The following ten midpoint impact indicators 
are analyzed: global warming potential (GWP), acidification potential (AP), ozone depletion 
potential (ODP), eutrophication (EP), smog formation, respiratory effects (REP), carcinogenic 
potential (CP), non-carcinogenic potential (NCP), ecotoxicity (ECT), and fossil fuel depletion (FFD). 
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2.1. Goal and Scope 

The goal of this study is to evaluate the environmental impacts of biochar from Miscanthus and 
identify the hotspots of the life cycle of biochar where the significant improvement can be made. The 
functional unit of this study is defined as 1 t of biochar. The scope of this study includes Miscanthus 
cultivation, transportation and pyrolysis (includes pretreatment, i.e., chopping and grinding) over a 
20 year period. Miscanthus cultivated on the marginal land in Ontario yields 8.35 t/ha/year [8] is 
used for a baseline LCA model in this study.   

2.1.1. System boundaries 

The system boundary of this study includes Miscanthus rhizome production and plantation, 
transportation, pretreatment, and slow pyrolysis (Figure 1). The data used in this analysis are specific 
to Canada. 

 

Figure 1. System boundary of the life cycle assessment of Miscanthus biochar. 

2.2. Inventory 

2.2.1. Miscanthus grass cultivation 

Miscanthus cultivation data are obtained from peer-reviewed publication and personal 
communication [8]. It is considered that Miscanthus is cultivated on marginal lands in the province 
of Ontario [8]. Cultivation of Miscanthus includes establishment phase, fertilization, harvest and 
termination. The site establishment phase requires 83 l diesel/ha for planting, mowing and spraying 
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with a typical planting density of 8800 rhizomes/ha. The summary of inputs for all phases of the life 
cycle of Miscanthus for 20 years is reported in the supporting information (Table S1–S3). 

2.2.2. Pyrolysis 

The pyrolysis unit process model includes pre-treatment, pyrolysis unit and energy (electricity) 
which produces biochar, bio-oil, and syngas. It is assumed that Miscanthus is transported by 
40-tonne trucks. The collection area is assumed to be within a 50 km radius from the pyrolysis plant. 
The pyrolysis plant is located in Lamington, Ontario, Canada. In the pretreatment stage, Miscanthus 
feedstock undergoes grinding operation to reduce its particle size to 4 mm. The reduced particle size 
of the feedstock enables effective mass and heat transfer in the pyrolysis unit (which has a dryer). 
The initial moisture content in Miscanthus feedstock is assumed to be 20 wt.%, which is then fed into 
the dryer to reduce its moisture content to 10 wt.%. The pyrolysis plant is assumed to have a daily 
capacity of 50 t dry matter (DM). The energy consumption in the pyrolysis unit is assumed to be 
7510 MJ/t biomass [21]. Slow pyrolysis outputs were estimated based on the mass of feedstock. 
Biochar, bio-oil, and syngas yield are assumed to be 35%, 35%, and 30%, respectively [22]. Table 1 
shows a summary of inventory data for slow pyrolysis. 

Table 1. Inventory data for slow pyrolysis process (per tonne biochar). 

Input-output parameters Amount Unit Reference 

Inputs    

Pre-treated Miscanthus 2.85 t Author-defined 

Electricity 7510 MJ [21] 

Pyrolysis unit 9.521E-06 Piece Author-defined 

Outputs   [22] 

Bio-char 1 t  

Bio-oil 1 t  

Syngas 0.86 t  

Note: t = tonne 

2.3. Impact assessment 

The impact assessment is performed with the TRACI (within the SimaPro Software) method.  
Midpoints are considered to be linked in the cause-effect chain (environmental mechanism) of an 
impact category at which characterization indicators can be calculated to indicate the relative 
importance of emissions in a life cycle [23]. 
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3. Results and discussion 

The global warming potential (GWP) of the life cycle of biochar is found to be 117.63 kg CO2 
eq/t. Miscanthus cultivation is the main hotspot in the life cycle of biochar and contributes 93.0 kg 
CO2 eq/t. In the life cycle of biochar contribution of Miscanthus cultivation phase is followed by 
pyrolysis and transportation. Miscanthus cultivation is also the main contributor to acidification, 
smog, respiratory effects, ecotoxicity, and fossil fuel depletion potential; however, pyrolysis and 
transportation are the hotspots in the case of eutrophication, non-carcinogenic, carcinogenic, and 
ozone depletion potential, respectively, might be because of chemicals and fertilizer application 
during Miscanthus cultivation and energy consumption in pyrolysis process (Table 2). Pyrolysis and 
transportation process are the second and third important environmental contributor accounted for 
23.3 kg CO2 eq/t and 4.83 kg CO2 eq/t to the life cycle of biochar, respectively. The transport stage of 
Miscanthus had a minimal contribution 4.83 kg CO2 eq/t based on the 50 km distance assumed 
between the pyrolysis plant and the Miscanthus collection site. The observed GWP from Miscanthus 
cultivation seems to be similar to other studies (104 kg CO2 eq/t) [1]. In contrast, a wide range of 
impact from energy crops cultivation has also been noted in the literature (Supporting information, 
Table S4). For example, the impact associated with Miscanthus cultivation is reported to be 40 kg 
CO2 eq/dt [24] and 158.43 kg CO2 eq/dt [12]. The GWP of switchgrass cultivation phase contributed 
145 kg CO2 eq/t [21]. The main reason for the variation in environmental impact from Miscanthus 
cultivation is due to the variation in Miscanthus yield, land use efficiency, and Miscanthus lifetime 
used for LCA analysis by a different researcher. The environmental impact of biochar produced by 
the fast pyrolysis is reported to be 577 kg CO2 eq/t [21]. In contrast, biochar from switchgrass 
pyrolysis process contributed 36 kg CO2 eq/t [18]. Contribution from this processing stage is 
attributed to the electricity consumed by the dryer of the pyrolysis unit. Therefore, the natural drying 
of the Miscanthus feedstock prior to conversion would be environmentally efficient, although this 
has a minimal environmental impact. For other LCA impact categories, including acidification 
potential, smog formation, respiratory effects, fossil fuel depletion, and ecotoxicity, a similar trend is 
observed as GWP for Miscanthus cultivation. Transportation of Miscanthus has the worst 
environmental impact for ODP and CP. On the other hand, slow pyrolysis has the highest 
environmental impacts for NCP and EP (Table 2). 

Table 2. The impacts of different stages of the life cycle Miscanthus biochar (1 t). 

Impact category Unit Cultivation Transportation Slow pyrolysis

ODP kg CFC-11 eq 2.18E-07 1.32E-06 3.59E-08

GWP kg CO2 eq 9.30E+01 4.83E+00 2.33E+01

Smog kg O3 eq 7.50E+00 8.62E-01 2.92E+00

AP kg SO2 eq 3.99E-01 3.28E-02 2.76E-01

EP kg N eq 2.33E-02 9.08E-03 2.97E-02

CP CTUh 6.29E-08 1.28E-07 8.83E-08
Continued on next page 
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Impact category Unit Cultivation Transportation Slow pyrolysis

NCP CTUh 4.56E-07 1.31E-06 1.44E-06

REP kg PM2.5 eq 1.84E-02 4.16E-03 1.59E-02

ECT CTUe 1.50E+04 4.70E+01 4.27E+01

FFD MJ surplus 1.02E+02 1.16E+01 4.65E+01
Note: CFC: Chlorofluorocarbons; CTU: Comparative Toxicity Unit 

3.1. Contribution of different unit processes in Miscanthus cultivation phase  

Fertilizer application during Miscanthus cultivation is the main contributor to the cultivation 
stage. The environmental burden of cultivation stage to GWP, smog, AP, EP, and FFD accounting for 
97%, 93%, 95%, 77%, and 94%, respectively. On the other hand, contribution of fertilizer to ODP, 
CP, and NCP is 14%, 18%, and 10%, respectively. Chemicals (pesticide/ herbicide) application 
during Miscanthus cultivation shows a severe environmental impact for ODP (60%), ECT (100%). 
CP (73%), NCN (78%) and EP (17%). In addition to these, rhizome production, field preparation, 
transportation, and harvesting unit process had a minimal contribution for all categories (Figure 2). 
The environmental impacts from the cultivation of Miscanthus on marginal land also depend on 
various factors, such as previous land use, climatic conditions and organic carbon content of the  
soil [8,25]. In this study, it is considered that yearly soil organic carbon (SOC) increases (0.03 t 
C/ha/year) due to Miscanthus cultivation on marginal land. It also reported that cultivating 
Miscanthus would result in SOC sequestration at the rate of 0.16–0.82 t C/ha/year [26]. Even the 
assumption of a lower sequestration rate would result in substantial GWP credits for Miscanthus 
cultivation [25]. Generally, during the Miscanthus cultivation stage, application of less fertilizer and 
chemicals substantially improves the environmental performance of feedstock at the gate of the farm. 

3.2. Contribution of different unit processes in the slow pyrolysis process  

The electricity (energy consumed in the pyrolysis process which d) is found to be the main 
hotspot in the pyrolysis process followed by pre-treatment and pyrolysis unit which has the least 
contribution for all the impact categories except ODP. Pre-treatment has highest contribution to ODP 
may be because of diesel energy used in the pre-treatment process (chopping & grinding). 
Contribution of electricity to GWP, Smog, AP, EP, CP, NCP, REP, ECT, and FFD is 81%, 69%, 88%, 
68%, 88%, 94%, 85%, 96%, and 82%, respectively (Figure 3). Consequently, replacement of 
electrical energy with renewable energy in the pyrolysis process is necessary to reduce 
environmental impacts from the pyrolysis process of the life cycle of biochar.  
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Figure 2. Contribution analysis of Miscanthus cultivation. 

 

Figure 3. Contribution analysis of slow pyrolysis. 
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3.3. Sensitivity analysis  

The sensitivity analysis allows evaluating the effect of a change of a certain parameter in the life 
cycle of the products, processes or services that are studied. It is therefore important to assess to what 
extent these changes affect the findings. For this study, analyses are performed through changing 
yield of Miscanthus, the yield of biochar, and allocation of inputs and output in the pyrolysis process 
based on the energy content of pyrolysis products. A wide range of Miscanthus yield has been 
reported in the literature, which depends on the type of land, location, etc. [6,7,9,18,27,28]. 
Consequently, Miscanthus yield is assumed to be varied from 10 to 12 t/ha/year while the reference 
yield is 8.35 t/ha/year. The effect of the biochar yield has a significant influence on the results. GHG 
emissions reduce with an increase in biochar yield (Figure 4). For instance, at a Miscanthus yield of 
8.35 t/ha/year, the carbon footprint found to be 96.0 kg CO2 eq/t dry matter. However, the GWP of 
Miscanthus cultivation reaches to 64.0 kg CO2 eq/t and 42.0 kg CO2 eq/t for a Miscanthus yield of 10 
t/ha/year and 12 t/ha/year, respectively. Consequently, the environmental impacts from the life cycle 
of biochar also changed (Supporting information, Table S5). The GWP reached to 102.0 kg CO2 eq/t 
and 89.3 kg CO2 eq/t of biochar. On the other hand, life cycle environmental impacts decrease with 
an increase in biochar yield from the pyrolysis process or increased if the biochar yield decreases 
(Supporting information, Tables S6–S7). The GWP is found to be 133.0 kg CO2 eq/t and 105.0 kg 
CO2 eq/t for a Miscanthus yield of 30% (i.e. bio-oil 35% and syngas 35%) and 40% (i.e. bio-oil 40% 
and syngas 20%), respectively. It is important to note that biochar yield depends on the pyrolysis 
parameters thus energy consumption may also vary to achieve the assumed biochar yield, and may 
affect the life cycle environmental impacts of biochar. In addition, this study also found that the 
allocation method also affect the environmental impacts of the life cycle of biochar (Supporting 
information, Table S8). The GWP varied from 117.63 kg CO2 eq/t to 158.44 kg CO2 eq/t if energy 
allocation is imposed instead of mass allocation. 

 

Figure 4. Effect of Miscanthus yield on the life cycle of biochar. 
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4. Conclusion 

This study analyzed Miscanthus cultivation on marginal land and production of biochar by slow 
pyrolysis using the life cycle assessment method. The GWP of the life cycle of biochar Miscanthus is 
found to be 117.63 kg CO2/t which depends on the Miscanthus yield and biochar yields from the 
pyrolysis process. Miscanthus cultivation stage is found to be the main hotspot in the life cycle of 
biochar. Consequently, any reduction of the use of resources and improvement of Miscanthus yield 
as well as biochar yield leads to reduce the environmental impacts of the life cycle of biochar. This 
study provides information on environmental impacts of the life cycle of biochar which would enable 
the bioindustry in selecting renewable biomaterial for cleaner production.  
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