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Abstract: In this study, the performance of an integrated desiccant air conditioning system (IDACS) 
activated by solar energy is evaluated by back propagation artificial neural network (BP-ANN). The 
IDACS consists of a liquid desiccant dehumidification cycle combined with a vapor compression 
refrigeration cycle. The integrated system performance is assessed utilizing the system coefficient of 
performance (COP), outlet dry air temperature (Tda-out), and specific moisture removal (SMR). The 
training of the BP-ANN is accomplished utilizing experimental results previously published. The 
results of the BP-ANN model revealed the high accuracy in predicting system performance 
parameters compared with experimental values. The BP-ANN model has shown relative errors in the 
trained mode for COP, Tda-out, and SMR within ±0.005%, ±0.006%, and ±0.05%, respectively. On the 
other side, the BP-ANN model is inspected in the predictive mode as well. The relative errors of the 
model for COP, Tda-out, and SMR in the predictive mode are within ±0.006%, ±0.006%, and ±0.004%, 
respectively. The influences of some selected parameters, namely regeneration temperature, 
desiccant solution temperature in the condenser and evaporator, and strong solution concentration on 
the system performance are examined and discussed as well. 
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Nomenclature: Latin letters 
ANN: Artificial Neural Network; BP-ANN: back propagation artificial neural network; COP: 
coefficient of performance; E: deviation; f: activation function; h: specific enthalpy, kJ/kg; i: index 
representing input layers; IDACS: integrated desiccant air conditioning system; j: index representing 
hidden layers; k: index representing output layers; LD: liquid desiccant; LDACS: liquid desiccant air 
conditioning system; m: number of experimental data; mሶ : mass flow rate (kg/s); n: number of input 
neurons; SMR: specific moisture removal; T: temperature, ℃; VCRS: vapor compression 
refrigeration systems; x: concentration; z: hidden neurons; 𝑄ሶ : Heat transfer rate, kW; 𝑊ሶ : Power, kW; 
Subscripts 
a: process air; AH: additional regeneration heat; c: compressor; cond: condenser; da-out: outlet dry 
air; eva: evaporator; reg: regenerative; s: desiccant solution; Aver: average; exp: experimental; Rel: 
relative; S: standard; Tran: trained 

1. Introduction  

The liquid desiccant air conditioning systems (LDACS) are alternatives to the traditional vapor 
compression refrigeration systems (VCRS). These systems conduct air dehumidification with liquid 
desiccant (LD) to reduce electrical energy consumption. The present dehumidification system has 
many weak points. The first is poor energy efficiency, and the second is that it produces water and 
continuously drains during use; this breeds mildew, amebas, or bacteria. The third is that air 
ventilating during the dehumidification process is difficult in the present dehumidification system of 
the air-conditioner. Therefore, it is need to develop an alternative method for the dehumidification 
system. The LDACS have recently gained growing interest from the stand point of reducing energy 
consumption during the dehumidification. This is because the LDACS can be driven by low-grade 
renewable energies such as solar energy, geothermal energy, and low temperature waste heat from 
industrial plants, and it allows isothermal dehumidification and produces no waste water. 
Furthermore, the LDACS allow reducing the humidity or adding humidity to the air by switching the 
circulation loop with ventilation during use of the air-conditioners [1]. Numerous investigations have 
proposed various air handling systems utilizing LD [2–5]. Also, many studies have been conducted 
on hybrid cooling systems [6–10]. 

Watanabe et al. [1] conducted a systematic assessment of the humidification capability of 
sixteen types of ionic liquids for finding a suitable desiccant liquid for the LDACS. Among the 
examined liquids, tributyl phosphonium dimethyl phosphate presented the greatest dehumidification 
capacity and had a minimum corrosive impact. Also, they found that a 77% (w/w) aqueous solution 
of this liquid worked as an effective desiccant liquid for the LDACS. Park et al. [11] evaluated the 
effect of dehumidification with a cascade LD on the energy consumption in an evaporative cooling 
and LD system. The results showed that the retrofit case with a cascade LD section consumed 12% 
lower energy under the case of maximum load. The achieved overall primary and thermal 
coefficients of performance (COP) of the retrofit case were 2.05 and 0.78, respectively. The impact 
of electrodialysis regenerator of the LDACS on the performance of the system was investigated by 
Cheng and Jiao [12]. They found that the electric current efficiency correlation of an electrodialysis 
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regenerator of the LDACS depend on many measurements. Also, they concluded that the 
concentration of the LD at the regenerator inlet increases from 27% to 35% leading to enhance the 
system COP from 4 to 6.2. Although, the rise of the LD concentration at the regenerator inlet 
decreases its performance, however, it boosts the system COP. Cheng and Xu [13] investigated, 
experimentally, a multi-function LD regeneration system to decrease the working cost and the waste 
of electrode solution of electrodialysis regenerator. They concluded that enhancing the system 
current efficiency requires significant reduction in both the concentration difference among solutions 
in the dilute chambers and regeneration chambers and the operational current. A desiccant aided air 
conditioning (AC) system uses solar energy for desiccant regeneration was investigated by Speerforck 
et al. [14]. The system achieved the highest energy efficiency ratio at 7.7 (kW/kW). Also they found that 
the proposed system saves electricity more than 50% compared with the vapor compression chiller. 
An energy efficient unit utilizing LD was suggested by Adnan et al. [15]. They concluded that the 
suggested system decreases the energy consumption to approximately 0.3 of that used by traditional 
AC. The performance of regeneration and absorption columns for a LD vapor refrigeration system 
was examined by Mohan et al. [16]. They concluded that the decrease of temperature and the 
increase of the specific humidity of the entry air lead to increase the dehumidification inside the 
absorber. An integrated desiccant aided AC system was introduced by Jia et al. [17] as a substitute to 
traditional VCRS. The major feature of the system was removing the sensible heat and moisture by 
both cooling coil and desiccant, respectively. They concluded that the proposed system save 
about 37.5% of the electrical energy consumption as compared with traditional VCRS. The 
performance of a hybrid AC system was evaluated theoretically and experimentally by Jongsoo et al. [18]. 
They concluded that the proposed hybrid system boosts the COP by about 94% in comparison with 
traditional VCRS. A solar powered two-stage rotary desiccant cooling unit and a VCRS were 
simulated by Ge et al. [19]. They concluded that the desiccant cooling system consumes less 
electrical power and has better supply air quality as compared with traditional VCRS. The 
performance of a LDACS subjected to variable fresh air ratios was analyzed by Niu et al. [20]. They 
concluded that the proposed system consumes remarkably less power as compared with traditional 
VCRS with primary return air. The uppermost energy saving ratio was about 59% with fresh air ratio 
about 20%, and the lowermost was nearly 4.6% with 100% fresh air. Jiazhen et al. [21] have tested a 
desiccant wheel aided separate sensible and latent cooling AC system utilizing R410a and CO2 as 
refrigerant. They concluded that with a 50 ℃ regeneration temperature, the vapor compression cycle 
COP has boosted by about 7% as compared with that achieved by the base system. Ge et al. [22] 
experimentally examined the performance of two desiccant coated finned tube heat exchangers, 
which were coated with polymer and silica gel materials. Their results exhibited that the desiccant 
coated heat exchanger attains high dehumidification performance under specific operating conditions 
and overcomes the drawback of adsorption heat. Further, they have shown that the polymer coated 
heat exchanger performs worse than the silica gel one. Ge et al. [23,24] studied the performance of 
desiccant coated heat exchanger system utilizing silica gel as desiccant substance and a solar power 
desiccant coated heat exchanger cooling system. Experimental tests to investigate the performance of 
a counter flow regenerator using lithium chloride solution as the desiccant were carried out by 
Mohammad et al. [25]. A single and multilayer artificial neural network (ANN) was used to predict 
the performance of the regenerator. An ANN model for predicting the performance of a liquid 
desiccant dehumidifier was proposed by Mohammad et al. [26]. The maximum difference between 
the ANN and experimental values for water condensation rate and dehumidifier effectiveness 
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were 8.13% and 9.0485%, respectively. A thorough investigation on parameters that having the 
potential impact on performance of the desiccant enhanced evaporative air conditioning system was 
conducted by Sohani et al. [27]. Five soft computing and statistical tools were used to predict the 
overall performance of the system. An experimental study of a dehumidifier was carried out and the 
effects of inlet parameters of air, water and solution on the performance of the dehumidifier were 
discussed by Cheng et al. [28]. The average absolute difference of the theoretical and experimental 
values is less than 8% for both moisture and enthalpy effectiveness. The solar assisted liquid 
desiccant dehumidifier and regenerative indirect evaporative cooling semi-centralized air 
conditioning system was investigated by Chen et al. [29]. The system model was developed by 
solving the heat and mass transfer equations of each component integrally in a closed loop. 

For design and energy saving objectives, an accurate model to evaluate the performance of 
integrated desiccant air conditioning system (IDACS) powered by solar energy will be very helpful. 
Consequently, in the present study, ANN technique is introduced to assess the IDACS performance. 
The presented IDACS system uses a VCRS integrated to the desiccant solution system in a new 
method. The evaporator of the VCRS is submerged in the strong desiccant solution and a pass of air 
is blown inside it to enhance heat transfer process. The performance of IDACS is predicted using 
back propagation artificial neural network (BP-ANN). The IDACS contains a LD dehumidification 
cycle combined with a VCRS. The primary objective of the present work is to establish a BP-ANN 
model to assess the IDACS performance. The integrated system performance is evaluated using its 
controlling parameters, i.e., COP, outlet dry air temperature (Tda-out), and specific moisture 
removal (SMR). The training of the BP-ANN is achieved using experimental results previously 
published by Bassuoni [30]. The influences of some selected operating parameters, i.e., regeneration 
temperature, desiccant solution temperature in the condenser and evaporator are studied and 
discussed. Furthermore, the concentration of strong solution on the system performance are studied 
and discussed as well. 

2. Experimental set-up 

Figure 1a displays a schematic diagram of the IDACS. The system includes basically a VCRS 
combined with a LD dehumidification unit. Figure 1b illustrates the system experimental set-up. As 
can be observed from Figure 1a, the IDACS comprises of four subsystems; process air subsystem, 
desiccant solution subsystem, cooling water subsystem, and VCRS. The VCRS has refrigeration 
capacity equal 5.27 kW and utilizes 134a as a working fluid. The condenser and evaporator boxes are 
manufactured from stainless steel sheet with 0.5 mm thickness and 60 × 60 × 25 cm dimensions. 
Calcium chloride is utilized as a desiccant in the dehumidification unit. The evaporative heat 
exchanger is utilized to cool the strong desiccant solution to the desired condition (point 6). In the 
process air subsystem, the ambient air (point 1) is forced to the evaporator using air fan. In the 
evaporator, the air is cooled and dehumidified to the desired temperature and relative humidity to 
feed the space to be conditioned (point 2). The ambient air temperature and relative humidity at the 
experiment time fluctuated between 41–42 ℃, and 46–48%, respectively. 
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Figure 1. The IDACS schematic view (a), experimental set-up (b), and psychometric 
process of the process air (c). (A): Evaporator; (B): Condenser; (C): Solar heater; (D): 
Evaporative heat exchanger; (E): Cooling water tank; (F): Pump; (G): Water control 
valve; (H): Compressor; (I): Expansion valve; (J): Air fan; (K): Rotameter; (L): Air 
control valve; ‘ ’: The cycle of desiccant solution; ‘ ’: The cycle of 
process air; ‘ ’: Vapor compression cycle; ‘ ’: The cycle of cooling water. 

The desiccant solution subsystem is a heat driven unit, in which a heat supply is required for 
this subsystem to regenerate the desiccant solution. A low-grade renewable heat source at a 
temperature of approximately 30–70 ℃ can be utilized. Renewable energy sources like; solar energy 
and waste and geothermal heats can be utilized for the regeneration process. The strong solution (point 6) 
is sprayed into the evaporator box of the VCRS, and then the diluted desiccant solution (point 3) is 
fed to the condenser (B). The diluted desiccant solution is heated in the condenser (point 4) to use 
waste heat from VCRS and accordingly reduce the required heat for the desiccant solution 
regeneration. A solar heater (C) is utilized to regenerate the solution totally to the desired 
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concentration. In the cooling water subsystem, a heat exchanger (D) evaporative type with 
effectiveness equal 0.85 is utilized to pre-cool the strong solution through the process (5–6), after 
which the strong solution is fed into the evaporator. A cooling water tank (E) is used to feed the 
necessary cooling water (point 7) for pre-cooling process. The cooling water temperature is fixed at 
approximately 24 ℃ using a cooling coil with a digital thermostat inserted inside the supplying tank. 
Figure 1a,b are taken from Bassuoni [30]. Figure 1c shows the process air psychometric chart. The 
process 1–2 (solid line) represents the IDACS process. The process 1-2a-2 (dashed line) denotes the 
equivalent traditional AC system with reheat. The process 1-2a is a cooling process with 
dehumidification and the process 2a-2 is a heating process to the required temperature of the supply 
air. More details about the IDACS, its working principle, and measuring instruments uncertainties 
can be found at Bassuoni [30]. 

3. Artificial neural network strategy 

The ANN is a strategy that can solve the problems of physical systems wherever traditional 
methods are not easy to apply or wherever the issue cannot be any formulized. ANN training process 
is improvement of neuron parameters with regard to a defined level operate. Since it is by learning 
ready to update the first layer information, it is recognized among updated strategies [31–33]. 

An ANN structure of a practical system is a style of extremely advanced and nonlinear fitting 
model of indefinable shape. Figure 2 shows illustration of the current ANN model that will be used in 
the current work. The model has four inputs layer (1:4), hidden layer (1:50), and the three outputs layer 

with neurons y1, y2, and y3. Let τ୨ be the bias for neuron z୨ and ∅ be the bias for neuron y. Let w୧୨ be 

the weight of the connection of the affiliation from neuron xi to neuron z୨ and β୨ be the weight of 

connection from neuron z୨ to y. The equations that the ANN estimates are: 

                                                          y ൌ g୅ ൭෍ z୧β୨  ൅ 

ହ଴

୧ୀଵ

∅൱                                                                           ሺ1ሻ  

                                                           z୨ ൌ f୅ ൭෍ x୧w୧୨  ൅ 

଼

୧ୀଵ

τ୨൱                                                                        ሺ2ሻ 

where g୅ and f୅ are activation functions, which are utilized in ANNs to provide continuous values 
instead of separate ones. The activation performs utilized in second layer neurons are tan sigmoid 
functions and in the third layer neurons, the piecewise linear activation function is employed as 
shown in Figure 3. The Tan sigmoid activation function is: 

                                                                   𝑔஺ ൌ  
1 െ 𝑒ି ଶ ௡௘௧

1 ൅ 𝑒ି ଶ ௡௘௧                                                                            ሺ3ሻ 

and piecewise linear activation function is: 

𝑓஺ ൌ  ൝
െ1             𝑛𝑒𝑡 ൏  െ1
𝑛𝑒𝑡         |𝑛𝑒𝑡|  ൑     1
൅1             𝑛𝑒𝑡 ൐    1

     ൡ                      (4) 
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The back propagation formula, utilized in this work, updates the weights in the steepest descent 
direction (sign of the gradient). The flow chart of the learning method is showed in Figure 4. 

 

Figure 2. Stages of the BP-ANN model. 

 

(a) Sigmoid                                     (b) Piecewise Linear 

Figure 3. Activation functions.                                                    
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Figure 4. ANN training steps. 

It is found that 3 layers NNW can approximate any function to any defined accuracy. The 
network has an input, hidden, and output layers. The training stage is sectioned as follows:  

1. forward-propagation phase: X = [x1, x2, x3, x4] is propagating from the first layer to the last 
layer Y.  

                                                                    Z୯ ൌ f ቌ෍ v୯୨X୨

୬

୨ୀଵ

ቍ

,   ୬ୀସ

                                                                 ሺ5ሻ 

                                                                     Y ൌ f ቌ෍ w୧୯Z୯

௞

୯ୀଵ

ቍ                                                                       ሺ6ሻ 

where Zq is the data for second layers, f is the activation function, Vqj is the first-to-second 
connections weights, Y is the ANN output and Wiq is the second-to-last connections weights. 

2. back-propagation phase: Equation 7 represents the error difference in the output Y, and the 
target d: 

                                                                            E ൌ
1
2

෍ሺd୧ െ y୧ሻଶ

୫

୧ୀଵ

                                                               ሺ7ሻ 

where m is the learned points number. 

The weights in second-to-last connections are treated by the gradient-descent methodology as 
follows:  
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𝜕𝑌

൨ ൤
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൨ ቈ

𝜕𝑛𝑒𝑡௜

𝜕𝑊௜௤
቉ 

ൌ  െ𝜂 ሾ𝑑௜ െ  𝑦௜ሿ ሾ𝑓ᇱሺ𝑛𝑒𝑡௜ሻሿൣ𝑍௤൧ ൌ  𝜂 𝛿௢௜ 𝑍௤        (8) 

where 𝜂 is the learning rate. 
For moderate the weights of the input-to-hidden: 

                                          ∆𝑉௤௜ ൌ  െ𝜂 డா

డ௏೜೔
ൌ  െ 𝜂 ൤ డா

డ௡௘௧೜
൨ ൤

డ௡௘௧೜
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𝛿௢௜ ൌ  െሾ𝑑௜ െ  𝑦௜ሿሾ𝑓ᇱሺ𝑛𝑒𝑡௜ሻሿ         (10) 

𝛿௛௤ ൌ  ൤ డா

డ௓೜
൨ ൤

డ௓೜

డ௡௘௧೜
൨          (11) 

where 𝛿௢௜ and 𝛿௛௤ are the local and partial errors separately. 
The interactions proceed until the execution error diminished to defined range. The ANN 

execution is controlled by the mean squared error (MSE) and linear correlation coefficient (r). As the 
NW update its MSE turns out to nearly zero value. 

4. The BP-ANN model 

In this study, three significant dependent parameters are selected to characterize the IDACS 
performance; COP, SMR, and Tda-out. The IDACS COP is represented by the following equation: 

𝐶𝑂𝑃 ൌ  ௠ሶ ೌ ሺ௛భି ௛మሻ

ሺௐሶ ೎ା ொሶ ಲಹሻ
                  (12) 

where; ṁa is the process air mass flow rate, h1 and h2 are the inlet and outlet air enthalpies, 𝑊ሶ௖ is the 
required compressor power, and 𝑄ሶ஺ு is the additional regeneration heat rate. 

The SMR is the removed moisture from the process air for every kilogram of desiccant solution. 
It is represented by the following equation: 

𝑆𝑀𝑅 ൌ  ௠ሶ ೌ ሺ௬ೌభି ௬ೌమሻ

௠ሶ ೞ
             (13) 

where; 𝑚ሶ ௦  is the desiccant solution mass flow rate, ya1 and ya2 are the process air humidity ratio at 
evaporator entrance inlet and exit, respectively. 

Four controlling parameters are chosen as independent parameters, namely; desiccant solution 
temperature in the evaporator and condenser, regenerative temperature (Treg), and desiccant solution 
concentration (xs). These four independent parameters are selected to be fed in the BP-ANN model 
to predict the three dependent output parameters. These four independent parameters are chosen 
because of their significance in the integrated system performance parameters. The BP-ANN 
technique is utilized to generate the correlation between the four independent parameters and the 
system performance parameters. Every connection to a neuron has updatable weighting factor 
connected with it. The algorithm endeavours to limit the least square error between the evaluated and 
the target output. The desiccant solution temperatures in the evaporator and condenser are denoted 
hereafter as the evaporator temperature (Teva) and condenser temperature (Tcond), respectively. 

The experimental measurements results from Bassuoni [30] are utilized to build and approve the 
BP-ANN model. 70% of the experimental data was used to train the model while the remaining 30% 



404 

AIMS Energy  Volume 7, Issue 3, 395–412. 

was used for model validation [26]. The total numbers of the tested datasets are twenty-three which 
are grouped into two sets; training set and validating set. The first set contains 16 datasets (70% of 
the total datasets) and has been utilized for training the proposed BP-ANN model. The second set 
contains the rest 7 datasets (30% of the total datasets) and has been utilized to validate the model. 
The experimental datasets in the second set are chosen so that they are within the range of the first 
set.  

The proposed BP-ANN model is trained and validated with various working conditions as 
independent parameters and the IDACS performance parameters as dependent parameter. 
Consequently, the correlations for the system performance parameters can be written as a function of 
the four dependent parameters as follows: 

𝐶𝑂𝑃 ൌ 𝑓 ൫ 𝑇௘௩௔, 𝑇௖௢௡ௗ, 𝑇௥௘௚, 𝑥௦ ൯                 (14) 

𝑆𝑀𝑅 ൌ 𝑓 ൫ 𝑇௘௩௔, 𝑇௖௢௡ௗ, 𝑇௥௘௚, 𝑥௦ ൯                 (15) 

𝑇ௗ௔ି௢௨௧ ൌ 𝑓 ൫ 𝑇௘௩௔, 𝑇௖௢௡ௗ, 𝑇௥௘௚, 𝑥௦ ൯             (16) 

The BP-ANN strategy is utilized to find out relation between IDACS performance parameters 
and the chosen four different input parameters. Unlike the traditional regression-based models, BP-
ANN introduce an effective substitute technique to depict complex nonlinear functions between 
inputs and outputs data sets while not requiring a close information of unexpressed physical 
connection. 

5. Results and discussion 

In this study, the experimental results from Bassuoni [30] are utilized to train the BP-ANN 
model. The experimental data include 23 datasets. 16 datasets are utilized to train the BP-ANN 
model while the rest 7 datasets are used to examine the predictive mode of the model. The BP-ANN 
model is verified by matching the trained system performance parameters with the measurements of 
Bassuoni [30] as displayed in Figure 5. It can be detected from the figure that, the BP-ANN model 
achieves a very good agreement with the measurements. Later, the BP-ANN model is conducted to 
exam its prediction performance as shown in Figure 6. It can be observed from the figure, the 
relationship between the predictive and experimental results are linear. Figures 5 and 6 demonstrate 
the perfect estimation of the BP-ANN model. It is important to emphasize that the experimental 
results, not utilized in the model construction, are utilized to inspect the prediction performance of 
the developed model. 
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Figure 5. The BP-ANN model trained results versus experimental data for (a) COP, (b) 
SMR, and (c) Tda-out. 

 

Figure 6. The BP-ANN model predictive results versus experimental data for (a) COP, 
(b) SMR, and (b) Tda-out. 

To assess the precision of the BP-ANN model in the prediction of system performance 
parameters, the relative deviations versus Teva, Tcond, Treg, and strong solution concentration are 
exhibited in Figure 7. As can be noticed from the figure, the predicted system performance 
parameters are in a very good agreement with the experimental measurements. The BP-ANN model 
has shown relative errors in the learning mode for COP, Tda-out, and SMR within ±0.005%, ±0.006%, 
and ±0.05%, respectively. The prediction average and the standard deviations of the BP-ANN model 
in the trained mode for COP, Tda-out, and SMR are within (0.0004%, 0.003%), (0.0007%, 0.004%), 
and (0.005%, 0.017%), respectively. The definition of relative errors, and average and standard 
deviations are as follow: 

                                                  Relative error ሺEୖୣ୪ሻ ൌ  
mሶ ୘୰ୟ୬ െ mሶ ୣ୶୮

mሶ ୣ୶୮
                                                   ሺ17ሻ 

                                   Average deviation ሺE୅୴ୣ୰ሻ ൌ   
1
m

෍ ቊ
mሶ ୘୰ୟ୬ െ  mሶ ୣ୶୮

mሶ ୣ୶୮
 ቋ

୫

ଵ

                                      ሺ18ሻ 
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Figure 7. Relative deviations of the BP-ANN model results versus (a) Teva, (b) Tcond, (c) 
Treg, and (d) strong solution concentration. 

                                      Standard deviation ሺEୗሻ ൌ ඩ
1
m

෍ሺEୖୣ୪ െ E୅୴ୣ୰ሻଶ

୫

ଵ

                                       ሺ19ሻ 

Furthermore, the BP-ANN model is examined in the predictive mode as well. The relative 
errors of the model for COP, Tda-out, and SMR in the predictive mode are about ±0.006%, ±0.006%, 
and ±0.004%, respectively. The prediction standard and average deviations in the predictive mode 
for COP, Tda-out, and SMR are (0.001%, 0.004%), (0.003%, 0.003%), and (0.0007%, 0.002%), 
respectively. According to the obtained results, the BP-ANN method is a helpful tool in prediction 
IDACS performance parameters. The influences of some selected parameters, i.e., Teva, Tcond, Treg, 
and strong solution concentration on the IDACS performance parameters are discussed in the next 
subsections. The basic values of the system operating parameters and their ranges are presented in 
Table 1. In each case, only varies the parameter whose effect is studied within the given range in 
Table 1 while the remaining parameters are kept constant and equal to the basic values given in 
Table 1. The BP-ANN model is utilized to compute the system performance parameters in the 
following discussion. The analyses are exhibited graphically in Figures 8–11. 
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Table 1. The basic values of the parameters utilized in the integrated system and their 
ranges. 

Parameter Basic value Range 
desiccant solution volume flow rate 4 L/min - 
dry air mass flow rate 0.25 kg/s - 
desiccant solution temperatures in the 
evaporator  

17.5 ℃ 10 ℃–20 ℃ 

desiccant solution temperatures in the 
condenser  

48 ℃ 37.8 ℃–51.8 ℃ 

regenerative temperature 65 ℃ 60.5 ℃–88 ℃ 
desiccant solution concentration 0.4 0.315–0.42 

5.1. The influence of evaporator temperature on IDACS performance 

Figure 8 illustrates the influence of Teva on the IDACS performance parameters. The figure 
shows the experimental values of the COP, SMR, and Tda-out and that predicted by the BP-ANN 
model. The figure shows very good matching between the measurements and the predicted values. 
The influence of Teva on the COP and SMR is shown in Figure 8a,b. The COP is improved while 
SMR declines as Teva growths. As Teva growths from 10 ℃ to 20 ℃, the COP boosts by about 38.5% 
while SMR reduces by approximately 38.9%. This can be interpreted by the fact that the growth of 
Teva, results to reduce the capability of desiccant solution for absorbing moisture from the air. This 
attributed to the reduction of the vapor pressure difference between desiccant solution and air, which 
leads to decrease SMR. The growth of Teva results to increase the desiccant concentration at 
evaporator outlet, which results to lower regeneration heat and greater COP. Also the growth of Teva 
results to growth Tcond, which results in decrease the required regeneration heat from the auxiliary 
heater. The variation of the supply air temperature against Teva is presented in Figure 8c. As can be 
detected from the figure, Tda-out is directly proportional with Teva. As Teva increases from 10 ℃ to 
20 ℃, the Tda-out increases by approximately 57.7%. 

5.2. Influence of condenser temperature on IDACS performance 

The correlation of the IDACS performance parameters as a function of Tcond is shown in Figure 9. 
The figure shows the measurements of the COP, SMR, and Tda-out and the values computed by the 
model. The figure approves the high accuracy of the BP-ANN model in predicting the IDACS 
performance parameters. The results show that the COP drops with the growth of Tcond as displayed 
in Figure 9a. This is due to the fact of increasing Tcond leads to increase the required compressor 
power resulting in a COP decrease. As Tcond increases from 37.8 ℃ to 51.8 ℃, the COP declines by 
approximately 25%. As presented in Figure 9b, the SMR growths with the growth of Tcond until Tcond 
reaches approximately 48 ℃ then SMR starts to decline. This can be interpreted by that the increase 
of Tcond leads to increase the cooling coil temperature, which results in decrease the capability of the 
desiccant solution for absorbing moisture from air. The influence of Tcond on the Tda-out is presented 
in Figure 9c. As can be detected from the figure, Tda-out is directly proportional with Tcond. As Tcond 
increases from 37.8 ℃ to 51.8 ℃, the Tda-out increases by approximately 37%. 
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Figure 8. Impact of evaporator temperature on (a) COP, (b) SMR, and (c) Tda-out. 

 

Figure 9. Influence of condenser temperature on (a) COP, (b) SMR, and (c) Tda-out. 

5.3. Impact of regeneration temperature on IDACS performance 

The variation of the IDACS performance parameters as a function of Treg is illustrated in Figure 10. 
The figure shows the measured values of the performance parameters and the values computed by 
the model. The measurements and computed values are matching very well as can be observed from 
the figure. As can be detected from Figure 10a, the COP enhances as Treg increases till Treg reaches 
approximately 71 ℃ then COP declines with the growth of Treg. This can be interpreted as follows; 
the growth of Treg leads to growth the concentration of the strong solution and consequently boosts 
the SMR as displayed in Figure 10b. As the strong solution concentration rises the capability of the 
desiccant solution for absorbing moisture growths, resulting in large latent load removing capability 
by the IDACS. This leads to boost COP. With further increase of Treg, the required regeneration 
energy at the equal solution flow rate increases, which results in a decline of COP. As shown in 
Figure 10b, the SMR growths with the increase of Treg. As Treg growths from 60.5 ℃ to 88 ℃, the 
SMR increases by nearly 33.3%. The influence of Treg on the Tda-out is displayed in Figure 10c. The Tda-out 
is directly proportional to Tda-out. As Treg growths from 60.5 ℃ to 88 ℃, the Tda-out increases by 
almost 36.6%. 

5.4. Influence of strong solution concentration on IDACS performance 

Figure 11 shows the variation of the IDACS performance parameters as a function of strong 
solution concentration. The figure shows the measured values of the performance parameters and the 
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values computed by the model. The figure displays the high capability of the BP-ANN model to 
reproduce the measured values. As can be detected from Figure 11a,b, and c the COP, SMR, and 
Tda-out are directly proportional with the strong solution concentration. This can be interpreted as 
follows, the growth of strong solution concentration leads to boost the capability of desiccant 
solution for absorbing moisture. The removed cooling load from the process air increases as the 
absorbed moisture from the air increases. This leads to increase the system performance parameters. 
As strong solution concentration increases from 0.315 to 0.42 leads to increase the COP, SMR, and 
Tda-out by nearly 50%, 28% and 40.2%; respectively. 

 

Figure 10. The influence of regeneration temperature on (a) COP, (b) SMR, (c) and Tda-out. 

                   

Figure 11. Influence of strong solution concentration on (a) COP, (b) SMR, and (c) Tda-out. 

6. Conclusions 

The performance of an integrated desiccant air conditioning system powered by solar energy is 
investigated utilizing BP-ANN. The system performance is characterized by the system coefficient 
of performance, outlet dry air temperature, and specific moisture removal. The integrated system has 
basically four controlling parameters; desiccant solution temperature in the evaporator and condenser, 
regeneration temperature, and desiccant solution concentration. These four parameters are utilized to 
establish the BP-ANN model to assess the system performance parameters. The model shows very 
small relative differences in the trained mode for system coefficient of performance, outlet dry air 
temperature, and specific moisture removal within ±0.005%, ±0.006%, and ±0.05%, respectively. 
The predictive performance of the proposed BP-ANN model is inspected as well showing good 
correlation with experimental measurements. The relative differences of the system performance 
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parameters calculated by the BP-ANN model in the prediction mode from the measurements are 
within ±0.006%, ±0.006%, and ±0.004% for system coefficient of performance, outlet dry air 
temperature, and specific moisture removal, respectively. The system performance is affected in a 
various extents by the working parameters. Accordingly, the effects of regeneration temperature, 
desiccant solution temperature in the condenser and evaporator, and strong solution concentration on 
the system performance are examined. The system COP is directly proportional to the desiccant 
solution temperature in the evaporator, strong solution concentration, and regeneration temperature 
(until 71 ℃ then it is reversed) while inversely proportional to desiccant solution temperature in the 
condenser. More and wider range of experimental data are needed to expand the application range of 
the proposed ANN model. 
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