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Abstract: The accuracy of electricity consumption forecasts is of paramount importance in energy 
planning, it provides strong support for the effective energy demand management. In this work, we 
proposed a load forecast through the decomposition of the historical time series in relation to the 
historical evolution of each hour of the day. The output of these decomposition were served as input 
to different algorithms of machine learning. We tested our model by five machines learning methods, 
the achieved results are examined with three of the most commonly used evaluation measures in 
forecasting. The obtained results were very satisfactory. 
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1. Introduction 

The smart grid is developing, benefiting from the progress of information and communication 
technologies, and is increasingly becoming an efficient and robust system. In this environment, 
energy management systems are developed to monitor, optimize and control the energy market of 
smart grids. Demand management; considered an essential part of the energy management system; 
provides the means to make appropriate decisions on the exchange of electrical energy between 
different entities of the electrical grid by ensuring the stability and reliability of the operation of the 
electrical system [1]. 



383 

AIMS Energy  Volume 7, Issue 3, 382–394. 

Today’s electricity grids are growing rapidly, creating so many concerns about the environment, 
efficient use, sustainability and energy independence. Electric load forecasting systems is conceived 
as the primary purpose of energy demand supply management [2–4]. 

Accurate and reliable forecasting techniques can contribute to: 
 Supply and demand planning. 
 Strengthen the reliability of the electricity grid by making it easier for operators to plan and 

make strategic decisions for market players. 
 Optimizing the load required at peak times by ensuring that the energy offered by producers 

is minimized. 
 The harmonious integration of renewable resources helps to achieve environmental and 

economic objectives. 
 Save operating and maintenance costs while maintaining the system at a lower cost and 

reducing network reinforcement investments. 
Time series as indicating the term ‘time series’ is a presentation of data classified in order of 

time (years, months, days, hours...). Time series analysis also makes it possible to describe and 
explain a phenomenon over time in order to make decisions, including predictive decisions. The 
methodologies established in this framework aim to implement models that translate the mechanisms 
involved in the creation of the time series collected, within this framework; several approaches have 
been made to address the predictive problem that comes from statistics and machine learning [5,6]. 

In our study, we work on a load forecast according to a decomposition of the historical load data, 
whose load time series constitutes a periodic variation. The used decomposition subdivides the time 
series with reference to each hour of the day, to finally constitute 24 time series that represent every 
historical hour. The 24 time series are the input of five machine learning methods (multilayer 
perceptron, Support vector machine regression, RBF regressor, Reptree, Gaussian process). The 
absolute mean percentage error (MAPE), the root mean square error (MSE) and the Mean Absolute 
Error (MAE) are the evaluation measures, used to test the accuracy of the obtained results. 

The Section 2 presents the related work to the electrical load forecasting. Section 3 describe our 
approach to predicting the time series of electrical charge. Section 4 presents the machine learning 
methods used in this work. Section 5 displays the experimental results obtained and the 
interpretations derived from the results. We conclude the document with Section 6. 

2. Related work 

The forecasting problem was approached in the first works by using mathematical methods such 
as (regression, multiple regression, exponential smoothing and iterative technique of weighted least 
squares) until to the use of the machine learning and fuzzy logic. 

Among the first studies to load forecasting, there was a regression [7] whose authors used linear 
regression for loads forecasting, while Hyde et al and Broadwater et al are developed a method based 
on a non-linear load regression [8,9], several studies used autoregressive modeling, including R. 
Huang [10] who proposed an autoregressive model for short-term load forecasting; El-Keib AA 
et al. [11] in their paper worked on short-term forecasting models using exponentially smoothing. 
Chen J et al. have used an adaptive ARMA model for load forecasting in which they updated their 
model with learning forecast errors [12], while Barakat EH et al. [13] adjusted ARMA model (1,6) 
after analyzing the properties of seasonally adjusted loads for California steps. The ARIMA model 
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was introduced to predict load by taking into account seasonal variation. Taylor JW [14] in this paper 
implemented a method based on ARIMA which adapts to seasonality from one day to the next and 
inter-weekly, he adapted the exponential smoothing of Holt-Winters which adapt to these two 
seasonality. A probabilistic approach was used by Hyndman RJ et al. [15] to predict long-term load, 
his method is based on predicting the probability distribution of annual and weekly peak electricity 
demand up to ten years in advance applied to the Australian grid and dividing its model into two 
effects (annual and a half-hourly) estimated separately. 

The authors in the paper [16] used an artificial neural network and fuzzy logic to predict the 
short-term electrical charge. Using the Asia-Pacific Economic Cooperation Energy Database, Li D 
et al. [17] have worked in this paper on the problem of short-term forecasting, based on Grey’s 
theory which allows to build a model with limited samples. Yang HY et al. [18] in their study are 
opted for very short-term load prediction by chaotic dynamic reconstruction using the Grassberger-
Procaccia algorithm and the least squares regression method is applied to obtain the value of the 
correlation dimension to obtain the value of the correlation dimension that will be the basis of the 
FNS model. Al-kandari AM et al. [19] worked with a fuzzy linear regression model for the summer 
and winter seasons and solved using the simplex method based on linear programming. Smith D [20] 
in his paper used the Bayesian semi-parametric regression method to identify daily, weekly and 
temperature-sensitive periodic components of the load in order to model intra-day electricity load 
data and obtain short-term load forecasts. Amina M et al. are implemented a neural fuzzy wavelet 
model on an hourly basis that replaced the classical linear model, which usually appears in the 
consequent part of a neurofuzzy scheme, the fuzzy rules are derived by the Expectation-
Maximization algorithm [21], Hsu C et al. [22] proposed a model based on Grey theory using a 
technique that combines residual modification with estimation of the sign of the artificial neural 
network. 

Output core learning techniques are used by Fiot J et al. [23] to predict electricity demand 
measured over several lines of a distribution network, these techniques are adapted to model the 
complex seasonal effects that characterize electricity demand data, while learning and exploiting 
correlations between several demand profiles. Gonzalez-Romera E et al. [24] used the monthly 
energy neural network, two neural networks are formed to predict the trend and fluctuation 
surrounding it separately that are separated in advance, and that is summed to obtain a global 
forecast. 

Zahedi G et al. [25] have opted for a neuro-fuzzy structure that can be defined as an ANN (artificial 
neural network) this network is formed by experimental data to find the system parameters of fuzzy 
inference. A random forest model for short-term electrical load prediction was discussed by Dudek G 
et al. [26]. This is a comprehensive learning method that generates many regression trees (CART). 
Chaturvedi DK et al. [27] present a solution methodology using fuzzy logic for short-term load 
forecasting.  

Zahedi G et al. [25] has opted for a neuro-fuzzy structure that can be defined as an ANN (artificial 
neural network) this network is formed by experimental data to find the system parameters of fuzzy 
inference. A random forest model for short-term electrical load prediction was discussed by Dudek G 
et al. [26]. This is a comprehensive learning method that generates many regression trees (CART). Load 
forecasting models based on deep neural networks (DNN) was applied to an empirical database of 
demand side loading. Ryu S et al. [28] used a DNNs formed in two different ways: with a limited 
Boltzmann machine before forming and with the use of the linear unit on the floor without. 
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3. Periodicity decomposition 

We used the hourly electrical load data of the Moroccan electricity system for the period 2014–2016. 
In Figure 1, we present a 100-hour view of the load evolution that shows the periodic variations for 
each hour of the day. 

 

Figure 1. Periodicity of load demand. 

The time series consists of historical energy consumption data; this data have been collected for 
each hour of the day, referred to ‘A’ as a set of historical data, of which ‘A’ can be subdivided into 
subsets. 

 1 24

1
j

h

h

j nA
 
 

          (1) 

‘h’ denotes the time of the day j. time series representation is as follows: 
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In this context, we will use a daily cycle that contains 24 hours, we decompose the initial series 
into 24 sub-series, each series containing a sequence of a one-hour period from day ‘1’ to day ‘n’. 

Assume that: n = 24*m  
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This decomposition will allow us to predict the day 𝐴ା by a separate forecast of each hour of 
the day j + n. 
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where n denotes the number of days to be predicted is 

𝐴ℎ
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ሻ         (6) 

The first day of prediction can be written as follows: 
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4. Machine learning methods 

4.1. Multi-Layer Perceptron (MLP) 

Paul Werbos developed the MLP in 1974, which generalizes simple perception in the non-linear 
approach by using the logistics function 

𝐹ሺ𝑥ሻ ൌ ଵ
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Or the hyperbolic function 

𝐹ሺ𝑥ሻ ൌ t𝑎𝑛𝑔ℎሺ𝑥ሻ         (9) 

It has become one of the most popular neural networks conceived for supervised learning. The 
MLP consists of 3 layers, an input layer, an output layer and an intermediate layer which can be 
formed by at least one layer, the information is transmitted in one direction, from the input layer to 
the output layer. 

By an adjustment iteration set comparing outputs and inputs, the MLP adjusts the weights of 
neural connections; in order to find an optimal weight structure through the gradient backpropagation 
method. The network generally converges to a state where the calculation error is low. 

The MLP is given by: 

𝑦ො ൌ 𝑣   𝑣𝑔ሺ𝑤
்𝑥ᇱ
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ୀଵ
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Of which: 
𝑥ᇱ: The input vector x with 𝑥ᇱ ൌ ሺ1, 𝑥்ሻ் 
𝑤: The weight vector for j-th hidden node 
𝑣, 𝑣ଵ, . . . , 𝑣ேு: The weights of the output node 
𝑦ො: The output of the network 
𝑔: The function representing the hidden nodes, in this case a sigmoid function 
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4.2. Support Vector Machine (SVM) 

SVM methods are discrimination techniques. Its principle consists in making an optimal 
separation of two or more sets of points by a hyperplane by projecting the data into a very large 
space in which the data becomes linearly separable. A particular choice is made from among all the 
possible separators. An important and unique feature of this approach is that the solution is based 
only on the data points that are in the margin. These points are called support vectors [29]. 

The most important feature in SVM is spread over the points on the margin that are the solution 
to classification. SVM can also extend as a non-linear classifier by a linear transformation of the 
initial problem called kernel. 

4.3. Radial Basis Function (RBF) 

RBF (radial basis function) is a type of neural feedforward network, with a simpler structure 
than MLP and having a much faster training process. The RBF neural network has three layer 
structures; the input layer which is connected to the hidden intermediate layer, this layer is designed 
to fill the non-linear transformation of the input layer, the third layer is the output layer which 
provides the answers to activate the model of the input layer [30]. 

𝑦ො ൌ 𝑅𝐵𝐹ሺ𝑋ሻ ൌ  𝑤𝑅ሺ𝑋ሻ ൌ 𝑟
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And 
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With 
𝐶: The center vector of RBF 
‖𝑋 െ 𝐶‖ଶ: The Euclidean norm between the center and the network input vector X 

𝜎: The width of the thi  RBF unit 

𝑤: The adjustable weight of the nodes 

4.4. Reptree 

The aim of the tree decision is to create a supervised learning arborescent model in which each 
node verifies a test function with the input vector. The structure of the decision tree consists of the 
branches that represent the attributes of the observed data, and the leaves that are the target values of 
the data.  

Through an iteration set, the Reptree creates several trees to select the best generated tree based 
on the principle of calculating the gain of information by entropy and reducing the error resulting 
from the variance proposed by Quinlan [31]. 
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4.5. Gaussian process (GP) 

The GP is a probabilistic model that models the evolution of the process through time, therefore, 
it can determine the probability of each possible state sequence. To remedy latent in some cases 
parametric models when there is an unknown function, the Gaussian process is constructed as a 
classical statistical model forming a finite number random model of choice, with a constant Gaussian 
articular distribution [32]. 

The GP allows Bayesian inference to be performed directly in the function space. It allows a 
regression function to be deduced from a set of learning data of input-output pairs, by selecting a 
covariance function, which defines how the output vector changes when the output vector changes. 

5. Experimentation 

5.1. Data base processing and settings of machine learning algorithm 

The test data are derived from the Moroccan electrical load data for the period (from 
01/01/2014 to 30/11/2016). Were used as the training interval for each predictive variable, while the 
trials were evaluated using data from the following month (01/12/2016 to 31/01/2016). The load time 

series ൛𝐴ℎ
ൟ

ଵஸஸ

ଵஸℎஸଶସ
 is divided into 24 groups, each group forms one hour of the day. It consists of 24 

vectors, each one constituting a historical time series of a single hour of the day. 
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Our goal is to predict the charges for the next 100 hours. This approach shows how simple and 
successful the model can be. Our task was to predict the electricity consumption for each hour of the 
day and then form the daily, weekly and monthly consumption. Machine learning algorithms predict 
the future value of a time series data set by identifying the relationships between the characteristics 
of historical data and using the relationships revealed to predict. 

For MLP, we have opted for a series of variations in the number of neurons in the hidden layer, 
this number must be high enough to model the problem, but not very high to avoid oversizing. The 
learning algorithm used for this purpose is the iterative backpropagation algorithm. Additionally, to 
solve the problem of minimizing the cost function in relation to connection weights, the Gradient 
Descent algorithm is used in conjunction with the backpropagation algorithm. 

The SVM learning algorithm used is SMOreg. This is a supervised machine learning algorithm 
that implements the learning of the machine vector support for regression.  The accuracy of the SVM 
regression depends on the accuracy of the equation for selecting an appropriate function and 
parameters of the kernel. The kernel function is used to transform the data of the input space into 
high-dimensional data of the element space. In our test we chose to use the function of the RBF 
kernel which gave more precision compared to the linear, Gaussian and polynomial functions. 
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The SVM learning algorithm used is SMOreg. This is a supervised machine learning algorithm 
that implements the learning of the machine vector support for regression. The accuracy of the SVM 
regression depends on the accuracy of the equation for selecting an appropriate function and 
parameters of the kernel. The kernel function is used to transform the data of the input space into 
high-dimensional data of the element space. In our test we chose to use the function of the RBF 
kernel which gave more precision compared to the linear, Gaussian and polynomial functions. 

The RBF regressor used in this study is a supervised algorithm that minimizes quadratic error, 
in which each node has a Gaussian central vector optimized by SimpleKMeans. The initial sigma 
values are set to the maximum distance between a centre and its nearest neighbour in all centres. 

The Reptree algorithm is a variant of the C4.5 algorithm. In our test we have opted for different 
variation of the data present in a node during the fraction in the regression trees.  

For the GP, input and output data are monitored from an underlying functional mapping, via 
Bayesian inference whose underlying function is estimated in order to make predictions.  

In all the tests performed, we calculated 3 measures of accuracy (EMS, MAE and MAPE). Over 
the entire predicted series of size n, MAPE (Mean absolute percentage error) is the most popular 
measure of error accuracy of predictions used when forecasting demand at all times. The MSE, 
related to the standard deviation of forecast errors due to the square function, is more sensitive to 
outliers and errors less than 1. However, MAE (mean absolute error) is less sensitive to outliers and 
its scale is equal to that of the forecast data.  

3 measurements are calculated as follows: 
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Of which: 
𝑋௧: The predicted value  
𝑋௧: The actual value  

5.2. Results 

Forecast results are generated for 100 future hours. These results are assessed with actual 
measurements and presented in the same graph first and then separately. 



390 

AIMS Energy  Volume 7, Issue 3, 382–394. 

 

Figure 2. Load forecasting by methods (MLP, SMO, GR, RBF, RTress). 

Figure 2 shows the results of the 100-day forecasts obtained by the five methods (MLP, RBF, 
SVM, Reptree, Gaussian Process). From the extracted curves we clearly notice that the MLP is the 
closest to the actual load curve. It is followed by the vector machine support (SMO). Then, slightly 
less so the RBF and RepTree curves, while the Gaussian Process is the furthest from the real curve. 
Figure 3 shows the evolution of the forecast of the different methods compared to the actual load for 
100 hours, for which the MLP faithfully follows the load curve. 
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Figure 3. Result of the forecasts by the five methods separately. 
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In the Table 1 we summarize the results obtained by the five methods (MLP, SMO, RBF, 
RepTree, GP) in relation to the uncertainty measurements MAE, MSE and MAPE. 

Table 1. Accuracy measurements (MAPE, MAE, MSE) for the five methods. 

 SMO RBF GP RepTree MLP

MAPE 2.02 3.14 3.29 3.01 0.97

MAE 7519 11663 12087 11464 3654

MSE 779570 1914368 2481405 1890943 180647

Table 1 presents the accuracy measurements of the five methods (MLP, RBF, SVM, RepTree, 
and GP), these measurements are calculated based on the values produced from the 100-hour 
precision measurements. The results obtained for the methods used show that the MLP is the most 
robust among the others with a MAPE percentage of 0.96, the SVM although it is far its power 
compared to the MLP, it gives more rigorous results compared to the RBF, Reptree, and GP, the GP 
on the other hand is the farthest from the actual data. 

6. Conclusion 

In this work, we proposed an approach that consists of a periodic decomposition of the series, 
this decomposition led us to work on 24 time series that each represent the historical evolution of 
each hour of the day. Following this decomposition we obtained the forecasts for each hour and then 
formed the entire day. We tested this decomposition by five machine learning algorithms (MLP, 
SVM; Gaussian Process, RBF, RepTree). The results obtained are conducted in error verification 
tests (MAPE; MSE, MAE) which gave good results for MLP, and SVM and which proved the 
robustness of MLP, despite the fact that these results were obtained with a high training time and 
calculation cost. 

According to Figures 1 and 2, we notice that the divergence between the real curve and the 
predicted curve shows divergences at the level of peak hours and the lowest consumption hours, in 
perspective of this paper we will take this divergence into account in order to minimize this 
difference. 
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