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Abstract: The renewable sources have made an impact on economic benefits and the electrical 
quality of the distribution system. Therefore, a multi-scenario optimization model is proposed, 
targeting to optimize the investment of renewable sources considering uncertainties based on the 
minimum life cycle cost. The mathematic model allows selecting the siting, sizing and type of 
renewable sources in distribution system. The objective function is minimizing life-cycle cost of the 
project during the planning period, including the investment and operation cost of renewable sources, 
the cost of purchasing energy from the grid, the emission taxes and residual value of the equipment 
at the end of the planning period. The nonlinear power flow model alternating current is utilized to 
concurrently balance both active and reactive power at each state as well as the constraints for the 
limit capacity of feeders. Connectable substation and the constraints in selecting the renewable 
sources are also represented and thus improving the accuracy of the calculated results of the 
distribution system. The uncertainty parameters of renewable sources (photovoltaic and wind 
turbine), electricity price and load were modeled by the probability density functions and are 
considered in the optimization model. The clustering technique was utilized to divide each parameter 
into states then all states of parameters are integrated by the combined model. The general algebraic 
modeling system (GAMS) was applied to solve the optimization problem with the test system and 
demonstrated the advantages of the proposed model. 

Keywords: Distribution system; GAMS; Life cycle cost; optimization; renewable sources; 
uncertainties 

 

 



212 

AIMS Energy  Volume 7, Issue 2, 211–226. 

1. Introduction  

The application of renewable sources (RS) contributes to the economic benefits and technical 
advances in the distribution system (DS). The RS are conducive when reducing the losses of power 
and voltage, improving flexibility and reliability, extending equipment life of the system as well as 
lessening the costs of purchasing energy from the market [1–6]. Additionally, the RS integrated in 
energy systems can reduce the pollutant emissions including CO, CO2, SO2 and NOx from traditional 
energy sources [7–9]. Therefore, the many researches have considered the application of RS in the 
planning and operating of DS with different approaches used for the optimization of RS generation 
and integration subproblems [10]. The long-term planning model is proposed to maximize the benefit 
of a project integrating the RS [11]. Similarly, the model planning the DS considering the distributed 
generators is also introduced with the objective is minimizing the investment and operation cost of 
distributed generators, cost to upgrade feeder and substations during the planning period, energy 
expenses purchased from markets and emission costs [12]. The planning models to simultaneously 
select optimal allocation of RS and capacitor banks in DS are also introduced in researches [13,14]. 
The objective function is minimizing the total cost of investment and operation of DS, pollutants 
emission cost of resources. The results showed that the RS have great effect in DS planning by 
reducing for power and energy loss, energy cost and emissions. 

A new methodology is proposed to optimize the hybrid renewable energy system with various 
system configurations based on reliability and economic constraints [15]. The objective function is 
utilized to minimize the net present cost of project computed by HOMER software. Similarly, 
HOMER is also applied to optimize the configuration for grid-connected hybrid power systems 
considering RS such as PV and wind turbine [16]. The results is for computing the optimum system 
architecture and size of equipment, at the same time, the hybrid system reduces the significant 
amount of greenhouse gas emissions leading to greater environmental impact compared to the 
existing system. However, the above studies only compute with average load, electrical price, solar 
radiation and wind speed while they always change and are stochastic values. In addition, the 
lifetime and uptime of equipment on the planning period are not the same, the planning time is 
usually shorter than the equipment life cycle and the impact of reactive power is ignored in optimal 
problems.  

Hence, life cycle cost (LCC) during computation time is introduced to analyze planning and 
operating of RS in energy systems [17–20]. Beside, the output power of wind turbine (WT) and 
photovoltaic (PV) as well as the load and electrical price are stochastic parameters that are usually 
expressed by the probability density function (pdf) in which the normal probability density function 
is chosen for modeling the uncertainties of the load and electrical price [21]. Similarly, the wind 
speed is modeled by the weibull probability density function and the beta probability density 
function is selected to present the irradiance data [22–27]. The output power of WT and PV depends 
on wind speeds and radiations, respectively, and thus those are stochastic parameters. The stochastic 
parameters are divided into levels (states) by clustering technique with specific values and different 
probabilities. In this context, a combined model are utilized to integrate the output power of WT 
and PV, the load and energy price [25,28,29]. The planning of the DS considering uncertainties is 
presented at several researches with stochastic parameters including the load, electrical, output 
power of the RS. The siting and sizing of the RS, as well as upgrading capacity and time of 
feeders, are concurrently chosen with the cost of the object at the present value [22–31] or power 
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loss [32]. Similarly, the stochastic optimization approaches are also utilized to examine uncertainties 
in optimizing the configuration of energy systems. The objective is minimizing the cost of energy of 
over a particular time horizon [33] or the LCC which constitutes the capital cost, the replacement 
cost, the resale cost, and the operations and maintenance costs of the system [34]. However, the 
lifetime and uptime of the equipment have not been considered and so the error of the planning 
problem is large. Additionally, the optimal site selection of electric vehicle charging stations based 
on a bayesian network model is proposed, which simultaneously consider the uncertainty and the 
economic, environmental, and social criteria [35]. The optimal integration of electric vehicles and RS 
in a smart residential district is also introduced. The results showed that the amounts of power from 
RS reduce the annual energy cost of district [36]. 

Therefore, this research proposes a planning framework to analyze the optimal siting, sizing and 
technology of the RS with the objective function being minimum LCC during the planning period 
and considers uncertainties of the DS. The lifetime and uptime of equipment examined as well as the 
LCC objective function increase the accuracy of planning results. The LCC includes the energy cost, 
emission taxes, the investment and operation cost as well as the residual value of RS at the end of the 
calculation period. The technical parameters and economic effectiveness of the DS are determined 
and the normal operation of the DS is guaranteed by constraints. A combination model is utilized to 
integrate the uncertain parameters as demand, electrical price and output power of RS. The loss and 
operation parameters of the DS are analyzed at the all of states with the alternating current (AC) 
constraints contributing to the reduction of errors. The planning problem with uncertainties is very 
complex and thus GAMS/SCENRED is employed to quickly reduce the scenario number of the 
problem while guaranteeing the small error of calculation results as shown in researches [37–40].  

Next section of the paper represents the modeling of uncertain parameters, the modeling 
problem with objective function and constraints presents in section 3. Section 4 shows results 
analyzed for the test system and the conclusion demonstrates in section 5. 

2. Modeling uncertain parameters 

The output power of RS changes random depending on natural intermittent of primary sources. 
Similarly, the energy price and electrical demand also are stochastic parameters. Hence, the pdf is 
often utilized to model uncertainties of parameters in DS as introduced in researchers [31,41]. 
Because the pdf is the continuous function, the clustering technique is utilized to divide stochastic 
parameters into different states. In each state, there is a specific value with the related probability. 

2.1. Uncertainties of load and price 

The load at buses randomly change according to demand of consumers and is modeled by the 
normal probability density function as present at Eq 1 in which the µ is mean of the distribution, σ is the 
standard deviation and σ2 is variance [28,41,22,26]. The electricity price is also a stochastic parameter at 
the competitive market and expressed by the normal probability density function as Eq 1 [22,26]. 

2
2

2

1 ( )( | , ) ( ) exp
22

xP X x f x µµ σ
σπσ

 −
= = = − 

 
 (1) 

https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Variance
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2.2. Uncertain powers of PV and WT 

A value related with probability at each state of solar irradiance is expressed by beta probability 
density function as Eq 2 [29,44] in which the Iir is the solar irradiance, µ is mean and σ is the 
standard deviation of the stochastic variable.  

( 1) ( 1)
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In each state, the output power is analyzed as expression (3) in which the kF.s is the fill factor and the 
n is the number of modules. The Is, Us are the generated current and voltage of the PV module at 
state s. Besides, the ISC and UOC are short circuit current and open circuit voltage, the UMPP and IMPP 
are current and the voltage at the maximum power point, respectively. The kU, kI are the coefficients 
depending on temperature, voltage and current of PV. The θA, θN are the ambient and nominal 
operating temperature of module PV.  

Similarly, the wind speed also changes random represented under rayleigh probability density 
function which is a special case of weibull probability density function as expression (4) with the 
shape index k = 2 and the scale index c = 1.128vm [28,29,23]. 
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The value and probability of wind speed in each state are determined when the clustering technique 
is utilized to divide the pdf into the states. In this context, the output power of the WT is calculated 
as Eq 5.  
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where, the WT
sP  and WT

rP  are output and rated power of WT. The vci, vcr, and vco are the cut-in 

speed, rated speed and cut-off speed of WT, respectively. 
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2.3. Combinable model of uncertainties 

The multi-state parameters of the DS are examined by utilizing a combinable model to integrate 
all possible states of parameters [28,29]. Hence, the matrix M is represented as Eq 6 to enumerate all 
combination of states of the load, electricity price and output power of RS. In which, the Cs is the 

matrix that enumerates the possible values of parameters, the {C }s sλ  is one-column matrix that 

represents probability corresponding with matrix Cs and the Ns is the sum of individual states of the 
matrix M which is computed by product the possible states of the parameters. 

W W

W

{C , {C }}

{C }= { }. { }. { }. { }

. . .

s s s
L L T T PV PV

s s s s s s s s s s
L T PV

s s s s s

s

M
P P P

N n n n n
s N

ρ

ρ

λ

λ λ ρ λ λ λ

=

=
∀ ∈

                          (6) 

where, the sρ , L
sP  are the electricity price and load corresponding with probabilities s

ρλ  and L
sλ . 

The WT
sP , PV

sP  are the output power of WT and PV corresponding with probabilities WT
sλ  and 

PV
sλ , respectively. The snλ , L

sn  are the numbers of states assumed of the electricity price and load 

while the ,WT PV
s sn n are the numbers of states of the output power of RS, respectively.  

The numbers of scenarios in matrix M are very big depending on choosing state number in each 
pdf. Therefore, the GAMS/SCENRED tool is employed to quickly reduce the scenario number of 
problem lead to decrease the computable volume and time while the results are guaranteed with the 
small error [42]. Beside, the choosing state numbers are very important because of its affect to the 
accuracy of results and the ability to calculate. The higher numbers of states selected, the higher 
accuracy is and increasing complexity of computation and vice versa. 

3. Modeling problem 

When the renewable sources participate in the DS, the economic benefits and the electrical 
quality of this system are considerably enhanced. However, the invested cost of the RS is often high 
and siting, sizing as well as technique of the RS significant effect to efficiency of planning problem 
and thus a planning framework should be created to optimize the invested parameters of the RS in 
the DS planning. In this study, the mathematic model with the LCC objective function can examine 
the different lifetime and uptime of the RS in any planning period. Moreover, the binary variables 
and uncertainty of parameters in the DS added in objective and constrains greatly enhance the 
accuracy and appropriateness of investment decisions in practice. The mathematic model of the 
problem, which determines siting, sizing and locating of RS in DS, includes the objective and 
constrains detailed as follows. 
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3.1. Objective function 

The objective function of the model is the LCC of the project during the planning period as 
presented in Eq 7.   
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In Eq 7, the first and second parts are the investment and operation cost of RS, the third part is cost 
to purchase energy from the grid, the fourth part is emission taxes cost reduced due to low emissions 
of RS and the last part is residual value of equipment at the end of planning period. All of them are 
calculated at the base year by discount rate r.  

Where, .
RS
P kC  is the invested cost of the RS with technology k; , , ,

RS
k i t sP  is the out power 

variables of the RS; .
RS
OM kρ  is operation and management (O&M) of the RS; , , , ,,T T

i t s i t sP Q  are the active 

and reactive powers received from main grid; ,P Q
s sρ ρ  are electrical energies price with rise factor in 

each year kρ ; ,T RSξ ξ  are CO2 emission coefficient of the traditional sources and RS with emission 

tax of CO2 is β; NT is total buses connected to main grid; NRS is total buses for installing the RS; k, NK 
are technology type and technologies set of the RS considered for selection; t, T are year and 

planning period; . .,RS RS
C k inv kT t  are lifetime and invested time of the RS with technology k. 

3.2. Constraints 

The nonlinear power flow model AC is selected to calculate both active and reactive power loss 
and thus the calculating operation cost of the DS is more accurate. They are reformed to integrate the 
RS as represented in Eq 8 with state index s of uncertainty parameters. The load at buses and the 
output power depending on technology k of RS are computed according to factors and rated powers 
present in Eqs 9 and 10. Similarly, the electricity prices are computed as Eq 11 with the peak price of 

active power is Pρ  and reactive power is Qρ . 
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where , , , ,,L L
i t s i t sP Q  are the active and reactive powers of the loads with demand factor at state s L

sk ; 

, , , ,,i t s i t sU δ are module and angle of bus voltages; 
, ,,ij t ij tY θ  are magnitude and angle of admittance 

matrix element formulated by the feeder impedances in year t; The out power of the RS at state s is 

reflected by coefficient ,
RS
k hk ; ,P Qρ ρ  are maximum price of electrical energies at hour h and sk ρ  is 

coefficient analyzing at state s. 

The binary variable k,i,tγ  is utilized to limit sizing and power of RS that those can be chosen as 

shown in Eq 12. Each type of RS should only be invested one time at each bus during the planning 
period.  

, , , , .max k,i,t i,k,t
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0; . 0; 1 , ,
T

RS RS RS
k i t k i t k K

t
P P P k N i N t Tγ γ

=

≥ − ≤ ≤ ∀ ∈ ∈ ∈∑         (12) 

Beside, the each feeder or connectable substation has a capacity limit for total power flow through it 
in all states. Because of that, the constraints (13) are proposed to guarantee that the equipment of the 

DS is not overloaded with the limited capacity of feeders .max
F
ijS and connectable substation .max

T
iS . 

Similarly, the voltage profile at buses must be guaranteed in a limit allowing the ordinary operation 
of the system as shown in Eq 14. At the substation bus connected to the grid, the voltage is often 
stability so it is assumed the constant. The voltage at load buses is usually varied under change of 

load. Hence, the voltage is limited as constrains (14) with minimum voltage profile minU  and 

maximum voltage profile maxU . 

, , .max , , .max; , ,F F T T
ij t s ij i t s iS S S S ij N t T s S≤ ≤ ∀ ∈ ∈ ∈                       (13) 
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The proposed model is Mixed-Integer Nonlinear Programming (MINLP) and thus the 
GAMS/BONMIN solver is utilized to optimize the planning problem [40]. 

4. Simulation results and discussions 

4.1. Test system 

The radial diagram 9-bus with a connectable substation introduced by researches [13,15] as 
represented in Figure 1 is selected to investigate the feasibility and efficiency of the proposed model. 
The data of the system is modified to match the problem in which the normal voltage is 22 kV, the 
load at buses presents in the appendix and grows 5% annually. The peak demand total at the base 
year is 17.95 MW and 14.08 MVAr, respectively. A substation is connected to the main grid at bus 1 
to feed energy for loads with maximum capacity 25 MVA. 

Because of quick installation and small space, the candidate site chose to install the RS are 
the load buses. The power limit at each bus assumes 5 MW and the discrete step selected to 
calculate is 0.1 MW [28,29]. The cost of investment, average O&M and the analyzed parameter of 
RS are presented on table 1 [43,44]. Besides, the emission coefficient and tax of resources are also 
introduced on table 2 [12,31].  

 

Figure 1. The diagram of test system. 
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Table 1. Parameters of the RS. 

Type of RS Parameters Value Parameters Value 
PV Peak power, Pr (kW) 100 kU (mV/℃); kI (mA/℃) 14.4; 1.22 
 UOC; UMPP (V) 22; 17.32 ISC; IMPP (A) 5.3; 4.76 
 Life time (year) 25 θN; θA (℃) 25; 43 
 Invested cost (M$/MW) 1.5 O&M cost ($/MWh) 20 
WT Rate power, Pr (kW) 100  vr (m/s) 14 
 vci (m/s) 4 vco (m/s) 24 
 Invested cost (M$/MW) 1.8 O&M cost ($/MWh) 40 
 Life time (year) 25   

Table 2. Parameters of the DS. 

Parameters Value 
Emission tax of CO2, β 10 $/ton 
Emission coefficient of traditional sources, ξT 0.68 kg/kWh 
Emission coefficient of RS, ξRS 0.02 kg/kWh 
Discount rate, r 10% 

The voltage at the substation bus is assumed the constant equaling 1.05 pu while the voltages at 
load buses allow change from 0.9 pu to 1.1 pu.  

4.2. Stochastic parameters of the DS 

The stochastic parameters, which are conceptualized under the pdf, are divided by clustering 
technique into states under the annual data as shown in Table 3. The 15 levels (statuses) with the 
specific value and related probability to guarantee a reasonable balance between accuracy and 
computed speed are selected to analyze in this research [28,29,22–26]. 

Table 3. Probability of parameters.  

St
at

e PV WT Load Electrical price 

RS
sk  PV

sλ  RS
sk  WT

sλ  L
sk  L

sλ  sk ρ  s
ρλ  

1 0 0.450 0 0.199 0.30 0.001 0.30 0.012 
2 0.06 0.002 0.1 0.112 0.35 0.003 0.35 0.023 
3 0.12 0.005 0.2 0.113 0.40 0.010 0.40 0.041 
4 0.18 0.012 0.3 0.106 0.45 0.028 0.45 0.065 
5 0.23 0.023 0.4 0.096 0.50 0.062 0.50 0.092 
6 0.29 0.039 0.5 0.085 0.55 0.111 0.55 0.116 
7 0.35 0.057 0.6 0.072 0.60 0.159 0.60 0.131 
8 0.40 0.073 0.7 0.059 0.65 0.184 0.65 0.132 
9 0.45 0.083 0.8 0.047 0.70 0.172 0.70 0.119 

Continued on next page 
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St
at

e PV WT Load Electrical price 

RS
sk  PV

sλ  RS
sk  WT

sλ  L
sk  L

sλ  sk ρ  s
ρλ  

10 0.50 0.084 0.9 0.036 0.75 0.130 0.75 0.096 
11 0.55 0.072 1.0 0.027 0.80 0.079 0.80 0.070 
12 0.60 0.053 1.0 0.020 0.85 0.039 0.85 0.045 
13 0.65 0.031 1.0 0.014 0.90 0.015 0.90 0.026 
14 0.70 0.013 1.0 0.009 0.95 0.005 0.95 0.014 
15 0.75 0.003 1.0 0.006 1.00 0.001 1.00 0.006 

The aggregation of uncertainty parameters is made by matrix M with 154 (50625) scenarios, the 
GAMS/SCENRED tool utilized to reduce number of scenarios to 15 [42]. 

4.3. Results and discussions 

The GAMS/BONMIN solver is applied to optimize the planning problem. The simulation result 
determines the siting, sizing and time invested of each RS as table 4. The WT and PV are chosen to 
install at buses, which are far connectable substation as buses 7, 8 and 9 because they decrease the 
loss and energy cost. The total power of PV chose is 7.0MW in the first year to salvage the low 
operation cost of this source. Similarly, the 8.1MW is the rated power of WT installed in DS at the 
6th year. 

The voltage profile at buses is improved because of loss in the reduction of DS as shown in 
Figure 2. The lowest voltage profile when without RS is 0.88 pu at bus 7 of the 10th planning year. 
Therefore, the electrical quality does not guarantee supply to consumers. Conversely, the voltage 
profiles at all buses are guaranteed during planning period with value being greater than 0.92 pu in 
case with RS. 

Table 4. Optimal siting, sizing and planning the time of the RS. 

Type of RS Siting (bus) 
Rated power 
(MW) 

Planning 
year 

PV 7 2.3 1 
 8 2.3 1 
 9 2.4 1 

WT 7 2.7 6 
 8 2.6 6 
 9 2.8 6 

The power and energy loss also decreased due to a decrease in power flow in the DS as presented in 
Figure 3. The PV installed at first year resulted in the decrease of maximal power loss at beginning of 
planning time by 2%, and increase by 3.97% at the 10th year when the WT was applied at the 6th year. 
Besides, the RS reduces energy loss of the DS as well as energy cost from the market. The electrical 
energy obtained from the market decreased from 1,098,100.0 MWh to 858,310.0 MWh in 
correspondence with 239,790.0 MWh or 21.84%. The CO2 emission of the RS equals only 2.9% of the 
traditional sources or the reduction is about 0.66 tons/MWh and thus the CO2 emission drops 158,261.4 
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tons at the case with RS as shown in table 5. In this case, the emission from the traditional sources is 
583,650.8 tons while from the RS is only 4,795.8 tons. 

As presented in table 5, the effect of investment project considering the RS is verified along 
with the reduction of LCC. The LCC decreased by 7.65% (6.34 M$ ) when the RS is involved. 
Similarly, the emission taxes in the case of RS is only 4.22 M$, 1.12 M$ less compared to the 
situation without RS. The simulation result shows the feasibility and effectiveness of the proposed 
model as well as the benefit brought by RS to the DS when the stochastic parameters are included in 
the problem. 

 

Figure 2. Voltage profiles at buss during the planning period. 

Table 5. The LCC and emission taxes cost. 

Case 
Total life cycle 
cost, M$ 

Emission taxes 
cost, M$ 

CO2 emission, 
ton 

Without RS 82.92 5.34   746,708.0 
With RS 76.58 4.22   588,446.6 
Comparison of two cases 6.34 1.12   158,261.4 
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Figure 3. Maximum power loss during the planning period. 

5. Conclusions 

This research introduced a model to optimize the invested siting, sizing, setting and time of the 
RS in the DS considering the uncertain parameters. The developed model features a number of 
important aspects: 

• The planning framework proposed with the objective function that minimizes the LCC of 
investment project including the investment and operation cost of the RS, the cost for 
purchasing the energy from market, the emission taxes cost and the residual value of equipment 
at the end of the analysis period. Therefore, the different lifetime and uptime of the RS are 
examined which improves the accuracy and suitability for the practical planning problem. 
• A combinable model with the clustering technique is utilized to integrate the multi-state 
uncertain parameters of planning problem as the electrical price, load, out power of the PV and 
WT.  
• The binary variables are integrated in MINLP model to perform the invested decision of the 
RS with limited power and selected power, which agree with the actual parameters. 
• The simulation results demonstrate how the application of the RS in DS could promote the 
reduction of LCC, and minimize power losses and emission cost during the planning stage. The 
voltage profile at buses and the flexibility of system operation could also be improved when the 
RS is considered when investing in DS planning problem.  
The cases study has illustrated the feasibility and effectiveness of the proposed model with 

uncertainty parameters of the DS, which indicates that the optimization method could be brought into 
practice. However, upgrading the feeders and substations during planning period can be deferred 
when RS are selected to invest because it reduces the power transmitted from the utility grid. The 
simultaneous selection the siting, sizing of the RS and upgrading the feeders and substations of the 
DS would also be an interesting work for future research. 
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Appendix A 

Table A1. Data of feeders. 

Bus i-j .max
F
ijS (MVA) Lij (km) Rij (Ω) Xij (Ω) 

1-2 6.67 5.3 4.10 2.27 
1-3 6.67 9.2 7.11 3.95 
1-4 6.67 10.3 7.96 4.42 
1-5 6.67 10.5 8.12 4.50 
2-6 6.67 11.7 9.04 5.02 
3-7 6.67 18.2 14.07 7.81 
4-8 6.67 17.2 13.30 7.38 
5-9 6.67 15.2 11.75 6.52 

Table A2. Data of loads at base year. 

Bus L
iP (MW) L

iQ (MVAr) Bus L
iP (MW) L

iQ (MVAr) 

1 - - 6 1.58 1.37 
2 2.83 2.29 7 1.31 1.14 
3 2.78 2.38 8 1.16 0.98 
4 2.95 1.99 9 1.22 1.05 
5 2.86 1.90 Total 16.69 13.10 
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