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Abstract: The State Of Charge (SOC) is the most important index in a Battery Management
System (BMS) to regulate charge/discharge decisions and to ensure the battery’s safety,
efficiency, and longevity. There are many methods to estimate SOC of a battery and the model
based-methods exhibit higher accuracy compared to other methods. Among them the Equivalent
Circuit Model (ECM)-based methods are employed in power system applications due to their
flexible nature. These models consist of a voltage source to represent Open Circuit Voltage
(OCV) which depends on the SOC of the battery. The accuracy of the SOC estimation highly
depends on the adopted Equivalent Circuit Model. To accomplish accurate battery model,
battery SOC should be precisely estimated. This paper investigates various types of SOC
estimation methods for lithium-ion batteries in-depth in view point of Battery Energy Storage
Systems (BESS). Different SOC estimation methods are compared and evaluated to assess their
suitability under both static response and dynamic conditions.

Keywords: SOC; lithium-ion battery; Equivalent circuit models ; Battery energy storage
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1. Introduction

The SOC of a battery is defined as the ratio of its current capacity Q(t) to the nominal
capacity Qn which demonstrates the maximum amount of charge that can be stored in the
battery [1].

SOC(t) = Q(t)/Qn (1.1)

Precise SOC estimation reflects some significant information such as battery performance,
remaining life of battery [2] that ultimately lead to an effective management and utilization of
the battery power and energy [3, 4]. Furthermore SOC estimation can be used to regulate
over-discharging and over-charging of the battery, which lead to a reduction in battery life,
explosion or flame, accelerating aging and permanent damage to the cell structure of
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batteries [5]. Accurate SOC indication is thus important for the user convenience and to ensure
the battery’s efficiency, safety, and longevity. An accurate estimation of SOC is a fundamental
consideration to eliminate failures due to thermal runaways and to regulate cell balancing [6].

Most of the SOC estimation techniques require very accurate measurements of either the
battery chemical content (type of electrolyte), its operating conditions or cell variables
(voltage, current) and thus are only suitable for laboratory rather than real world applications.
Also a given method of SOC estimation will be more suitable or applicable for a particular
application than another [7]. Furthermore the SOC of a battery is not a state that can be
measured directly but estimated from available parameters such as voltage, applied current or
surface temperature.

As the most improved and flexible battery technology, lithium ion batteries exhibits high
power capabilities, high energy density, low self-discharge, long life cycle and high number of
charge discharge cycles, low operational and maintenance requirements, satisfactory operating
temperature ranges, high reliability, technological diversity as compared to other standard
battery types such as lead-acid and nickel cadmium [8–11]. However, over charging or over
discharging of Lithium-Ion batteries can cause permanent damage to the battery cells which
may cause fire or even exploding batteries [12]. So an accurate estimation of SOC can conserve
the lifetime of batteries by preventing frequent charge and discharge.

Estimating and controlling the SOC is vitally important in various power system
applications such as Battery Energy Storage Systems (BESSs) and Electric Vehicles (EVs).
When it comes to the high penetration of renewable energy in the distribution network, BESS
is a potential solution to address the issues caused by the intermittent nature of renewable
energy [13]. But the operation of the BESS is affected by dynamic disturbances such as
unbalance load dynamics, the application of Electric Vehicle charging and single phase
distributed generations (Solar PV). Therefore to develop a BESS incorporating such dynamic
aspects and involving aspects such as modelling, simulation, development of control schemes
and standard test procedures require an adequate battery model to imitate the true battery
characteristics.

The most frequently employed battery models are Equivalent Circuit Battery models and
Electrochemical battery models [14–16]. Equivalent Circuit Models (ECMs) are flexible and
easy to compute compared to Electrochemical models which are complex as they consider
chemical process and degradation processes in the battery employing mathematical equations
(time-variant spatial partial differential equations) [15, 17–20]. One of the most frequently
employed Electrochemical model is Single Particle model (SPM) for which a backstepping PDE
state estimator is designed. Since the SPM model captures less cell dynamics and this method
requires high computational cost and time, in this paper only the ECM models are considered.
Equivalent Circuit Models consists of voltage sources, resistors and capacitors to describe the
electrochemical processes and dynamics of a battery [21]. Generally selected ECMs which
include the Rint model, the Thevenin model (first order RC ECM), the RC model, the PNGV
model and the improved Thevenin model (second order RC ECM)(see Figure. 1). Among
these ECMs, the second order RC ECM consists polarization capacitors to represent the
response of transient behavior (see Figure 1a).

AIMS Energy Volume 7, Issue 2, 186–210.



188

Figure 1. (a) Second order RC ECM [21] (b) thermal ECM [22].

In order to accurately estimate the SOC, battery model must be able to precisely represent
the both statistic and dynamic responses. When the accuracy of the battery model increases ,
the computational cost and time will also increase. Therefore in regards to the compromise
between the model accuracy and computational efficiency, second order RC ECM presents
considerably better outcomes. Other model which are mentioned here have high computational
efficiency but less accuracy. In second order Rc ECM, a voltage source represents the battery
Open Circuit Voltage (OCV). Therefore to obtain an accurate battery model, it is necessary to
adopt a definite SOC estimation method. There should be a compromise between the accuracy
and the complexity of the SOC estimation method.

The SOC estimation algorithm is generally programmed in the Battery Management
System (BMS) that regulates the energy flow in a battery pack with respect to voltages of
individual cells, temperature, state of charge and state of health. The main function of BMS is
to maintain a safe operating environment for the battery system, and to protect it from
damages [19, 23, 24]. Even though the estimation of battery SOC is key function of BMS, its
accuracy and online estimation is challengeable due to non-linear complex electrochemical
process in the battery [25].

In this paper both traditional methods and improved methods of estimating of SOC are
presented. Each method is described with its strengths and drawbacks in relation to the
accuracy of the Equivalent Circuit Battery Models in imitating battery dynamic behavior.

2. Estimation methods of SOC

Various experimental methods, models and algorithms, of estimating the SOC of a battery
have been proposed and developed each having its own advantages and disadvantages [12]. Table
1 summarizes the various estimation methods in view point of the methodology [3, 26].

Apart from these methods there are some other methods such as particle filter algorithms, non-
linear observer method and reference governor method. The comparison between the methods
is given by the Table 2.
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Table 1. The classification of the methods of SOC estimation. [3]

Category Method

Direct Measurement
(i) Open Circuit Voltage (OCV) method
(ii) Terminal Voltage method
(iii) Impedance method

Book keeping method (i) Coulomb Counting method
(ii) Modified Coulomb Counting method

Indirect Measurement

(i) Neural Network method
(ii) Support Vector Method
(iii) Fuzzy logic
(iv) Kalman Filter method
Extended Kalman Filter method
Unscented Kalman Filter method
Sigma Point Kalman Filter

Hybrid methods Coulomb Counting and Kalman filter

2.1. Direct measurement

In direct measurement methods, to estimate SOC value physical measurements such as the
voltage and impedance of the battery [3] are used. Frequently used direct measurement methods
are Open Circuit Voltage (OCV) method, terminal voltage method, impedance method and
impedance spectroscopy method.

2.1.1. Open circuit oltage method

Open circuit voltage(OCV) is the battery thermodynamic potential under no load condition
that has a non linear relationship with SOC for a lithium ion battery [3, 27]. The OCV is
usually obtained through offline OCV test at definite ambient temperatures and aging
stages [28]. Even though the open-circuit voltage (OCV) method is very accurate, it requires a
rest time to estimate the SOC and hence difficulty to be utilized in real world applications.

OCV is present in Electrical Equivalent Circuit models (ECM) as an ideal but variable
voltage source to which over-potential is added by the remaining resistor and capacitor
elements of the ECM [27].

Furthermore the relationship of the OCV–SOC differs among batteries and therefore an
unacceptable error can be occurred due to the usage of this varying OCV–SOC data for the
SOC estimation algorithms [29]. The conventional relationship of the OCV–SOC is developed
by measuring the OCV at each SOC state. The relationship differs with the variation in
capacity among batteries and shows different results even if the batteries are composed with
the same structures and materials. But estimating the OCV of each battery at each SOC for
the validity of estimation process is a considerably time-consuming process [29].
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Figure 2. The classification of battery models [30] [31].

SOC estimation can be significantly influenced by OCV hysteresis [32]. Hysteresis can be
defined as the dissimilarity between the OCV of charging process and the OCV of discharging
process [32]. Therefore it can be stated that the information of OCV alone is not sufficient to
determine the SOC and the history of charge-discharge should also be taken into account [27].

Furthermore the hysteresis characteristics differ with type of the electrode in li-ion batteries
(electrodes with lithium iron phosphate as the active material exhibit hysteresis phenomenon).
In order to analyze the effect of hysteresis on battery SOC estimation or ECM parameters,
hysteresis effect should be measured against battery SOC value or capacity. The OCV-SOC
function is implemented either as an analytical expression or look-up table where there are a
number of advantages in analytical method including data processing efficiency [33].
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Figure 3. Predicting model for SOC based on neural network. [34]

2.1.2. Terminal Voltage method

It can be stated that only a few researches have been carried out to determine SOC using
terminal voltage method of Lithium ion batteries. The method is based on the fact that when the
battery is discharged because of the internal resistance, terminal voltage falls and Electromotive
Force (EMF) is equivalent to the terminal voltage [3].

2.1.3. Impedance method

In order to calculate the SOC using the impedance method, both voltage and current
measurement are recorded at different excitation frequencies since the battery impedance
depends on the frequency. The principle consists of injecting current in a certain range of
frequencies to find impedance. The change of impedance is negligible for higher values of the
SOC but when the SOC reaches a certain low SOC level, the impedance increases swiftly [3].

Among many methods, Electrochemical Impedance Spectroscopy (EIS) which brings
significant information about the complex electrochemical processes occuring inside the battery
is considered. Even though there are many methods of estimating SOC based on EIS, the
complexity of using EIS directly is considerable high [35]. As one approach, an impedance
Model is constructed on account of EIS data which is presented as a Nyquist plot where the
measured impedance is plotted as the real part against the imaginary part [23]. The Nyquist
plot impedance spectra is parted into three section: low frequency section, mid frequency
section and high frequency section. The parameter identification is simplified due to this
partition process and the SOC can be estimated using ECM model-based methods which are
discussed in this paper [23].
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2.2. Book-keeping method

The coulomb counting method and modified coulomb counting method are categorized as
two kinds of book-keeping methods. The battery charging/discharging current is taken as the
input to this method. It allows to add several battery internal effect; such as capacity-loss and
self-discharge, for the SOC estimation, and also battery data such as nominal capacity. [3].

2.2.1. Coulomb counting method
In the coulomb counting method ( also known as Ampere-hour method), the SOC of a

battery is calculated by cumulating the charge flowed in or out of the battery [36].The
accuracy of the coulomb counting method is affected by the accuracy of initial SOC estimation
and measurement of the battery current ( accuracy of current sensors) [37]. The coulomb
counting method is convenient for SOC estimation of lithium-ion batteries with high charging
and discharging efficiencies [36] and required long time monitoring. Even though the method is
not suitable for real-time SOC estimation, it can be used to verify the accuracy of the results
obtained by other estimation methods.

SOC(t) = SOCo–
1

Crated

∫
idt (2.1)

Where SOC0 is the initial SOC value and i(t) is the current of the battery with a negative
value at charge, Crated is the rated capacity. The initial SOC value (SOC0) can be obtained by
OCV method. Even though the method is simple and inexpensive, the drawbacks of the
method can be listed as follows [38].

Since the coulomb counter is an open loop estimator, errors in the current sensor is added
by the estimator. The cumulative error becomes larger, when the SOC estimator operates
through a longer time period. Also, an incorrect result can be generated faster, when the
current sensor has massive errors.

When the battery ages in real time, the battery capacity varies, but the coulomb counter
cannot detect or take measures for the issue. As a result, SOC estimation will not be accurate,
if the real pattern of the battery estimation deviates from the expected pattern.

The initial SOC should be measured by the terminal voltage of the battery pack. So any
error contained in the initial estimation method will be carried throughout the process and this
method cannot detect or repair the initial error.

The Coulomb Counting method can be improved by considering the Coulombic efficiency
(ηAh) at different temperature and charge rates. It is defined as the ratio between the number
of charges extracted during the discharging process and the number of charges enter during the
charging process or the ratio of the discharging capacity to the charging capacity [39,40] (given
by the below equation).

ηAh = Qdischarge

Qcharge

× 100% (2.2)

Since ηAh depends on the current rate (discharge or charge) as mentioned above, an
Equivalent Coulombic Efficiency (ECE) (ηeq) is developed including the discharge and charge
Coulombic Efficiency. In general According to that the modified Coulomb Counting equation
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can be depicted as below with ηeq and Ca representing the ECE and the present available
capacity which differs from the rated capacity Crated due to temperature and age effect [41].

SOC(t) = SOCo–
1
Ca

∫
ηeqidt (2.3)

Among the different battery chemistries, li-ion batteries offer the highest Coulombic efficiency
in the normal SOC region ( exceeds 99%) [39, 40]. But the estimation of Coulomb efficiency is
difficult task as it requires highly accurate equipment.

2.3. Indirect measurement method

The adaptive systems are consistent, because of their ability to deal with the nonlinearities of
battery systems and show considerably excellent accuracy. Yet, in order to obtain good results
from the adaptive systems, the specific information of battery characteristics or an accurate
Equivalent Circuit Model (ECM) are required [42].

2.3.1. Neural network method

Neural Network is a mathematical model (subfield of artificial intelligence) that consists of
interconnected artificial neurons stimulated by biological neural networks and to predict the
output of a nonlinear system past data of that system is used [26]. Neural Network methods do
not rely on any, physical, electrical, chemical or thermal model and take less time period to
generate results compared to Extended Kalman Filter (EKF) [26, 43]. Neural Network consists
of inputs and outputs and is made of a number of processing units called neurons
interconnected with each other. The accuracy of Neural Network method depends on how far
the network is trained and the training process is the most important phase.

The most two common network architectures to estimate the SOC are the nonlinear
input-output (NIO) feed-forward network and nonlinear autoregressive with exogenous input
(NARX) feed-back network [26]. Figure 3 shows the structure of a feed-forward neural
network [44]. In order to represent the input variables and output variables , the neural
network consists of an input layer with nodes and output layer respectively. Additionally there
are one or more hidden layers to simulate the nonlinearity between the input variables and
output variable. The nodes between two adjacent layers are interconnected [45]. Only in the
output layer and the hidden layers are the processing layers with activation functions at each
nodes. There are several types of activation functions such as logistic tanh-hyperbolic tangent
and ReLu-rectified linear units. In most scenarios hyperbolic tangent sigmoid function and the
linear transfer function are used as functions of activation the hidden layer and the output
layer respectively. As there are no theoretical criteria when it comes to selecting the number of
hidden layers and the neurons, it will be done using the expertise knowledge. In regarding to
the SOC estimation, the neural network method determines the SOC direct from the voltage
and current without OCV-SOC look-up tables following steps can be considered as the
constructive approach to the neural network SOC estimation.
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194

Figure 4. Kalman filer process [46].

1.Initialization ( determination of the dimensions of the input layer and the number of
neurons in the hidden layer )

2.Train the neural network with input variables ( current, voltage, temperature) and output
variable (SOC)

3.Error calculation between the estimated output and the actual inputs
4.If the error is within the expected level searching is ended; otherwise repeat the step 2

There are many factors that influence the SOC of the power battery [44, 47, 48]. Since the
current, terminal voltage and temperature have the greatest influence on the SOC of the battery,
these three parameters are chosen as the input of the network, the battery SOC value is chosen
as the output, and the number of nodes in the hidden layer is set according to the experience [44].

2.3.2. Kalman filter
Kalman filter (KF) is a recognized technique that is used as an optimal estimator to

estimate the inner state of dynamic linear system. Basically, KF is a recursive set of equations
that consists of two steps: prediction step which predicts the system output, system state and
error [49] and correction step which corrects the current state estimate value based on system
output value [26,49]. The block diagram of Kalman filtering process is shown in figure 4.

In order to design estimate SOC using Kalman filter, a battery state-space model is
constructed using the equivalent circuit model. Considering the system noise and observation
noise, the discrete state-space model is constructed [46]. Since the battery OCV (which is
shown by a voltage source in a second order RC ECM) and SOC has a non-linear relationship
and KF algorithm is only suitable for linear systems, a linearization method should be followed
with an acceptable accuracy as a supplementary part. As a result of the linearization process,
the discrete space-state model equation (output equation) is reduced to a less complex
condition. The generalized error between the measurable value and system state variable ( ex:
SOC) is calculated the KF using the output equation. Then the Kalman gain is adapted to
update the system variables (SOC)

Because of highly nonlinear characteristics of battery system and unsuitable battery model
inaccurate outputs can be generated in KF method.

Basically, where the input is applied current, the terminal voltage is used as output, and the
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battery SOC is placed as the hidden state [50]. Then the hidden state is estimated by KF,
EKF, Unscented Kalman Filter (UKF) or Particle Filter (PF).

But, in the EKF method, the Jacobian matrix must be constructed and if the system is
highly nonlinear with non-Gaussian noise, the results may be generated with large errors [51].
But as an advantage, if there is an incorrect initial SOC value, the KF system can conquer it
and could detect and represent cell aging.

2.3.3. Extended kalman filter

Extended Kalman Filter (EKF) is the improved version KF and is used to estimate the
inner state of a nonlinear dynamic system using a state-space mode [26]. Simply it predicts the
future state of system based on the previous data [52]. when it comes to the estimation of
SOC, it employs advanced battery cell models and requires a relatively high computation
capability.

The EKF consists of two equations. One equation consists of matrices constructed using the
parameters of ECM along with the system state matrices (SOC) measurable input matrices
and non-measurable process noise [53, 54]. The parameters will be identified performing
standard test procedures. The second equation is the measurement equation which shows the
output voltage in terms of system state vectors, measurable input matrices and measurement
noise. Employing appropriate software tool ( MATLAB simulink) SOC can be estimated.

In some EKF methods, an inner filter is established to adjust the SOC and the battery
model is adjusted by an outer filter [55].

According to the SOC and the cell model, the inner filter proposes a corresponding voltage
using the measured current. The SOC is adjusted by comparing the measure voltage and
proposed voltage. Thus, the system feedback is voltage and its output is SOC. After
monitoring the applied current and voltage over a long period of time, the outer filter
gradually adjusts the parameters of the system model. In this method, the cell aging and other
lifetime effects are detected and modeled in real time.

An accurate battery model must be established in order to obtain better results from the
EKF method and the battery system must be treated as a nonlinear time-variant dynamic
system [26]. Most common models are shepherd model, Unnewehr Model, Nernst Model,
Linear Model, Thevenin model and RC Model [56].

The EKF algorithm not only can be used for online SOC estimation and track the battery
state of charge parameter, but also can be employed to identify the parameter of the battery
model [56].

2.3.4. Unscented kalman filter

Since SOC estimation of lithium-ion battery system inherits highly non linear characteristics
[57], it can produce large errors for EKF method, because it is a first or second order Taylor
series expansion to approximate the nonlinear functions [56]. Apart from the above disadvantage,
EKF must compute the Jacobian matrix and if the system consists of non-Gaussian noise, the
produced results may not be at an acceptable level . So Unscented Kalman Filter (UKF) has
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been established to improve the accuracy of KF and EKF methods. Since the UKF deals with
non Gaussian noises as well and Jacobian matrix is not calculated, it more suitable for SOC
estimation [51].

In this method the battery’s SOC is chosen as an element of the state vector. The two sub-
models in the proposed UKF methods are the process model and measurement model, which
describe the relationship between the SOC and cell states such as, current, the terminal voltage
and temperature.

2.3.5. Fuzzy logic method

Fuzzy logic method can be used to model, non-linear and time-varying systems without the
need for mathematical models or ECMs of a battery [58]. For the estimation of SOC using
Fuzzy logic method, environmental temperature, applied current and battery terminal voltage
are considered as the input variable balancing the complexity and accuracy well. The higher
the number of input variables (dimensions of fuzzy controller), more accurate are the results.
But when the dimension is higher, the rules of fuzzy control will be much complex to
implement [59, 60]. As the first step, Fuzzification is the mapping from the above input with
fuzzy variables using membership functions. Membership functions can be triangular-shaped or
trapezoidal-shaped functions considering the memory storage and efficiency. In the second
step, the relationship between the input and output is described using rule based
representation of expert knowledge [61]. The third step is the reasoning mechanism that
performs inference procedure. Defuzzification is the third step that converts the modified
control outputs into real valued outputs. The membership functions and rule sets are defined
by generating as a result of neural network algorithm or an expert. In order that the Fuzzy
logic model to accurately predict the SOC of the battery without considering the initial
capacity, a “training” data set are constructed [62].

In most fuzzy logic methods, the SOC value of the battery is predicted without the rated
capacity or previous knowledge of the discharge history of the cell and only by measuring the
imaginary component of the impedance at a few specific frequencies [63].

In most scenarios, clustering algorithms are used to construct input membership functions
and rules. The output membership parameters are optimized using least square fit.

2.3.6. Support vector machines

Support Vector Machines (SVM) are a set of related supervised learning methods used for
regression and classification that can be generally appropriate for any multi-variable function
to a higher accuracy level [56] and have been effectively applied especially in highly nonlinear
systems.
In order to estimate SOC using SVM regression model temperature, current measurement and
voltage are considered nonlinear input variables [64]. Using a kernel function in the SOC
estimation process, a training data set of the above input variable which covers the expected
range of operation should be selected [38, 65]. Then the proposed SVM model is validated
using the new data not used for training [66].
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Figure 5. The schematic of BESS components [67].

2.3.7. Particle filter Algorithm

Particle filter (PF) is an effective nonlinear filter technique that can obtain the particles and
corresponding weight values through random sampling [68]. The principle is to represent the
probability densities with a set of weighted particles [69]. The accuracy of the PF algorithm
depends on the experimental data and the structure of the PF. In order to estimate SOC of
the battery using PF algorithm method, it is necessary to establish a discrete state-state model
which consists of state equation and observation equation [70]. The state equation is derived
by the SOC definition which is expressed in the coulomb-counting method. The observation
equation is obtained considering the terminal voltage of the second order RC equivalent circuit
as the observed valued. The parameters of the second order RC ECM is acquired through
standard test procedures [71].

The collected data from charging process or discharging process data are stored as
experimental data. Then to establish the state equation of the state-space model, the SOC
estimation equation is discretized and considering the characteristics of collected data.

The particle filter algorithm has high accuracy for SOC estimation and the estimation error
is comparatively small [72]. Using PF algorithm as an individual SOC estimation method,
combination of PF and KF, PF and EKF, PF and EKF will improve the robustness of the KF
algorithm while solving probability distribution function selection of PF algorithm [73].

3. Analyze of the SOC estimation methods

3.1. Qualitative analysis

When it comes to the BESS in microgrids with Distributed Generations (DGs), dynamic
behavior (Ex: unbalance loads, unequal line impedances, phase asymmetry in branch
configurations at the common coupling point of the microgrid at grid connection ) of the power
system has a negative impact on the battery performance [96] . So to optimize the Battery
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management System, the requirement of an accurate battery model for the BESS is inevitable.
Due to the flexible nature and ability to represent the above mentioned dynamic situations,
Equivalent Circuit Models (ECM) have been adapted by many researchers [67, 96, 97]. Since
the battery model is the foundation for the BESS operation, the representation of ECM with
appropriate model parameters will enhance the modelling of BESS. As many ECMs are
established, considering the ability to represent dynamic response and less complexity of the
model, the second order RC Equivalent Circuit Model can be considered as the most suitable
model. Figure 1a showed the schematic diagram of second order RC ECM which consists of
controllable voltage source denoting the Open Circuit Voltage (OCV) which normally varies
nonlinear with SOC, RC parallel networks representing the polarization response and R0 ohmic
resistance denoting the electrolyte resistance [17,21,50,98,99]. The addition of the RC network
improve the representation of the dynamic behavior of the battery, but it is much complex to
simulate.

Since the OCV in the second order ECM varies nonlinear with SOC, when identifying the
above mentioned parameters, it is necessary to consider the battery SOC value as an input to
the simulation process [22,100]. So appropriate SOC estimation method should be included for
the modelling of BESS. The objective of this paper is to identify the SOC estimation approach
that can be used to update the OCV (controllable voltage source) of the ECM. Also when
selecting a method, the dynamic modelling of the battery must be preserved. The objective
can be achieved by either adopting model-based SOC approach which calculate SOC and
update OCV in the same procedure or adopting non-model based method then considering the
estimated SOC as an input to the ECM. The most frequently used ECM model-based SOC
techniques are Kalman Filter methods including EKF, UKF, CKF (Cubature Kalman Filter)
and PF algorithm which consist of both estimator and battery model [101, 102]. All other
methods mentioned in this paper are non ECM-based methods which usually use physical
parameters, mathematical or artificial intelligence algorithms.

The most important factor to be considered is the thermal behavior of li-ion battery and
how it effects the performance of the BESS. The battery internal resistance and battery
capacity are influenced by temperature distribution in terms of battery lifetime degradation or
battery performance [103]. Furthermore round-trip efficiency, operation of electrochemical
reactions and charge acceptance are influenced by the temperature [104]. Also higher
temperature will be a cause to hazardous situations of lithium [31]. Therefore in order to
maintain the battery temperature within the appropriate range, suitable cooling and heating
systems whose operation depends on the battery cell surface temperature and internal
temperature are required [22, 105]. Since the battery SOC and ECM parameters are varied
according to the temperature, those variations should be taken into account. As one approach,
temperature can be considered as an input to the SOC estimation method, but the ambient
temperature is not sufficient enough because it is necessary to model the heat generation and
heat transfer (conductive, convective and radiation) [31] to accurately represent thermal
behavior.

The most widely used thermal model is the lumped capacitor model which is shown in the
Figure 1b [22, 105, 106]. In this model Pgen represents the heat generation inside the battery.
The Rth, Rcon and Rth describe the internal resistance, the convection heat transfer and the
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thermal capacitance respectively. Since the thermal behaviour is represented using electrical
elements, these three parameters also depends on the battery current, SOC and battery
internal temperature.

Figure 6. The electro-thermal ECM model [22].

Therefore coupling the thermal model that represent the above mentioned thermal
phenomena with the second order RC equivalent circuit is convenient (see Figure 6 ).

Since the complexity of the battery model increases when coupling the ECM model and
thermal model, it is insightful to acquire a less complex SOC calculation method for this
objective. More importantly, typical BESS consist of buck/boost converter, DC link, inverter,
AC filter and the grid [96] which are shown by the Figure 5. The analysis of different operation
conditions ( grid-connected or isolated) with balanced loads or unbalanced loads may be
affected by the complexity of those models. Therefore a suitable SOC method must be adopted
considering the simulation time, because even adopting the rint model may increase the time of
computation considerably [96]. Preserving those factors, the above mentioned SOC estimation
methods will be accessed.

As KF is suitable for linear system, EKF, UKF and CKF can be considered as an optimum
state estimator for nonlinear systems such as li-ion battery systems [107]. The advantages of
KF based method is that it is not sensitive to the initial SOC error [108], but there are
disadvantages such high computational cost and complexity. Since these methods involves
complex matrix operations, it is difficult to implement the algorithms in ordinary
micro-controllers. Also they exhibits limitations such as linearization inaccuracy and
uncertainties due to measurement noise. Even though the temperature is taken as an input
while considering the ECM for the estimation, KF methods do not consider the above
mentioned heat generation and heat transfer. So applying KF methods with coupled
electro-thermal battery model to calculate SOC and update OCV (of ECM) will require
considerable time and computational cost.
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The neural network method exhibits limitations such as errors due to the over-training,
effects of the previous sample data set on the present data set and the presence of too many
neurons. The risk of over-fitting increases due to the presence of excessive neurons while
limited neurons will under-fit the data [45]. Neural network method requires high computation
as well as a large number of data set to trained. Fuzzy logic method requires high
computational cost, expertise knowledge as well as clearly defined fuzzy rules. The support
vector machines method demonstrates the superiority over the neural network method
including no requirement to select the number of neurons, no requirement to identify the
network topology and less problems regarding overfitting [109]. Additionally both neural
network method and Support vector method present better results only for constant current
situations and for dynamic situation the error is not in an acceptable level.

Hence non model based (direct measurement) are more suitable and among them OCV
method and coulomb counting method are widely used. But adopting one of these methods
alone may generate inaccuracy results. Therefore combination of the OCV method and
coulomb counting method is suggested as the SOC estimation method for this purpose. The
limitation of coulomb counting method can be overcome by adopting high accuracy current
sensor and calculating the initial SOC value using the OCV-SOC method. The Figure 7 show
the block diagram for the proposed SOC estimation method. The inputs are ambient
temperature,current and OCV. The initial SOC is estimated using OCV-SOC method where
the SOC values are stored using three dimensional table.The calculated SOC values is an input
to the electro-thermal model.

In the electro-thermal model in Figure 6 the current, SOC, OCV and internal temperature
are taken as inputs to the second order RC ECM and internal resistance, current, thermal
parameters and entropy coefficients are considered as thermal model inputs.

3.2. Quantitative analysis

The results from the previous research work were investigated for the quantitative analysis
where the error of the estimated SOC value using indirect methods was calculated taking
coulomb counting method as the reference. When calculating the SOC value using the coulomb
counting method, in order to eliminate the integration error a high sensitive calibrated current
sensor was used. In order to perform the quantitative analysis , in previous research work
LiFePO4 batteries were tested under different temperature (0 °C–60 °C) and current profiles.

In neural network method it emphasizes that the RMS errors are within 4%, but the
maximum error at some temperature ( 10 °C–50 °C) are larger than 10%. The errors are
presented in the middle range of SOC (30%–80%). The most important fact is the inability of
solving this problem by increasing the number of neurons or hidden layers because of
over-fitting of neural network [45]. As a different approach, the estimated SOC curve using
neural network method is compared with the reference SOC curve estimated using coulomb
counting method in terms of current disturbance response [110]. In the normal situation
without a current disturbance, the RMS error is less than 0.006% which is acceptable, but for a
dynamic situation with a current disturbance, even though the estimated SOC converges to the
reference value after some time, the deviation at the moment of the disturbance is at a
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considerable level.
In support vector method, for a normal condition the RMS error is over 5% where the

maximum error is about 15%. For a dynamic situation error is about 2.5% where the
maximum error is recorded as 13% [38]. For the fuzzy logic method the RMS error is roughly
about 5% [63].

Figure 7. The block diagram of the proposed SOC estimation method.

As for extended Kalman filter, the RMS error varies according to the adopted battery
model [55]. As for an example for Thevenin model, the error is less than 0.6% which is
acceptable [94]. for the second order RC ECM the RMS value is close to 0.75% where the
maximum error is close to 2% [111].

4. Conclusion

This paper presented a review of methods of estimating of SOC of lithium-ion batteries.
The estimation methods have been reviewed and evaluated in both qualitative and quantitative
manner to encounter the suitability for Battery Energy Storage Systems dynamic modelling.
In order to represent the dynamic behavior, the second order RC ECM is proposed and to
encounter thermal effect thermal model is suggested to couple with the proposed ECM model.
Since the OCV source of the second order RC ECM is nonlinear function of SOC, appropriate
SOC estimation method should be adopted to achieve the objective of dynamic modelling of
battery. Due to the fact of the additional complexity with the electro-thermal model, indirect
measurement SOC estimation methods (model based methods) exhibits high computational
cost and time. Furthermore those methods give better results only for the constant current
situations. Therefore combination of two direct measurement SOC methods namely Coulomb
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counting method and OCV method is suggested. The primary part of the SOC estimation
method consists of coulomb counting method where the initial SOC value is taken from the
OCV method. As the BESS compromise of complex control schemes to regulate power, voltage
and current, adopting this combination of SOC estimation method will give appreciable balance
to the whole process.
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