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Abstract: Accurate estimation of the energy need and consumption is considered as one of the most 
important basis of the economy worldwide. It is also of high importance to mitigate the adverse 
effects of the release of CO2 (e.g., climate change) from conventional energy sources by using 
renewable energies, as recommended by European commission. Thus, in this study a forecast 
regarding the residential energy consumption of the household sector in countries belonging to the 
Euro area was executed. To proceed with this prediction, time related data from 1990 till 2015 along 
with Auto Regressive Integrated Moving Average (ARIMA) model were applied. ARIMA model 
was considered due to possessing the ability of providing accurate results while being able to receive 
stationary and non-stationary data. The obtained results from the analysis clarified that ARIMA (0,1,1) 
model is the most accurate model to undertake such prediction as the amount of RMSE achieved was 
0.097. This comparison was accomplished by considering the ARIMA (0,1,0) and ARIMA (1,1,2) 
models as their amounts regarding RMSE were respectively 0.1068149 and 0.0975575. The results 
indicate that the amount of the energy predicted to be consumed in household sector in EU area is 
estimated to be 186244 toe (tonne of oil equivalent) which shows a drop in the energy consumption 
in Euro area probably due to the increase in the energy efficiency especially in recent years.  
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1. Introduction 

Since the beginning of the 20th century, the amount of global energy demand has increased 
constantly due to the effective growth in different technologies for various applications [1–3] and 
revolution in social urges. Since 1970, the increase in energy consumption changed its trend and had 
gotten doubled the previous amount and even afterwards did not continue the predicted path and in 2013 
gained the growth of 2.3 times the previous amount resulting in the total consumption of 930 Mtoe, 
which is equal to 390 EJ [4]. As the energy consumption affects the economic upturn, an accurate 
estimation of the forthcoming energy demand is essential in order to provide a prediction with higher 
accuracy regarding the energy supply [5]. Between 1996 and 2006, the residential segment was 
responsible for consuming the approximate 30% of the average of energy consumption globally. For 
instance, in Spain, which has the similar behavior to its surrounding countries when it comes to energy 
consumption, in 2010 households had the consumption of 17% of all final energy and 25% of electricity. 
Due to the fact that the residential buildings share a large portion of energy consumption, it is crucial for 
any applied forecasting software on this segment to be highly contributed in order to achieve the 
objectives in regards with the energy policy [6]. Hence, in this study we aimed to predict the energy 
consumption in Euro area household sector using an auto regressive integrated moving average (ARIMA) 
model to be used for future energy supply planning activities. In order to proceed with this research, the 
annual energy consumption of residential segments located in countries belonging to the Euro area has 
been chosen to be inserted in ARIMA model as an input. After presenting a prior art, this study will 
present the details of the methodology applied and the predictions have been provided afterwards 
followed by a discussion on the results achieved. 

2. Prior art 

Energy supply is among the most challenging issues in global scales. Depletion of the fossil 
fuels, in one hand, and the rising concerns on the subsequent environmental impacts of the carbon 
dioxide and other greenhouse gases emission into the atmosphere, on the other hand, forced the 
decision makers to substitute the current energy sources by sustainable and renewable energy sources. 
In this regard, various roadmaps have been established by the authorities to secure the future energy 
supply. Hence, prediction of the energy consumption can assist to make the plans more realistic. 
There are various types of mathematical models to be applied to perform the energy consumption 
forecasting [7,8]. To name a few of these approaches, moving average, multiple regression models, 
exponential smoothing and neural network can be mentioned. ARIMA has gained popularity in the 
forecasting domain regarding the consumed energy due to the fact that it provides adaptability and 
also as it facilitates the search of the most functional model at each stage whether it is identification, 
estimation or diagnostic checking [9]. This method has been widely applied for the energy 
consumption in various countries [8,10–12]. Nichiforov et al. [13] reported that the ARIMA model is 
more accurate than the non-linear autoregressive neural network (NAR) model in forecasting the 
energy consumption forecasting. Sen et al. [14] also indicated that ARIMA methodology is an 
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efficient method to forecast the greenhouse gases emission as well as energy consumption in an 
Indian pig iron fabrication industry. However, the number of reports on the application of ARIMA 
methodology for the prediction of energy consumption by household sector is rare in the literature. 
Due to this fact that Euro area is among the major players in the global energy policy (together with 
US, EU, and China) and in the climate change mitigation [15], it is of highly importance to have a 
realistic prediction of the amount of the energy needed by various sectors. 

3. Materials and methods  

3.1. Materials 

In this study, the logarithm of annual household energy consumption (lhec) of countries 
belonging to the Euro area from 1990 to 2015 was utilized, extracted from PORDATA [16]. To 
perform the ARIMA analysis, Microsoft Excel Spread Sheet 2016 and R Software (3.4.2) were 
applied.  

3.2. ARIMA model(s) 

In the ARIMA analysis, an identified underlying process is produced according to the annual 
time series data aiming to provide a functional model, which represents the generation mechanism 
thoroughly. Based on Box-Jenkins method, the ARIMA approach provides the main three stages of 
identification, estimation and diagnostic checking which is demonstrated in Figure 1.  

 

Figure 1. A schematic of the Box-Jenkins methodology. 

In the first step, prior to identify the order of ARIMA which best suit the data, it is necessary to 
check the data which is stationary or not [17–19]. Aside from the analysis regarding the time plot of 
data, Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test was also performed in order to assess the 
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stationary situation of the data. In KPSS test for the logarithm of household energy consumption, the 
null and alternative hypotheses are as below: 

H0: lhec is a stationary process 
H1: lhec is not a stationary process 
As the result, H0 imply that the data is stationary, its relevant calculated P-value must be greater 

than 0.05. To proceed with the application of ARIMA model, auto correlation function (ACF) and 
partial auto correlation function (PACF) graphs were illustrated, which inform about the AR and MA 
orders. The ACF and PACF graphs determine the MA and AR process orders, respectively. 

In the second step, with the ARIMA technique, a model was estimated with a certain number of 
parameters and the significance of the parameters was tested. To clarify, it evaluates whether the 
parameters are zero (null hypothesis, H0), or different from zero (alternative hypothesis, Ha). To 
assess the significance of the parameters, the statistic P-value was applied. The software 
automatically provided the amount of 0.05 as the P-value, which can be defined as a level that 
corresponds to 95% of confidence interval. Under the condition that the P-value is less than the 
mentioned amount, H0 was rejected. Finally, the extracted results from various ARIMA models were 
taken into for comparisons and while taking the Bayesian information criterion (BIC) into 
consideration, the most functional and suitable models in order to proceed with this study were 
identified. In addition, the models which provide the lowest amount of BICs were considered to be 
the most convenient ones. 

The final phase in Box-Jenkins method, before conducting the forecasting stage, is evaluating 
whether the residuals in identified model has been normalized distributed—white noise and also if 
the parameters have been non-correlated to each other. In this communication, Kolmogorov-Smirnov 
and Box-Pierce tests were applied for normality and non-correlation assessments of the residuals, 
respectively. The null hypothesis in Kolmogorov-Smirnov assessment demonstrates that the 
residuals are independently distributed and, moreover, in the Box-Pierce assessment is that they are 
non-correlated. As the result, the calculated P-value for residuals with normalized distribution and 
non-correlated with a 95% confidence interval should be greater than 0.05. On the other hand, in 
different circumstances where there is more than one parameter in the model, in order to calculate 
the non-correlated characteristic of the parameters with utilization of the variance-covariance matrix, 
the following Eq 1 can be adopted; 

𝜌 ൌ
௖௢௩ሺఈ೔,ఈೕሻ

√௩௔௥
೔ೡೌೝሺೕ

                                                                       (1) 

Due to the fact that the Box-Jenkins approach is an iterative procedure, thus, on any occasion that a 
brand-new information is produced from the diagnostic stage, it is possible to return to the primary phase 
and regenerate new modeling classes.  

3.3. Forecasting methodology 

To evaluate the prediction accuracy provided by the models, the data was subdivided into two 
separate durations, one from 1990 till 2010 and known as ‘training data’, and likewise the other one 
from 2011 till 2015 known as ‘testing data’. Afterwards, by inserting the data by the end of 2010 in 
the model, which is accounted as ‘training data’, the predicted logarithm of residential energy 
consumption for 2011 till 2015 was achieved. The results were then taken into comparison with the 
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‘testing data’. Ultimately, the forecasting error can be calculated by the difference of the actual 
values known as ‘testing data’ and the obtained values from the model. Equation 2 defined as 
following demonstrates the above-mentioned calculation;  

𝑒௧ ൌ 𝑦௧ െ 𝑦∧          (2) 

In Eq 2, et stands for the forecasting error in time t, yt refers to the actual values in time t, and y^ 
represents the calculated forecasting values in time t. To evaluate the accuracy of the suitable models, 
Mean Absolute Error (MAE) and Root Mean-Square Error (RMSE) were applied, which are the 
assessing measurements regarding the accuracy of the suitable models [20] (Eqs 3 and 4). 

𝑀𝐴𝐸 ൌ 𝑚𝑒𝑎𝑛ሺ|𝑒௜|ሻ𝑀𝐴𝐸 ൌ 𝑚𝑒𝑎𝑛ሺ|𝑒௜|ሻ       (3) 

𝑅𝑀𝑆𝐸 ൌ ඥ𝑚𝑒𝑎𝑛ሺ𝑒௜ଶሻ         (4) 

The RMSE and MAE are not quite explanatory by themselves, however, they can be applied in 
order to provide more accurate comparisons among the ARIMA models. Generally, the smaller the 
values are, the better fitting the models will be. 

4. Results 

As the time plot of the data is illustrated in Figure 2, non-stationary process of the time series is 
evident as the mean change during the time. Thus, to eliminate the trend, the differencing method 
was applied, which is demonstrated in Figure 3. 

 

Figure 2. Logarithmic time plot of household energy consumption in Euro area countries 

(1990–2015). 
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Figure 3. First differenced time plot of the household energy consumption in the Euro 

area countries (1990–2015). 

As the time plot of the first differenced of household energy consumption is not easy to interpret 
to recognize if the data is stationary or not, the KPSS assessment was implemented. Based on the 
obtained values from the KPSS assessment with the P-value equal to 0.1, which is greater than 0.05 
(P-value = 0.1 > 0.05), it was comprehended that the first differenced form of the data follows a 
stationary process (Table 1).  

Table 1. Obtained results from KPSS assessment for the first differenced form of data. 

Data KPSS level1 Truncation lag parameter p-value 
dlhec 0.20611 1 0.1 

Later on, in order to proceed with the identification of the AR and MA orders of the ARIMA 
model, ACF and PACF graphs were illustrated (Figures 4 and 5).  

 

Figure 4. Auto correlation function plot of the first differenced level of data. 
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Figure 5. Partial auto correlation function plot of the first differenced level of data. 

Thereafter examination of ACF and PACF graphs, it was comprehended that the single negative 
spike at lag 1 in the ACF is an MA (1) signature, resulting in the ARIMA (0,1,1) to be a possible 
alternative. Moreover, seven other models are represented in Table 2 to provide a better comparison 
among the models. 

Table 2. Estimation of different possible ARIMA (p,d,q) models. 

The ARIMA (1,1,1) and ARIMA (2,1,1) were completely eliminated as all their estimated 
parameters are not in the range of defined confidence interval of 95%. Likewise, the ARIMA (2,1,1), 
ARIMA (0,1,2) and ARIMA (2,1,0) are also neglected, due to the fact that each possesses an 
insignificant parameter. The remaining ARIMA (0,1,1), ARIMA (1,1,0) and ARIMA (1,1,2) are all 
taken into account and will be further analyzed and evaluated regarding their diagnostics and 
forecasting accuracy as they all own an approximate equal value regarding the BIC. Furthermore, the 
identified models are analyzed based on their residuals to ensure that not non-normalized distribution 
and also no correlation exist among them. Regarding this matter, Quantile-Quantile (Q-Q) plot of the 
residuals are illustrated in Figure 6. Moreover, the results in regards with the Box-Pierce assessment 
on non-correlation and also Kolmogorov-Smirnov assessment on normality in distribution are 
respectively represented in Tables 3 and 4. Based on the P-value of Box-Pierce assessment of each 
model, whose all P-values are greater than 0.05, it can be concluded that the residuals are not 

Model AR(1) AR(2) MA(1) MA(2) BIC 
(p,d,q) Estimate p-value Estimate p-value Estimate p-value Estimate p-value 
(1,1,1) −0.1512 0.6425   −0.4594 0.1194   −5.943572
(0,1,1)     −0.5568 0.0015   −6.059352
(1,1,0) −0.4836 0.0122       −6.001923
(2,1,1) −0.3858 0.5345 −0.2027 0.5932 −0.2363 0.7039   −5.831161
(1,1,2) −0.8230 0.0000   0.4188 0.0364 −0.5812 0.0021 −5.909778
(2,1,2) 0.8941 0.0006 −0.1042 0.6744 −1.7926 0.0000 0.9999 0.0000 −6.02619 
(0,1,2)     −0.6359 0.0083 0.1238 0.5795 −5.948593
(2,1,0) −0.6016 0.0051 −0.2996 0.1913     −5.95179 
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correlated and likewise, the results of the Kolmogorov-Smirnov assessment determines that all three 
models possess a normal distribution of residuals.  

Table 3. The results of box-pierce assessment on residuals. 

 

 

Figure 6. Quantile-quantile (Q-Q) plot of the residuals. 

Table 4. Kolmogorov-Smirnov assessment on residuals. 

ARIMA model D p-value 

(0,1,1) 0.23518 0.09508 
(1,1,0) 0.20496 0.1956 
(1,1,2) 0.16426 0.4378 

Furthermore, the parameters of ARIMA (1,1,2) should be analyzed to be evaluated regarding 
their non-correlated characteristic. The results in regards with their correlated functionality 
calculated by Eq 1 and their relevant variance-covariance matrix are respectively represented in 
Tables 5 and 6. By examining Table 6, it will be comprehended that the estimated parameters are all 
non-correlated, due to the fact that all their respective correlation values are less than 50%. 

Table 5. Variance-covariance matrix of the parameters in ARIMA (1,1,2) model. 

Parameter ar1 ma1 ma2 
ar1 0.019848639 −0.005325536 −0.005324837 
ma1 −0.005325536 0.035337848 0.017062884 

ma2 −0.005324837 0.017062884 0.027683037 

 

ARIMA model X-squared Df p-value 

(0,1,1) 3.793 10 0.9562 

(1,1,0) 4.1284 10 0.9414 

(1,1,2) 3.4839 10 0.9676 



159 

AIMS Energy  Volume 7, Issue 2, 151–164. 

Table 6. Correlation value of the parameters in ARIMA (1,1,2) model. 

Parameter Value 

ρ(ar1,ma1) −0.201084182157 

ρ(ar1,ma2) −0.227161163750 

ρ(ma1,ma2) −0.475485711 

Corresponding to the diagnostic checking, all the three models of ARIMA (0,1,1), ARIMA (1,1,0) 
and ARIMA (1,1,2) are properly specified, which are in perfect harmony with the algorithm of 
residential energy consumption time series data in countries of the Euro area. As the result, all three 
above-mentioned models can be applied to provide the forecasting objectives. The forecasting results 
of the logarithm of residential energy consumption until 2020, which are attained from the 
applications of ARIMA (0,1,1), ARIMA (1,1,0) and ARIMA (1,1,2) are indicated in Figure 7.  

To proceed with the evaluation regarding the accuracy of the forecasting models, the logarithm 
of household energy consumption relevant to the period of 2011 till 2015 is estimated, utilizing data 
for the period of 1990 till 2010 by ARIMA (0,1,1), ARIMA (1,1,0) and ARIMA (1,1,2) models. The 
estimated values obtained from the different models along with the actual values, known as ‘Test 
Set’, are represented in Table 7.  

Table 7. Comparison of the forecasting values by different ARIMA models with actual values. 

Year Actual Value Forecast 

(0,1,1) (1,1,0) (1,1,2) 
2011 12.14 12.23 12.23 12.23 

2012 12.19 12.23 12.24 12.23 

2013 12.21 12.23 12.24 12.23 

2014 12.071 12.23 12.24 12.23 

2015 12.12 12.23 12.24 12.23 

Afterwards in consonance with Eqs 3 and 4, MAE and RMSE measurements relevant to three 
models were computed and displayed in Table.8. 

Table 8. Forecasting accuracy measurements for the models. 

Parameter/Vlue (0,1,1) (1,1,0) (1,1,2) 

MAE 0.084112 0.095 0.08432 

RMSE 0.09725904 0.1068149 0.09745575 
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Figure 7. Forecasting residential energy consumption in countries belonging to the Euro 
area till 2020 using model ARIMA (0,1,1) (0,0,0) (a), ARIMA (1,1,0) (0,0,0) (b), 
ARIMA (1,1,2) (0,0,0) (c), toe: tonne of oil equivalent) - thousands. 

5. Discussion 

According to the results achieved for BIC criterion (−6.059352, −6.001923 and −5.909778 for 
ARIMA (0,1,1), ARIMA (1,1,0) and ARIMA (1,1,2), respectively), ARIMA (0,1,1) provides the 
smallest value, however very closed to the others. Also, diagnostic checking for all three models 
indicate that they fallow a normal distribution with non-correlated parameters. Therefore, it can be 
stated that all three models can be applied to forecast energy consumption by residential sector in 
Euro area. However, corresponding to the highest accuracy, ARIMA (0,1,1) model provides the most 
suitable approach in this regard. The amount of the energy which is predicted to be consumed in 
household sector in Euro area is estimated to be 186244 toe (tonne of oil equivalent) - thousands 
which is less compared to that consumed in the beginning of 20th century. The predictions (Figure 
7a) can demonstrate a drop in the energy consumption in Euro area. It can be attributed to the 
increase in the energy efficiency especially in recent years. Various reports are available in the 
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literature to emphasize this fact that the energy efficiency has considerably improved in recent years 
using innovative and sustainable technologies[21–25]. This fact has been also emphasized by 
European Energy Agency [26]. 

Prediction of the energy consumption in household sectors in Euro area is of high importance in 
terms of both environmental and economic perspectives. Due to the large amount of CO2 being 
released into the atmosphere since the previous century, the earth is going through some undeniable 
changes regarding its elevating temperature [27]. This is a concerning issue which has attracted a 
huge attention of the involved parties worldwide. In order to mitigate the occurrence of such events, 
one of the effective solutions is to decrease the amount of CO2 being released, even promoting the 
belief that the one of the alternatives is the implementation of ‘zero CO2 emission’ in which all 
sectors must find alternatives that little or no CO2 will be produced from their activities [28]. In 
compliance with this situation, the European Commission set some goals and regulations to pave the 
path of obtaining this importance forcing all the countries of the Euro area to decide on some specific 
terms and also to implement them. Although the regulation is the same for all the members of the 
Euro area, these countries are allowed to choose their own path to follow the rules [29]. One of these 
goals which has been under the center of the attention is the implementation of renewable energy 
sources by 2050 to provide the required energy for all sectors due to the fact that the process of 
energy production via the fossil fuels makes a large amount of CO2 [30]. In some of the well-
developed countries, Germany for instance, some precautions in this favor has been already 
implemented. Germany is planning to close its nuclear facilities which produce energy and replaces 
them with renewable sources by 2020 [31]. From another point of view, this change can be 
considered a risky procedure as a cheap and highly efficient energy will be replaced with an 
expensive one which does not provide the same efficiency [32]. Thus, a model must be applied in 
order to forecast the amount of required energy so the calculation regarding the necessary resources 
be carried out. The forecasting of the amount of energy consumption will cause in an accurate 
investment in energy providing sources as early and precautionary actions will result in saving 
money more effectively. According to EU [33], the role of energy in household’s expenditure is 
rising to 16% and 15% by 2030 and 2050, respectively, reflecting its importance in the welfare of the 
communities. Prediction of the energy consumption can considerably aid to make sustainable plans 
to develop more efficient and economic sources of energy for the future needs. 

6. Conclusion  

This study seeks to determine the most functional and accurate ARIMA model in order to 
proceed with the prediction of residential energy consumption for countries which belong to the Euro 
area. To accomplish the forecasting purpose, Box-Jenkins approach regarding the identification, 
estimation and diagnostic checking is applied and as the result ARIMA (0,1,1), ARIMA (1,1,0) and 
ARIMA (1,1,2) models are obtained. The forecasting accuracy provided by each model is further 
assessed by the MAE and RMSE measurements. Ultimately, thereafter data analysis of the results, it 
is concluded that ARIMA (0,1,1) model with the RMSE of 0.09725904 is the most accurate and 
functional model to predict the residential energy consumption data in countries which belong to the 
Euro area. The results of this study can indicate that the energy consumption in Euro area will 
decrease when compared to that of the beginning of 2000s. This might be due to this fact that the 
energy efficiency has been considerably improved by utilization of novel and advanced technologies.  
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7. Research implication 

The results of this study will assist the decision makers to have a realistic assumption of the 
actual future energy needed in Euro area household sector to be able to substitute the current energy 
sources by sustainable and renewable energy sources. This work can also be considered by the future 
roadmaps prepared by the authorities to secure the future energy supply in Euro area. 
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