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Abstract: Electricity plays an important role in the South African economy with the industrial sector 
consuming the highest proportion followed by the residential and mining sector. Besides the fact that 
electricity is considered as an important energy sources, an adequate supply of electricity remains an 
important factor that affects the development and economic growth of a country. Therefore, it 
becomes even more important to forecast the total electricity production in South Africa. It turns out 
that the comparison of the predictive performance of different forecasting methods is inevitable. 
Hybrid forecasting approaches, such as artificial neural network (ANN) based seasonal 
Autoregressive Integrated Moving Average (sARIMA) model, ANN based multiplicative 
Holt-Winters (HW) model, ANN based additive HW model, an adaptive neuro-fuzzy inference 
system (ANFIS) based sARIMA model, ANFIS based multiplicative HW model and ANFIS based 
additive HW model, are employed as some valuable alternatives compared with the conventional 
univariate time series models, such as sARIMA model and both multiplicative and additive HW 
models. The aim of this study is not only to provide evidence on the weakness of the univariate time 
series models, but also to show that hybrid forecasting method has the superior ability over the 
univariate time series models, with achieving a higher forecasting accuracy. In addition, random 
walk model is used as benchmark model, allowing for the fair competition. The results show that the 
hybrid model, ANN based on multiplicative HW model, is the most fitted for the total electricity 
production in South Africa. This study presents an empirical framework to guide the field of 
prediction research by providing a more comprehensive empirical investigation of the total electricity 
production forecasting by using various hybrid models.  
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1. Introduction  

The monthly, quarterly and annual time series data display seasonality, fluctuation, 
nonlinearities, and so on. The total electricity production data often has some characteristics, such as 
seasonal patterns, trends and nonlinearity. To overcome the issue and obtain more accurate forecasts, 
the various models have been applied in the past several decades. Traditionally, the univariate time 
series models are often included in forecasting comparisons: the sARIMA model and the HW model. 
The main advantage of using univariate time series models is that they do not consider the 
relationship between dependent and independent variables, but they are used to predict the future 
values of a time series by using only historical data. One of the most important issues in model 
selection is to determine the appropriate approach to utilize forecasting. The sARIMA and the HW 
models are widely used forecasting methods which can capture the seasonality. For the sARIMA and 
the HW models, the parameters representing the differential or seasonal need to be estimated. The 
popularity of the sARIMA and the HW models is not only due to their success in forecasting, but 
also their simplicity and analytical ability. However, empirical findings demonstrate that the 
sARIMA and the HW models have a drawback. For example, both models only assume the linear 
form of the model. The nonlinear patterns cannot be captured by the sARIMA and the HW models. 
On the other hand, the nonlinear models, such as the ANN and the ANFIS, can only capture 
nonlinearity in data. For this reason, the nonlinear models are not able to model the linear part in data. 
Due to the shortcomings of linear and nonlinear models, the hybrid forecasting approach has come to 
the forefront over the past decade. 

The motivation of this study is based on the following remarks:  
− The study by Makridakis et al. [1] manifests that the complex models usually fit past data 

well, but forecasting the future, the simple models are often more accurate; 
− Khashei and Bijari [2] put forward an approach to encourage motivation for combining 

different single methods to benefit from their strength of capturing different characteristics of 
the time series data. 

Thus, the aim of this study is to forecast the total electricity production in South Africa under 
two different types of approaches. The first approach assumes that simple forecasting models may 
perform better than the models of complex form. The second approach assumes that the hybrid 
models may have better out-of-sample forecasting performances than simple models. The main 
reason for using hybrid models is that forecasting accuracy can be enhanced by using the linear and 
the non-linear features.  

The forecasting models found in the literature are divided in two main frames: simple models 
and complex models. For this study, the focus is on the forecasts by sARIMA and Holt-Winter’s as 
simple models and by hybrid models, such as the ANN based sARIMA, the ANN based HW models, 
the ANFIS based sARIMA and the ANFIS based HW models. The ARIMA model is one of the most 
optimal forecasting models in the literature. Besides being simple and useful, the Holt-Winters 
method and its versions, ‘additive’ and ‘multiplicative’, are significantly robust for a wide range of 
energy applications. Bianchi et al. [3] provide the evidence that the Holt-Winters method performs as 
well as or better than more complex methods. De Gooijer and Hyndman [4] claim that the ARIMA is 
a robust method to deal with trend and seasonality. Armstrong [5] reports that the ARIMA model 
improve forecasting accuracy but there is a little evidence that supports this claim. Chen et al. [6] 
find that the sARIMA is the most appropriate model for forecasting inbound air travel arrivals to 
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Taiwan. Gelper et al. [7] put forward that the Holt-Winters method is a useful method if data shows 
trend and seasonality. Permanasari et al. [8] indicate that the ARIMA model has better forecasting 
performance than the Holt-Winters method by using disease incidence, especially for the seasonal 
disease. Omane-Adjepong et al. [9] state that the sARIMA model yields more accurate forecasts than 
the seasonal additive and multiplicative Holt-Winters methods. Rahman and Ahmar [10] show that 
the Holt-Winters additive type is better than the ARIMA model for the total primary energy 
consumption data. de Oliveira and Oliveira [11] use the combination of decomposition and bootstrap 
aggregating techniques to improve forecasts based on the univariate models, such as the sARIMA 
model, the HW additive and multiplicative models and the ETS model for electric energy demand 
across different countries. González et al. [12] employ the Hilbertian autoregressive moving 
aveage (ARMX) model to forecast electricity price. In terms of the linearity, much attention has been 
directed in recent literature to the linear quantile regression to model electricity demand. Lebotsa et 
al. [13] employ partially linear additive quantile regression to forecast the short-term electricity 
demand.   

The study, by Darbellay and Slama [14], discussed that the ANN model can be useful for 
nonlinear process. Chatfield [15,16] questioned whether the concerns with the ANN model were 
exaggerated regarding the perfect forecasting technique. There is no doubt that Chatfield was not the 
only one in awe of the forecasting performance of ANN model. This was followed by several papers 
discussing that naïve models’ forecasting performance, such as random walk, can beat the 
ANNs [17–21]. The authors of [2,22,23] show that ANNs produce promising results compared to the 
traditional time series models, such as the ARIMA model. Besides the ANN model, there is a large 
body of literature to attest to the fact that grey prediction model has significant impact on electricity 
consumption forecasting. Ding et al. [24] use a new grey model to forecast China’s electricity 
consumption. Hu [25] forecasts electricity consumption by using the ANN based grey forecasting 
method. In terms of the comparison between the ANFIS model and the ARIMA model, there exist 
various results in the literature. Tektaş [26] show that the ANFIS model has better results than the 
ARIMA model in terms of forecasting performance. Yayar et al. [27] conclude that the ANFIS model 
is more appropriate than the ARIMA in point of the forecasting of electric consumption. Yadav and 
Balakrishnan [28] find that the ANFIS model performs better than the ARIMA model. However, 
Hernandez et al. [29] argue that the ARIMA model is better than the ANFIS model in terms of 
forecasting. Lusis et al. [30] in their study state that the support vector regression model (SVR) has 
higher accuracy for a day-ahead load forecast. Luo et al. [31] show that even if the SVR model is 
most robust rather than the multiple linear regression model and the ANN model, all models do not 
satisfy forecasting when the scale of the data integrity attacks becomes large. Li et al. [32] suggest 
that the combination of ensemble empirical mode decomposition (EEMD) and random forest model 
to forecast daily electricity consumption shows the best forecasting performance, in comparison to 
others, such as a back-propagation neural network (BPNN) and least square support vector machine 
(LSSVM). Chen et al. [33] suggest that their proposed method based on the combination of EMD 
and extreme learning machine (ELM) provides better forecasting performance than all other three 
methods, such as radial basis function kernel (RBF) based ELM, universal kernel function (UKF) 
based ELM and mixed-ELM, in terms of electric load forecasting.   

There is known fact that the series generated from linear process might be inappropriate for most 
real-world problems that are non-linear [34,35]. As seen in many studies, the literature holds 
different views in respect to the forecasting performances of linear and non-linear models. A time 
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series usually consists of the linear and the nonlinear parts. Herein, one particular type of model that 
has come into prominence is the hybrid model. The hybrid model is a forecasting technique that 
combined other individual models. In this study, the ARIMA and Holt-Winters models for the linear 
part of a time series data were used, and the ANN and the ANFIS models are used to handle the 
non-linear part that corresponds to error term for a time series data. The process for the hybrid 
models used in this study was presented in Figure 1. 

 

Figure 1. The process for hybrid model 

As seen in the literature above, there are widely studied the linear and the nonlinear models to 
forecast different data in energy sector. These models can be either univariate or multivariate 
models (such as multivariate linear quantile regression for linear model and grey forecasting 
approach for nonlinear model). The reason of focusing on the univariate models is that the univariate 
models outperform than the multivariate models in terms of out-of-sample forecasting [36]. 
Moreover, the study by Kunst [36] explains the possible reasons why the multivariate models have 
not been used in this study: 1) it is clearly seen that the number of parameter to be estimated in 
multivariate model is more than the univariate ones. Each parameter to be added to the model, which 
refers to unknown quantity, results in additional source of error; 2) in terms of the multivariate 
models, there are not only more model structures than univariate ones (which will cause model 
selection problem), but also there are decision-making issues which need to be faced according to the 
selection of independent variables which have impact on the dependent or the output variables (for 
example, in the context of technical economic analysis, the various inputs need to be used to 
mathematical modeling of the combined methanol-electricity production plant [37]) . However, in 
the light of the forecasting process, the inaccurate selection of the independent variables will increase 



92 

AIMS Energy  Volume 7, Issue 1, 88–110. 

the noise, and this will lead to the poor forecasts.   
The rest of the paper is organized as follows: In Section 2, the descriptive statistics of the 

dataset was briefly introduced. Section 3 of the paper provides necessary description of the ARIMA, 
the Holt-Winters, the ANN and the ANFIS models. The forecasted results are presented in Section 4. 
Section 5 contains conclusion. 

2. Datasets 

In this study, the quarterly total electricity production in South Africa for the period from 
January 1985 (1985:Q1) to September 2017 (2017:Q3) were used. The data are provided from the 
internet page of Federal Reserve Economic Data. In addition to the data, R program is used to 
forecast total electricity production. Figure 2 shows the time-series plot of the data. 

 

Figure 2. The quarterly total electricity production (Gigawatt hours-GWh). 

According to Figure 2, the total electricity production decreases in December. In South Africa, 
the summers last from November to January, and the summers are hot and generally dry. According 
to World Meteorological Organization [38], January 2013 was the hottest month. The electricity 
production indeed declines in dry, hot months if river flows ebb [39]. Because South Africa is a 
water scarce country and has limited water storage, the total electricity production forecasting is 
important for both future planning and policy [40]. Since the data shows the seasonal pattern, the 
sARIMA and the HW models are applied to capture the seasonality. Figure 3-a allows the underlying 
seasonal pattern to be seen more clearly. According to Figure 3-a, the total electricity production has 
consistently increased over the years as the lower (darker) lines represent earlier years, and the 
higher (lighter) lines represent recent years. Moreover, Figure 3-b shows the changes in seasonality 
over time. Table 1 shows the descriptive statistics of the data and confirms the left skewness and 
platykurtic distribution. The data with low kurtosis, the less than number three, tends to have light 
tails, or lack of outliers. This finding supports our aim which is to hold all data points in the model. 
Otherwise, the outliers in dataset need to be removed, and it is known fact that they can have 
significant adverse impact on our forecasts.   
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Table 1. Descriptive Statistics. 

Mean Maximum Minimum Std. Dev. Skewness Kurtosis

17800.330 22868.000 11073.000 3442.301 −0.287 1.676 

LB-Q (12) p-value J-B Test p-value ARCH (12) p-value
1207.133 0.000 11.36815 0.0034 3.687 0.978 

(a)

 

(b)

 

Figure 3. Seasonal plots of the total electricity production in South Africa (GWh). 

3. Methodologies 

As a comparison, the HW model by Holt [41] and Winters [42], the sARIMA model by Box and 
Jenkins [43], the ANN model by Rumelhart et al. [44] and the ANFIS model by Jang [45] were 
applied to the total electricity production. In this study, the HW model was used because it is not 
only a widely used tool for forecasting method which can handle trend and seasonal variation, but 
also outperforms the sophisticated ones according to Makridakis and Hibon [46]. On the other hand, 
the forecasting competition between simple and hybrid models has attracted considerable academic 
attention. In recent years the ANN and the ANFIS models have shown better modeling performance 
than the other nonlinear models when dealing with modeling the nonlinear patterns in data. 
Moreover, the ANN and the ANFIS models have their popularity in terms of their applications and 
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are also well embedded in the literature. Therefore, the ANN based on sARIMA, the ANN based on 
HW models, the ANFIS based on sARIMA model and the ANFIS based on HW models in 
forecasting the total electricity production have been used to allow for fair competing in the study. In 
this part, the basic framework of modelling approaches of the sARIMA model, the HW model, the 
ANN model and the ANFIS model are briefly described. To better understand the methodological 
baseline, the two utmost important criteria are considered to guide methodology selection. First, the 
methodology selection is based on the forecasting related literature. The second criteria to the 
methodology selection is based on the data characteristics. 

                     

Figure 4. Framework of methodology. 

3.1. sARIMA model 

Autoregressive Moving Average Model (ARMA) has become considerably important tool in 
forecasting of economic time series. The autoregressive part is called as Autoregressive model (AR), 
and the moving average part is called as Moving Average (MA) model. In AR model, the output 
variable is a linear function of the previous behaviors of itself. In MA model, the output variable is a 
linear function of the current and various past values of a stochastic term. In ARMA (p, q) model, p 
and q are the orders of AR and MA models respectively. The ARMA (p, q) model is defined as 
follows [47]: 

1 1

p q

t i t i t i t i
i i

y y e e 
 

                    (1) 
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If the observed data is non-stationary, taking differencing (d) can be used to eliminate 
non-stationarity. The model is then referred as an ARIMA model. The ARIMA (p, d, q) model is 
given as follows [47]: 

    2 2
1 2 1 21 1 1

dp q
p t q tB B B B y c B B B e                  (2) 

where yt denote a series of values for a time series of interest, and et denotes a series of random 
disturbances and is assumed to be white noise. Let be B the backward shift (or lag) operator.  

In this study, the sARIMA model which includes additional seasonal terms in the ARIMA 
model was used because the quarterly total electricity production data was used as output variable. 
The sARIMA (p, d, q) (P, D, Q) model can be written as [48]: 

       1 11 ( ) 1 1 1 ( )
dp S S q S

p P t q Q tB B B B B y B B B e               (3) 

where p is non-seasonal AR order; d is non-seasonal differencing; q is non-seasonal MA order; P is 
seasonal AR order; D is seasonal differencing; Q is seasonal MA order; and S is time span of 
repeating seasonal pattern. 

3.2. HW model 

The HW model, which can deal with a time series containing both trend and seasonality, is an 
extension of the Exponential Smoothing (ES) model. The HW model has two versions, additive and 
multiplicative. In this study, both additive and multiplicative versions of HW exponential smoothing 
model have been applied in the forecast of total electricity production. The general forecast functions 
for the additive and multiplicative HW models are as follows [49]. 

Additive formulation of HW: 

  1 1

1 1

1 1 1
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       (4) 

Multiplicative formulation of HW: 
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       (5) 

where t  is the component of level, tb  is the component of the slope, and t h ms    is the relevant 

seasonal component. The crude oil prices are denoted by 1, , ny y  and the seasonal period is m (e.g., 

m = 12 for monthly data). Let |ˆt thy   be the h-step forecast made using data to time t.  
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3.3. ANN model 

The most widely used ANNs in the forecasting field are multi-layer perceptrons (MLPs) in 
literature [50,51]. The ANN model can be divided into four stages: (1) the topology design stage 
consist of the choice of the ANN type, the number of its layers, the number of neurons in each layer, 
its inputs and outputs, the selection of training, validation and test samples; (2) in the training stage, 
the neural network learns the potential relationship between input variables and output variable, and 
the learning process is continued till it finds the minimum error; (3) in the validation stage, 
connection weights are adjusted with unknown data; and (4) the test stage is applied to evaluate the 
performance of the net with the test sample. Figure 5 shows the ANN architecture with two hidden 
layer nodes. In the ANN framework, while the total electricity production was considered as output 
variable, the all other explanatory variables that are the lagged values of the output variable were 
included in the model as input variables. Specifically, the determination of the number of hidden 
layers are very important. The theoretical findings show that there is no reason to use more than two 
hidden layers in the ANN model [52]. Moreover, Kurkova [53] provides the evidence that a 
feedforward neural network with two hidden layers should be used to countervail the lost efficiency 
in the usage of regular activation function. Nevertheless, the other reason of using two hidden layers 
is to severely reduce the total number of necessary hidden nodes. The final ANN model is four 
layered network which consist of lagged output units as inputs (from one-time lagged to four-time 
lagged), two hidden layers, and one output unit. The ANN (I × H1 × H2 × O) notations were used to 
represent the number of input variables (I), hidden units in each layer (H1and H2), and the output 
unit (O).  

 

Figure 5. ANN architecture with two hidden layers. 

3.4. ANFIS model 

This method based on the theory of fuzzy set and fuzzy logic is proposed by Jang [45]. This 
method is composed of ANN system and FIS system. The ANN model is known as statistical data 
modelling tool. It refers to learning algorithm which can capture the complex patterns in the 
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relationship between input and output data. The FIS comprises membership function, fuzzy logic 
operator and if-then rules. Figure 6 shows the ANFIS architecture. In addition to the other models, 
the ANFIS model which takes the advantages of using neural networks and fuzzy logic at the same 
time, was carried out to check whether it has the best performances among the six implemented 
models. In this study, genfis3 function of Fuzzy toolbox of MATLAB was performed to generate a 
FIS using fuzzy c-means clustering (FCM) by extracting a set of rules that models the data behavior. 
The function requires separate sets of input and output data as input arguments. the lagged values of 
total electricity production series were used as input variables.  

 

Figure 6. An ANFIS architecture for a two rule Sugeno system. 

3.5. Hybrid model 

For time series forecasting, two types hybrid models are employed as alternatives to widely 
used the ARIMA and the HW models. Recently, combined models with both linear and non-linear 
models have been attracted much attention. Zhang [54] used hybrid ARIMA-ANN model to handle 
both linear and non-linear parts of the data. The linear part was modelled by ARIMA, and the 
non-linear part was modelled by the ANN model. In this study, the same process detailed as below 
was followed. 

t t tT L N            (6) 

where tL  is the linear component and tN  is the non-linear component. Firstly, the sARIMA and 

the HW models for the linear component were used and then the non-linear relationship will be 
appeared in the residual of linear component modelling. 

ˆ
t t tT L             (7) 

The non-linear function by ANN and ANFIS models are described as follows: 

 1 2 3, , , ,t t t t t n tf                  (8) 

where f is non-linear function and t  is a random error. The Equation (6) can be re-written for the 

hybrid model as follows:   
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t t t
ˆ ˆ ˆT  = L  + N           (9) 

In Equation (9), ˆ
tN shows the forecasted value corresponding to t  from Equation (8). To 

sum up, the following steps for the hybrid methodology can be written. The utilized neural network 
algorithm used in hybrid methodology is presented in Table 2. 

Table 2. Neural Network Algorithm utilized in Hybrid Methodology. 

Hybrid Methodology 

1. Given a time series x = [x1, x2,…,xn]. 
2. Determine the training set (82%) and validation test (9%) size as in-sample, and test size (9%) as 
out-of-sample. 
3. Normalize the time series data using min-max normalization using the following formula: 

zi = (xi-min(x))/(max(x)-min(x)) 
4. Determine the best simple individual models and their parameters using the normalized vector in-sample 
period. 
5. Obtain the forecasts using selected simple individual models. 
6. De-normalize the forecasts to find 𝐿௧෡  in Equation (7). 
7. Obtain residuals ሺ𝜀௧ሻ by subtracting simple models’ forecasts from actual values in Equation (7). 
8. Select the best lag number to determine the number of inputs on the data of residual series. 
9. Normalize the residual series using min-max normalization. 
10. Obtain forecasts using ANN and ANFIS models. 
11. De-normalize the forecasts to obtain 𝑁௧෢ from Equation (8). 
12. Combine the simple models’ forecasts with ANN and ANFIS models’ forecasts as in Equation (9). 
 
input: ε୧,୨ : the errors obtained by subtracting jth model predictions from actual values, 𝜁௠: model building 

period (training period), 𝜁௩: validation period, 𝜁௧: test period, i: the number of observed predictions, j: the 
number of univariate models,  ℎଵሺthe number of nodes in ϐirst hidden layerሻ ൌ 𝑐ሺ1,2, … ,12ሻ , 
ℎଶሺthe number of nodes in second hidden layerሻ ൌ 𝑐ሺ1,2, … ,12ሻ, k: the time delay number of ε୧,୨. 

1: Given ε୧,୨, 𝜁௠, 𝜁௩ 

2: foreach 𝑗 do 

               foreach k do 
                               create datamatrix =cbind(Lag(ε୧,୨, 𝑘 ൌ 1, . .4ሻ, ε୧,୨) 

                end for 

      end for 

3: Run neural network model ൛ε୧,୨; ఍೘
, ℎଵ, ℎଶ, 𝜀୧,୨; ఍೘

ᇱ ൟ 

4: Compute 𝑀𝐴𝐸఍ೡ,ఌ೔,ೕ
ᇲ ,௛భ,௛మ

 

5: Save minimum 𝑀𝐴𝐸఍ೡ,ఌ೔,ೕ
ᇲ ,௛భ,௛మ

 to determine the optimum number of nodes in each hidden layer 

6: Run neural network model ൛ε୧,୨; ఍೘ା఍ೡ
, ℎଵ, ℎଶ, 𝜀୧,୨; ఍೘

ᇱ ൟ 

output: Optimal model − optimal ε′୧,୨ with optimum ℎଵ and ℎଶ 
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4. Results and Discussions 

The data are divided into two parts, i.e. training and testing datasets. The total electricity 
production data from 1985:Q1 to 2014:Q3 are used as training datasets, and the data from 2014:Q4 
to 2017:Q3 are used as testing data sets. The different parameters of p, d, q, P, D, Q and S were 
experimented in order to determine the best model that will give the best forecast. The KPSS unit 
root test and AIC information criteria were used to determine the degree of differencing d and the 
appropriate seasonal orders for the purpose of choosing the best sARIMA model. In the light of the 
findings, sARIMA (1,0,0) (0,1,1) [4] is considered the best for total electricity production by using R 
software which supports the automatic search on determining the parameters.  

The HW model is a triple exponential smoothing forecast method that has the capability to 
handle trend and seasonality effectively. It is a five-step process in which practitioners must calculate 
the specific factors at each step (1) seasonal indices; (2) overall smoothing of trend level; (3) trend 
factor; (4) smoothing of seasonal indices; and (5) generating of forecasts. Both multiplicative HW 
and additive HW models are used. 

The ANN model can be divided into four stages: (1) the topology design stage consist of the 
choice of the ANN type, the number of its layers, the number of neurons in each layer, its inputs and 
outputs, the selection of training, validation and test samples; (2) in the training stage, the neural 
network learns the potential relationship between input variables and output variable, and the 
learning process is continued till it finds the minimum error; (3) in the validation stage, connection 
weights are adjusted with unknown data; and (4) the test stage is applied to evaluate the performance 
of the net with the test sample. In this study, 107 observations for training set, 12 observations for 
validation set and 12 observations for testing set were used. The training dataset are used to learn or 
develop candidate models, validation set used to select a model and test set is used for assessing 
model performance on future data. Table 3 shows the validation set performance of the ANN based 
on sARIMA. 

Table 3. Validation Set Performance of ANN based on sARIMA. 

Validation Set Performance 

Lag Hidden Layer1 Hidden Layer 2 MAE 

1 9 4 262.138 

2 2 9 261.9352 

3 5 2 233.5972 

4 6 4 243.0433 

As results reported in Table 3 show that one to four lagged of total electricity production are 
used as input variables. The ANN (I × H1 × H2 × O) notations were used to represent the number of 
input variables (I), hidden units in each layer (H1 and H2), and the output unit (O). Finally, 
ANN (3 × 5 × 2 × 1) model used to forecast the non-linear part of the data. 

The validation set performance of ANN based on multiplicative HW model is given in Table 4. 
Based on the results of Table 4, one to four lagged total electricity production are chosen as input 
variables. ANN (3 × 8 × 9 × 1) model used to forecast the non-linear part of the data. 
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Table 4. Validation Set Performance of ANN based on Multiplicative HW. 

Validation Set Performance 

Lag Hidden Layer 1 Hidden Layer 2 MAE 

1 9 6 242.2049 

2 4 8 245.0679 

3 8 9 230.3607 

4 1 7 233.0093 

The validation set performance of ANN based on multiplicative HW model is given in Table 5. 
According to results of Table 5, it is evident that the number of input variables is three and the best 
model is chosen as ANN (3 × 8 × 3 × 1) model used to forecast the non-linear part of the data. 

Table 5. Validation Set Performance of ANN based on Additive HW. 

Validation Set Performance 

Lag Hidden Layer 1 Hidden Layer 2 MAE 

1 9 6 217.1001 

2 2 9 218.1105 

3 8 3 200.2002 

4 1 7 205.1442 

In regard to ANFIS model, it is applied by using the MATLAB program. In this study, one 
factor – the lagged values of total electricity production itself –was used as inputs for forecasting the 
total electricity production. The first 117 of data is used as training set to optimize the model 
parameters, 12 of data is used as validation set and the last 12 serves as the test set. The used steps 
are as follows: 

Step 1: Define the lagged values of total electricity production as the input variables and total 
electricity production itself as the output variable. 
Step 2: Divide all data into three subsets. The first 117 observations are for training set, the next 12 
observations are for validation set and the last 12 observations are for test set.  
Step3: Determine the rules and membership functions by using genfis3 function. 
Step4: Choose the best net based on the validation data by using anfis function. 
Step5: Evaluate the chosen net based on test data by using evalfis function. 

First, in order to determine that the number of input variables and the number of clusters for 
fuzzy c-means clustering (FCM), the ANFIS based sARIMA model has been conducted in terms of 
validation sets. The selection is made by minimum root mean square performance metrics (RMSE). 
Figure 7 shows the best model with three input variables (including 1, 2 and 3 lagged total electricity 
production, respectively) and FCM is equal to three.  
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(a)  

(b)

 

(c)  

(d)

 

Figure 7. Validation set performance of ANFIS based on sARIMA. (a) one lag and FCM 
is equal 6; (b) two lag and FCM is equal 3; (c) three lag and FCM is equal 3; (d) four lag 
and FCM is equal 3. 
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 (a)  

(b)

 

(c)  

(d)

 

Figure 8. Validation set performance of ANFIS based on multiplicative HW. (a) one lag 
and FCM is equal 3; (b) two lag and FCM is equal 5; (c) three lag and FCM is equal 3; (d) 
four lag and FCM is equal 3. 
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The same process is applied to the ANFIS based on multiplicative HW model and the ANFIS 
based on additive HW model to find out whether the hybrid models perform better than simple linear 
models. Figure 8 and Figure 9 show the results of the ANFIS based on multiplicative HW model and 
the ANFIS based on additive HW model, respectively. The best model for the ANFIS based on 
multiplicative HW model is selected with minimum RMSE that is the one with one input variable (one 
lagged total electricity production) and three numbers of clusters. The validation set results for the 
ANFIS based on additive HW model show that three input variables (including 1, 2 and 3 lagged 
total electricity production respectively) and five numbers of clusters are selected according to 
RMSE measure. 

After forecasting the linear and non-linear parts of the data, the forecasts by hybrid models are 
calculated. Table 6 shows the out-of-sample forecasting of all models involved in this study. In order 
to evaluate the model performances, the following three indices, RMSE, the mean absolute error (MAE) 
and mean absolute scale error (MASE) were applied in this study. The RMSE, MAE and MASE are 
defined by following equation: 

𝑅𝑀𝑆𝐸 ൌ ට∑ ሺ஺೔ିி೔ሻమ೙
೔సభ

௡
         (10) 

𝑀𝐴𝐸 ൌ
∑ |஺೔ିி೔|೙

೔సభ

௡
          (11) 

𝑀𝐴𝑆𝐸 ൌ
∑ |஺೔ିி೔|೙

೔సభ
೙

೙ష೘
∑ |஺೔ି஺೔ష೘|೙

೔స೘శభ
        (12) 

where 𝐴௜ presents the actual value, 𝐹௜ presents the forecast value and m represents the seasonal 
period. 

Table 6. Comparison of out-of-sample forecasting performances. 

Models RMSE MAE MASE 

sARIMA 1,188 1,085 0,198 

Multiplicative HW 0,813 0,727 0,133 

Additive HW 0,888 0,807 0,148 

ANN based on sARIMA 1,145 1,048 0,192 

ANFIS based on sARIMA 1,176 1,076 0,197 

ANN based on Multiplicative HW 0,543 0,460 0,084 

ANFIS based on Multiplicative HW 0,902 0,814 0,149 

ANN based on Additive HW 0,629 0,493 0,090 

ANFIS based on Additive HW 1,130 0,977 0,179 

Naïve  1,605 1,552 0,284 

Note: Naïve model is random walk model and is used as benchmark model. 
Entries represent the forecasting accuracy metrics values (divided by 1000 for RMSE and MAE). 
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(a)  

(b)

 

(c)  

(d)

 

Figure 9. Validation set performance of ANFIS based on additive HW. (a) one lag and 
FCM is equal 6; (b) two lag and FCM is equal 4; (c) three lag and FCM is equal 5; (d) 
four lag and FCM is equal 5. 
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The results from Table 6 indicate that the hybrid models by using the ANN model are superior 
to simple models, such as the sARIMA model and both multiplicative and additive HW models. 
However, the hybrid models by using ANFIS model falls behind the simple models in terms of 
forecasting performance. This finding supports Makridakis et al. [1]’s finding, as they mentioned that 
simple model is better than complex model. However, if the hybrid model including the ANN model 
is used for forecasting the total electricity production, it is obvious that the forecast accuracy can be 
improved. In addition, Diebold- Mariano (DM) statistical test proposed by Diebold and Mariano [55] 
was employed to show whether there is any statistical difference between the models in terms of 
forecasting performances.  

Table 7. Diebold-Mariano test for comparing predictive accuracy. 

Model 2/Model 1 ANN based on Multiplicative HW 

sARIMA −5.290 (0.000)* 

ANN based on sARIMA −5.465 (0.000)* 

ANFIS based sARIMA −5.247 (0.000)* 

HW Multiplicative −4.555 (0.000)* 

HW Additive −4.089 (0.000)* 

ANN based on Additive HW −0.251 (0.403) 

ANFIS based on Multiplicative HW −5.446 (0.000)* 

ANFIS based on Additive HW −2.655 (0.011)** 

Naïve  −6.364 (0.000)* 

Note: The null hypothesis is that Model 1 is less accurate than Model 2. Model 1 represents. 

ANN based on Multiplicative HW. * and ** indicate that the null hypothesis is rejected by 1% and 5% significance level 

respectively. 

According to Table 6 and 7, the best forecasting performance is achieved by using the ANN 
based on multiplicative HW hybrid model. Moreover, the ANN based additive HW model can be 
chosen for forecasting the total electricity production in South Africa. The results confirm that the 
hybrid models are better than the univariate time series models for the total electricity production 
forecasting in South Africa. Figure 10 shows the plot of forecasts by the simple models and the 
hybrid models. 

In addition to Figure 10, Figure 11 also shows that the success of the hybrid models can be 
attributed to its ability to more closely track the actual values than simple models. The hybrid models 
show better forecasting performance in almost all forecast point. Figure 12 also confirms that the 
hybrid models produce more accurate forecasts than the simple models in terms of the accuracy 
metrics. 
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Figure 10. The plot of the forecasts. 

 

Figure 11. Multiple forecasts comparison for each forecast point. 
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Figure 12. Out-of-sample forecasting performances in terms of accuracy metrics. 

5. Conclusions 

The hybrid models are capable of improving the forecasting performances where simple models 
fall short in terms of forecasting accuracy. Ten different forecasting models, the sARIMA model, the 
multiplicative HW model, the additive HW model, the ANN based on sARIMA model, the ANN 
based on multiplicative HW model, the ANN based on additive HW model, the ANFIS based on 
sARIMA model, the ANFIS based on multiplicative HW model, the ANFIS based on additive HW 
model, and the naïve model as benchmark, were applied to forecast the total electricity production 
data. For this study, three different models are considered for forecasting with simple models, the 
ANN based linear models and the ANFIS based linear models. The forecasting results show that the 
best linear model is the multiplicative HW model and the best hybrid model is the ANN based on 
multiplicative HW model. This result is compatible with the expectation which may sign that the 
selection of the best linear model from the other linear models in terms of out-of-sample forecasting 
performance is significantly important when combining the models. The ANN based on 
multiplicative HW model, which shows the higher forecasting accuracy has superior capability in 
modeling the total electricity production over the linear models in terms of all the evaluation criteria. 
Thus, the hybrid model not only provides better forecasting performance, but also shows better 
statistical interpretation. However, this accuracy is achieved at the expense of computational 
complexity. Hence, it is recommended to use ANN based linear models only in those models in 
which the hybrid models are useful in extracting advantages of individual models for forecasting the 
total electricity production with higher forecasting accuracy. Especially, since the ANN based both 
multiplicative and additive HW models have the best forecasting performance, an interesting 
direction of further research is to investigate whether both multiplicative and additive HW models 
can be efficiently combined with the other nonlinear models. Additionally, the success of the hybrid 
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models depends on how well the linear and nonlinear components are forecasted. This finding points 
out the usability of different linear and nonlinear forecasting models which give new incentives for 
further researches.  
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