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Abstract: In the last decades, the world energy demand has raised significantly. Concerning this fact, 
wave energy should be considered as a valid alternative for electricity production. Devices suitable to 
harness this kind of renewable energy source and convert it into electricity are not yet commercially 
competitive. This paper is focused on the selection and analysis of different types of elastic materials 
and their influence on the structural behavior of a wave energy converter (WEC). After a brief 
characterization of the device, a tridimensional computer aided design (3D CAD) numerical model 
was built and several finite element analyses (FEA) were performed through a commercial finite 
element code. The main components of the WEC, namely the buoy, supporting cables and hydraulic 
cylinder were simulated assuming different materials. The software used needs, among other 
parameters, the magnitude of the resultant hydrodynamic forces acting upon the floating buoy 
obtained from a WEC time domain simulator (TDS) which was built based on the WEC dynamic 
model previously developed. The Von Mises stress gradients and displacement fields determined by 
the FEA demonstrated that, regardless of the WEC component, the materials with low Young’s 
modulus seems to be unsuitable for this kind of application. The same is valid for the material yield 
strength since materials with a higher yield strength lead to a better structural behavior of WEC 
components because lower stress and displacement values were obtained. The developed 3D CAD 
numerical model showed to be suitable to analyze different combinations of structural conditions. 
They could depend of different combinations of buoy position and resultant hydrodynamic forces 
acting upon the buoy, function of the specific sea wave parameters found on the deployment site. 
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1. Introduction 

In the last decades, the world energy demand has significantly raised. With the decay of fossil 
resources, renewable energy sources are facing a growing demand. Among them, ocean wave energy 
is one of the most promising alternatives regarding the production of electricity [1]. This renewable 
energy source provides a high power density when compared, for instance, with solar and wind 
energies. Additionally it is more reliable than most of the other renewable energy sources, since wave 
power availability can surpass 90 percent of the time while solar and wind availability only reach 20 
to 30 percent of the time [2]. This allows the high utilization of wave power plants over the year, as 
well as their customization through engineering solutions that match those devices to different ocean 
climates [3]. Although in an early stage of development when compared with more mature renewable 
energy sources, different countries with exploitable wave power resources started considering wave 
energy as a possible source of power supply. However, devices suitable to harness this kind of 
renewable energy source and convert it into electricity are not yet commercially competitive [1] 
when compared with more mature renewable energies, such as wind and solar. Currently there are 
numerous concepts of wave energy converters (WEC) being developed and tested around the world 
which require a great deal of investigation. Some of them have already been submitted to real ocean 
conditions and a few full-scale devices have been operating under a more or less continuous  
basis [4]. 

This paper is focused on the development of a WEC 3D CAD numerical model suitable to be 
applied under different combinations of buoy positions and resultant hydrodynamic forces acting 
upon the buoy, function of specific sea wave parameters found on the deployment site. The sizing of 
the floating buoy and the materials selected to build the components of the WEC can be optimized 
and customized to each specific site conditions, leading thus to an improved WEC performance at 
lower costs. 

The selection and analysis of different types of elastic materials and their influence on the 
structural behavior of a near shore floating point absorber WEC was analyzed. Although the FEA is 
widespread throughout several engineering domains, it is not so exploited in wave energy domain. 
Resorting to FEA, the influence of several characteristics such as the dimensions, different wave 
parameters, hydrodynamic forces and elastic material properties on the structural behavior of a given 
floating point absorber wave energy converter WEC can be revealed. In order to do this, after a brief 
characterization of the device, a 3D CAD numerical model was built and several FEA were 
performed through a commercial finite element code. Among other parameters, the magnitude of the 
resultant hydrodynamic forces acting upon each buoy is needed. This input data is supplied by the 
WEC time domain simulator (TDS) implemented in Matlab/Simulink software and based on the 
WEC dynamic model previously developed [5]. 

2. WEC working principle, model and simulator 

This section briefly describes the working principle of a small scaled WEC equipped with a 
hydraulic power take-off (PTO) as well as the corresponding dynamic model. This model was used 
as a basis to develop a TDS, built using Matlab/Simulink software. The TDS was therefore used to 
obtain the force values used as inputs in the commercial finite element code. 

The general WEC architecture is depicted in Figure 1 [5]. It belongs to the point absorber 
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category, since its characteristic dimension has a negligible size when compared to the ocean 
wavelength [6]. Additionally, this device can also be classified as a near-shore WEC since it should 
be deployed at intermediate water depth, according with the relative depth criterion [7]. The 
components of the hydraulic PTO system should be enclosed in a sealed waterproof concrete 
mooring foundation placed at the seabed. For a detailed description of a hydraulic PTO see [8,9,l0]. 

 

Figure 1. 3D CAD model of the WEC. 

The main components are a spherical buoy with 200 mm radius, which floats with the sea 
waves, connected to a double effect hydraulic cylinder by supporting cables. A cardan joint connects 
the piston rod of the hydraulic cylinder to the concrete mooring. Although three modes of motion are 
possible (heave, roll and pitch) due to the cardan joint, for simplicity reasons the floating buoy is 
assumed to oscillate with the sea waves only in heave mode. When submitted to the sea waves the 
buoy floats and moves upwards under the influence of a wave crest and moves downwards under the 
effect of a wave trough. Other hydraulic PTO components are four non-returnable valves, an oil tank, 
a hydraulic accumulator and a hydraulic motor mechanically coupled to an electric generator. The 
force acting upon the buoy is transmitted through the hydraulic PTO. As a consequence the hydraulic 
cylinder pumps oil from the tank to the hydraulic accumulator and the fluid returns to the tank 
through the hydraulic motor. The alternating oil flow is rectified by the non-returnable valves and is 
smoothed by the hydraulic accumulator which could also be used as energy storage. The goal is to 
deliver a reasonable smooth electrical output. The continuous oil flow through the hydraulic motor 
will be converted into rotary motion and will drive an electric generator. 

A more detailed description of the entire WEC used here can be found in [11]. 
A previously developed WEC dynamic model [5] describes the buoy heave motion with respect 

to its acceleration. It is based on the second Newton's law and assumes that the buoy heave motion is 
excited by the sea waves. Due to the model nonlinearities, a simulator in time domain is preferable 
instead of a simulator in frequency domain. The corresponding WEC TDS was built using 
Matlab/Simulink software. It intends to simulate the dynamic behavior of the WEC buoy due to the 
action of sea waves. All equations from the mathematical model were grouped in a dynamic model 
block under individual subsystems. Another block simulates the sea wave equation. This is shown in 
Figure 2a). More details about this subject can be found in [5]. Several inputs such as buoy and wave 
data, among others are needed to run the simulation. Figure 2b) exemplifies a 50 s detail of the 
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evolution with time of the total hydrodynamic force acting on the spherical buoy. Different results 
can be obtained if input parameters are changed in the TDS. 

 

a) 

 

b) 

Figure 2. a) TDS dynamic model block and b) Total force [N] acting on buoy vs. time [s]. 
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3. WEC finite element model 

The WEC 3D CAD numerical model was initially built using SolidWorks software [11]. The 
Simulation tool of this software was used to perform FEA in order to simulate different sea 
conditions and to evaluate the influence of dimensions and material properties of the WEC 
components on its structural behavior. 

Figure 3a) shows the 3D CAD model that was developed, as well as the boundary and load 
conditions considered. It can be observed that the inferior half of the cardan joint, represented by 
green arrows, is rigidly fixed. Therefore, constraints of no displacements and rotations are applied to 
simulate the WEC mooring system. Based on data retrieved from Figure 2b), it was assumed a 
maximum resultant hydrodynamic force of 50  103 N (peak to peak amplitude), which corresponds 
to a pressure of 8  10-5 Nm-2. This pressure, represented in Figure 3a) by the pink arrows, is applied 
to the surface elements. Its direction is a function of the position of the hydraulic cylinder piston rod 
and changes if the retracted or the advanced position is simulated. 

Regarding the finite element model, a relatively fine mesh of triangular tetrahedral solid 
elements was applied, as depicted in Figure 3b). A meshing sensitivity study was previously 
conducted to guarantee that the resultant solid mesh has the required accuracy. In all FEA 
simulations carried out in this work the whole WEC numerical model was always analyzed, no axis 
symmetric solutions were used. 

Figures 3a) and 3b) represent both the retracted position of the hydraulic cylinder piston rod, 
corresponding to the wave through. The wave crest situation corresponds to the opposite stroke 
position. From a structural point of view, the advanced position of the hydraulic cylinder piston rod 
leads to a higher magnitude of stresses when compared with the retracted position of the hydraulic 
cylinder piston rod [5]. Therefore the results presented in the following section only reflect the 
advanced position of the hydraulic cylinder piston rod. 

a) b) 

Figure 3. a) 3D CAD model with boundary and applied load conditions, retracted 
position of hydraulic cylinder piston rod and b) Mesh geometry of finite element 
model. 
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Additionally, only the condition corresponding to the buoy partially submerged was considered 
in this analysis. When compared with the other two conditions — buoy at the surface and totally 
submerged buoy — the partially submerged buoy condition leads to a considerable increase on both 
maximum stress and displacements values. This corresponds to the critical position of the buoy [5]. 
Furthermore, the partially submerged buoy condition is the most expected position when the 
spherical buoy heaves due to the action of the sea waves. 

In what concerns the buoy dimensions it was also demonstrated that, regardless of the buoy 
dimensions and the considered WEC components size, the increase of the dimensions leads, for the 
same level of applied load, to the increase on both stress and displacements values. This is an 
expected behavior since the area submitted to the pressure resulting from the resultant hydrodynamic 
forces acting on the buoy is greater [5]. However this is not a desirable situation and can be avoided 
with the resizing of the WEC. 

4. Results and discussion 

Several simulations were performed using SolidWorks software in order to evaluate the 
structural response of the WEC when submitted to specific loading conditions. The objective was to 
demonstrate that the developed WEC numerical model is able enough to be optimized in terms of 
dimensions and materials of the WEC components. Therefore, several materials or combinations 
between different materials were simulated to demonstrate which lead to the lowest level of stress 
concentration as well as displacements, when the spherical buoy is submitted to a resultant 
hydrodynamic force. The magnitude of this resultant hydrodynamic force depends of the specific sea 
wave parameters found on the deployment site. 

Materials such as polyethylene, nylon 6/10 and silicone were considered for both buoy core and 
shell. Although most of the buoys commercially available have a polyurethane core and a high 
density polyethylene shell, in this work the same solid material was considered for core and shell. 
Materials such as AISI 316 stainless steel (SS), aluminum alloy 6063 T6 (AA) and high strength 
steel (HSS) were selected for the supporting cables, hydraulic cylinder and cardan joint. Table 1 
resumes their relevant elastic material properties: Young’s modulus, Poisson coefficient, yield 
strength and density. 

Table 1. Selected elastic material properties for the WEC main components. 

Material Young’s modulus 
(Nmm-2) 

Poisson 
coefficient 

Yield strength 
(Nmm-2) 

Density  
(kgm-3) 

Polyethylene 1860  10-6 0.39 30 940 
Nylon 6/10 8300 0.28 139 1400 

Silicone 112000 0.28 120 2330 
AISI 316 SS 193000 0.27 172 8000 
AA 6063 T6 69000 0.33 215 2700 

HSS 21000 0.28 620 7700 

Figure 4 shows the Von Mises stress gradient for a polyethylene spherical buoy partially 
submerged with a radius of 200 mm, considering the advanced position of the hydraulic cylinder 
piston rod and assuming that the hydraulic cylinder and cardan joint are both made of SS, AA and 
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5. Conclusion 

The purpose of this work was to provide a WEC 3D CAD numerical model able enough to be 
customized, depending on different combinations of buoy position and resultant hydrodynamic 
forces acting upon the WEC floating buoy, function of specific sea wave parameters found on the 
deployment site. To demonstrate its robustness, several materials or combinations between different 
materials and sizing of WEC components, as well as loading magnitudes were simulated, using FEA, 
and their influence on the WEC structural performance was analyzed. For the conditions simulated, it 
was demonstrated that materials with low stiffness and low strength lead to a structural collapse, for 
the load level applied and sizes considered. For this kind of materials, even when the dimensions of 
the main WEC components are increased, plastic deformation tends to occur. Furthermore, the 
developed model proved that it can be very useful in order to easily test the structural behavior of the 
main WEC components when different buoy positions are assumed. Regarding the dimensions and 
materials of the WEC main components, it is possible to optimize the model, according with the 
applied load level, which is a function of the resultant hydrodynamic forces acting upon the buoy. 
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