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Abstract: Some of the tools that are generally employed in power system analysis
need to use approaches based on statistical distributions for simulating the cumu-
lative behavior of the different system devices. For example, the probabilistic load
flow. The presence of wind farms in power systems has increased the use of Weibull
and Rayleigh distributions among them. Not only the distributions themselves,
but also satisfying certain constraints such as correlation between series of data or
even autocorrelation can be of importance in the simulation. Correlated Weibull
or Rayleigh distributions can be obtained by transforming correlated Normal dis-
tributions, and it can be observed that certain statistical values such as the means
and the standard deviations tend to be retained when operating such transforma-
tions, although why this happens is not evident. The objective of this paper is to
analyse the consequences of using such transformations. The methodology consists
of comparing the results obtained by means of a direct transformation and those
obtained by means of approximations based on the use of first and second degree
polynomials. Simulations have been carried out with series of data which can be
interpreted as wind speeds. The use of polynomial approximations gives accurate
results in comparison with direct transformations and provides an approach that
helps explain why the statistical values are retained during the transformations.

Keywords: Normal, Weibull, Rayleigh distributions, correlation, autocorrelation,
polynomial approximation.

1. Introduction.
The increasing presence of wind farms (WF) in electrical power networks has made
it important to simulate correlated wind speeds. The use of wind speed series in
combination with the wind turbine (WT) power curves is common for the resolution
of more than one typical problem in electrical power network analysis.

In order to attain a solution for some of these problems it is necessary to deal with
wind speed series satisfying features regarding the frequency distribution of wind
speeds and the correlation between series at different sites. There is wide agreement
on considering the Weibull distribution as the best continuous approximation for
the frequency distribution of wind speed in a site [1] and Kavasseri presents a study
of the phenomena associated to the correlation [2]. Spatial correlation is explicity
mentioned by Damousis et al. [3] and autocorrelation has been studied by Brown
et al. [4], and also by Song and Hsiao [5].
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Other solutions to the problem stated above have been proposed in different
papers, and a review of them has been presented by Feijóo et al. [6], especially for
the case when no additional chronological constraints are imposed.

Correia and Ferreira de Jesus [7] use the process of obtaining a Weibull distri-
bution as a combination of two Normal distributions while Segura et al. [8] obtain
correlated Weibull distributions from Uniform distributions.

A method based on the conditional probability theorem was presented by Karaki
et al. [9] and an approach based on the inverse discrete Fourier transform was
presented by Young and Beaulieu [10].

Huang and Chalabi [11] present a method based on chronological series and
Shamshad et al. [12] a different one based on Markovian models.

Villanueva et al. [13] propose a solution for an application to the economic dis-
patch problem in networks with penetration of wind farms. It consists of the simu-
lation of wind speed series satisfying statistical constraints such as those mentioned
above together with an additional one regarding autocorrelation, which added a
chronological nuance to the proposed method. As a result, series of correlated wind
speeds are obtained with a very high degree of accuracy regarding correlations,
Weibull parameters and autocorrelation of the series, although it is not so clear
why these features are retained through the proposed transformation, which is a
transformation from Normal to Weibull distributions.

The main objective of this paper is to return to this subject and offer an approach
which helps understand and discuss why those features are retained through such a
transformation. Polynomial approximations of first and second degree will be used
to achieve this.

In the rest of the paper, a Normal distribution with mean µ and standard devia-
tion σ is denoted as N(µ, σ), and a Weibull distribution with scale parameter c and
shape parameter k is denoted as W (c, k). Uniform distributions are also mentioned,
and U(0, 1) denotes one of these distributions in the interval [0, 1]. Subindices
such as in µx or in µu are used for distinguishing between different data series,
for example, for denoting the mean of the series {xi}i∈{1,2,...,M}, or of the series
{uj}j∈{1,2,...,M} respectively.

2. Normal to Weibull transformation.
A N(0, 1) distribution can be converted into a W (c, k) one by means of the following
transformation [13]:

u = c

−log
1− erf

(
x√
2

)
2


1
k

(1)

where x is a value belonging to a normally distributed series, u to a Weibull one,
log represents the natural logarithm and erf the error function defined as follows:

erf(x) =
2√
π

∫ x

0

e−t
2

dt (2)

For such a transformation the fact must be taken into account that the cumu-
lative distribution function (CDF) of normally distributed data with mean value

µx and standard deviation σx can be expressed as Fx(x) = 1
2

(
1 + erf

(
x−µx

σx

√
2

))
.

For the N(0, 1) distribution the transformation is Fx(x) = 1
2

(
1 + erf

(
x√
2

))
. In
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Figure 1. Normal against Weibull data.

the case of data belonging to a Weibull distribution, with scale parameter c and

shape parameter k, the transformation is Fu(u) = 1 − e−(u
c )

k

. According to this
notation, (1) is obtained by matching both distribution functions and clearing up
the variate u, as u = F−1u (Fx(x)), which is distributed as a Weibull one. Both
functions can be equalled due to the fact that any distribution function provides a
Uniform distributed variate, i.e., Fx(x) ∼ U(0, 1) and Fu(u) ∼ U(0, 1).

When such a transformation is performed, a representation of the normally dis-
tributed values against the Weibull distributed ones gives Figure 1 as a result, where
the Weibull values cover an interval including [3, 25], i.e., the interval of wind speed
values in which most WTs can run, which is the reason for being considered an
important interval in this paper.

The graph represented in Figure 1 has been obtained for a Weibull distribution
with parameters c = 7 and k = 2. A value of k = 2 corresponds to a particular
case of the Weibull distribution known as Rayleigh distribution. Similar curves are
obtained for other values of the pair (c, k), although they have not been represented
here.

So far, in Figure 1 attention must be paid to the line with the legend Exact,
obtained from (1).

3. Polynomial approximations.
A visual inspection of Figure 1 and the experience of having carried out many
different simulations lead the authors to think that polynomial approximations to
(1) could give accurate results.

If a least squares approximation is applied to the set of values of such a trans-
formation, then the other curves of Figure 1 are obtained, i.e., those corresponding
to the legends 1st order and 2nd order.

Both curves have been obtained by means of polynomial approximations of first
and second order, respectively, such as:
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f(x) =

D∑
n=0

anx
n (3)

where D ∈ {1, 2}.
This means that u can be expressed as u = f(x) + ε(x), where ε(x) is a small

error that, when neglected, involves accepting that u ≈ f(x).
The values of the constants obtained for these approximations are a0 = 5.7660,

a1 = 4.1384 in the case of the first degree polynomial (i.e., D = 1) and a0 = 5.9301,
a1 = 3.5227 and a2 = 0.1539 for the second degree one (i.e., D = 2).

Summarizing, for the transformation proposed in (1) there are the following
possible approximations.

f1(x) = 5.7660 + 4.1384 · x (4)

f2(x) = 5.9301 + 3.5227 · x+ 0.1539 · x2 (5)

For each approximation, a measure of error can be defined as:

efk(x) =

√∑M
i=1(ui − fk(xi))2

M
(6)

where k ∈ {1, 2}, M is the number of samples, ui are calculated from (1) and fk(xi)
are calculated from (4).

The error made in a set of 100,000 samples, according to (6), when obtaining
the approximations of Figure 1 came to 0.0043 for the first order polynomial and
0.0011 for the second order one. In different simulations the values of these errors
can be slightly different, but very close to the one given here.

Although the differences in error according to (6) are not so important, they are
bigger when dealing with absolute errors. If an absolute error is measured according
to:

eabsfk(x)
= max{|ui − fk(xi)|, i ∈ {1, 2, ...,M}} (7)

then in different simulations, values around 1.27 have been found for the first degree
approximation and around 0.34 for the second degree one.

In Figure 2, the histogram obtained by means of a transformation based on (1)
has been included with the notation Exact. In the same Figure, 1st deg. pol. and
2nd deg. pol. denote the histograms corresponding to both proposed approxima-
tions. This histogram has been obtained with 100,000 samples.

An observation must be made here. A first order polynomial does not convert
a Normal distribution into a Weibull one. It is a linear conversion and the result
has to be a Normal distribution, and this can be appreciated in Figure 2. However,
a second order polynomial has the contribution of the second order term, with a
strong trend to make the function asymmetric, and its similarity with a Weibull
distribution is stronger.

Finally, in Table 1 some of the moments of u, f1(x) and f2(x) are given. As can
be seen, both approximations have a lower mean and a higher standard deviation.
It is intuitive that the three series are highly correlated. And indeed, correlations
between them are ρuf1(x) = 0.9862, ρuf2(x) = 0.9943. If Spearman rank correlations,
ρufi(x)Sp

, i ∈ {1, 2}, are calculated, then the result is ρuf1(x)Sp
= 1 and ρuf2(x)Sp

= 1.
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Figure 2. Weibull distribution and approximations.

Table 1. Moments of u, f1(x) and f2(x).

mean µ std. dev. σ

u 6.1975 3.2355
f1(x) 5.7707 4.1289
f2(x) 6.0787 3.5213

As f1(x) is a linear relationship, the calculation of ρxf1(x) should give 1 as result,
and this is exactly what happens. And also, ρxu = 0.9862, just like ρuf1(x).

4. Influence of the constants c and k.
The next question to be answered is about the influence of constants c and k of the
Weibull distribution on the transformation.

In this section the variation of constants ai of the polynomial representation are
studied as a function of c and k.

4.1. The effect of the variation of c.
In (1) it can be observed that the constant c is a factor of the equation, i.e., it
multiplies the rest of the transformation. This is equivalent to saying that (1) can
be written as an equation such as u = c · g(x) where g(x) is a nonlinear function,
or that u is proportional to g(x) because c is a constant.

It is not difficult to deduce that variations of c should lead to proportional values
of u for the same values of x. Consequently, this fact should be reflected in the
polynomial approximation. And it is exactly what happens as can be seen in Fig-
ure 3, where these variations can be observed for a fixed value of k = 2, although
similar results are obtained for different values of k.

For this value of k = 2, the values of a0, a1 and a2, of the polynomial approxi-
mation, which will be denoted as a0c , a1c and a2c , can be calculated directly as a
function of c, according to the following equations:
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Figure 3. Variation of a0, a1 and a2 of the polynomial ap-
proximation with the constant c of the Weibull distribu-
tion.

a0c(c) = 0.8464 · c
a1c(c) = 0.4972 · c
a2c(c) = 0.0243 · c (8)

As has been reflected in Figure 3 the simulation was made for values of c in the
interval [0, 14].

The following comment should be added. As mentioned before, sometimes the
Rayleigh distribution has been recommended as a good continuous approximation
of the frequency distribution of wind speeds at a given site. In a Weibull distribution
the mean and standard deviation are calculated by means of the Gamma function
first described by Euler, Γ(p) =

∫∞
0
e−xxp−1dx, according to µWeibull = cΓ

(
1 + 1

k

)
for the mean, and σ2

Weibull = c2
(
Γ
(
1 + 2

k

)
− Γ2

(
1 + 1

k

))
for the standard deviation.

However, one of the advantages of the Rayleigh distribution is the fact that the
calculation of these statistical values is simpler, and they can be expressed such as

µRayleigh = c
√
π
2 for the mean and σ2

Rayleigh = c2
(
1− π

4

)
for the variance.

Taking the previous paragraph into account, the use of (8) can be of interest when
using the Rayleigh distribution. In this case, k = 2 and the value c is calculated

from the mean value as c =
2µRayleigh√

π
. And after that, the transformation of the

Normal values to the Rayleigh ones can be performed with a high degree of accuracy
by means of (8), which can be alternatively expressed as follows:
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Figure 4. Variation of a0, a1 and a2 of the polynomial ap-
proximation with the constant k of the Weibull distribu-
tion.

a0c(µ) = 0.8464 · 2√
π
· µ = 0.9551 · µ

a1c(µ) = 0.4972 · 2√
π
· µ = 0.5610 · µ

a2c(µ) = 0.0243 · 2√
π
· µ = 0.0274 · µ (9)

where µ denotes the mean value of the Rayleigh distribution, that in the previous
paragraph was denoted as µRayleigh.

4.2. The effect of the variation of k.
The presence of k in (1) is quite different from the case of the presence of c.

As can be expected, changes in the value of k produce nonlinear effects. This can
be seen in Figure 4, where the value of c has been kept constant, allowing changes
in k in the interval [1, 4].

A first order approximation does not seem to be able to fit these curves, for which
a second order one is here recommended, and it reveals that a0, a1 and a2, now
denoted as a0k , a1k and a2k can be expressed as follows:

a0k(k) = −0.0715 · k2 + 0.4862 · k + 0.9886

a1k(k) = 0.0967 · k2 − 0.8153 · k + 2.2533

a2k(k) = 0.1503 · k2 − 0.9132 · k + 1.3177 (10)

Both effects of the variations of c and k can be studied in combination, and this
is explained in next section.
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Figure 5. Variation of a0 in the polynomial approximation
(degree 2) with the constants c and k of the Weibull dis-
tribution.
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Figure 6. Variation of a1 in the polynomial approximation
(degree 2) with the constants c and k of the Weibull dis-
tribution.

4.3. Combined effect of the variation of c and k.
The results of the variation of both c and k values have been combined for the
constants a0, a1 and a2, and can be seen in Figures 5, 6 and 7.

This combined dependency can also be approximated by means of a polynomial
transformation such as:

ai(c, k) =

1∑
m=0

2∑
n=0

pmni
cmkn i ∈ {0, 1, 2} (11)

where the constants pmni
can be calculated for each ai. Summarizing, (1) can be

substituted by an equation like (3), where the constants ai can be calculated as
functions of the constants of the Weibull distribution, c and k, by means of (11).

Under the assumption of an interval for c equal to [0, 14] and an interval for k
equal to [1, 4], the use of the above mentioned tool gives as a result the values for
the constants given in Table 2 (the first subscript is for c and the second one for k).
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Figure 7. Variation of a2 in the polynomial approximation
(degree 2) with the constants c and k of the Weibull dis-
tribution.

Table 2. Constants pmn in the expresions of ai, i ∈ {1, 2, 3}.

p00 p10 p01 p11 p02

a0 -0.9743 0.6891 0.8938 0.0644 -0.1788
a1 1.3170 0.8632 -1.209 -0.1660 0.2417
a2 2.0480 0.2492 -1.8790 -0.0808 0.3758

The coefficients p12 have not been included because they are very close to 0 in
all cases (in fact, their values are lower than 10−15).

5. Consequences of the proposed approximations.
Some consequences of the proposed approximations are given in this section. The
conservation of autocorrelation when going from Normal distributions to Weibull
distributions is not clearly easy to deduce directly from (1). But some operations
with the statistical values based on the approximations can be of help for giving
some explanation about why these values are retained. At the end of the section
there are also some considerations about negative values in the simulations.

5.1. Conservation of the autocorrelation.
It has been mentioned that (1) was presented by Villanueva et al. in [13] as an option
for the obtaining of Weibull distributions, with given mean, standard deviation
and also lag 1 autocorrelation. To achieve such an objective, an autoregresive
process known as AR(1) was used for randomly simulating Normal distributions
with mean 0 and standard deviation 1 and then a transformation based on the
Choleski decomposition of the covariance matrix was used to obtain the Weibull
distributions.

Something that was observed when using this transformation process was the
fact that lag 1 autocorrelation was apparently retained when converting data from
the initial Normal distribution to the final Weibull one, i.e., the autocorrelation
of each of the simulated Weibull series had a value very close to the value of the
autocorrelation of the initial Normal series. In view of (1) it is not so evident why
such statistical values are retained through the transformation.
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The results obtained with the polynomial approximations presented in this paper
can be used as an interesting approach to explain the fact given above.

In previous sections it has been shown that good approximations with poly-
nomials of degrees 1 and 2 can be obtained for (1). The proposal is to look for
relationships between the statistical values by means of these approximations.

5.1.1. First degree.
From this section on, some new notation will be used, and so x = [x1, x2, ..., xM ],
xi = [x1, x2, ..., xM−1], and xi+1 = [x2, x3, ..., xM ]. For the approximation, the nota-
tion will be f1(x) = [f1(x1), f1(x2), ..., f1(xM )], f1(x)i = [f1(x1), f1(x2), ..., f1(xM−1)]
and in the same way to xi+1, f1(x)i+1 = [f1(x2), ..., f1(xM )]. Similar notation will
be employed for f2(x).

It is a well known fact that if the mean value of a Normal distribution is µx =

E[x] =
∑M

k=1 xk

M , where E represents the expected value of x, then the mean value of
the approximated Weibull distribution, if the approximation is by means of a first
degree polynomial, i.e., f1(x) = a0 + a1x, can be estimated as µf1(x) = E[f1(x)] =
E[a0+a1x] = a0+a1µx = a0, taking into account that µx = 0, because x ∼ N(0, 1).
It must not be forgotten that the transformed distribution is a Normal one because
the transformation is linear, as the polynomial is of first degree.

If σ2
x = E[(x− µx)2] =

∑M
k=1(xk−µx)

2

M is the variance of the Normal distribution,

then the variance of the approximated Weibull one is σ2
f1(x)

= E[(f1(x) − µu)2] =

E[(a0 + a1x− a0)2] = a21, because E[x2] = E[(x− µx)2] = 1, as x ∼ N(0, 1).
Lag 1 autocorrelation is obtained as the correlation between a given series and

the same series shifted by one position. For calculating covariances between two
series, for example, x = [x1, x2, ..., xM ] and y = [y1, y2, ..., yM ], a formulation has to
be used where terms like the following appear, (xi − µx)(yi − µy). However, when
calculating lag 1 autocorrelation, only one series is involved, x = [x1, x2, ..., xM ] and
the terms are such as (xi − µx)(xi+1 − µx), i.e., the values are grouped as follows,
(x1, x2), (x2, x3), ..., (xM−1, xM ).

The covariance between a series of a Normal distribution and the shifted one will
be denoted as σxixi+1

and can be calculated as:

σxixi+1
=

∑M−1
i=1 (xi − µx)(xi+1 − µx)

M
=

∑M−1
i=1 xixi+1

M

by taking into account that µx = 0 because x ∼ N(0, 1). One fact to bear in mind
is that there are only M − 1 addends in the previous sum. The value of M in the
denominator can remain, instead of being changed to M − 1, because this does not
affect the rest of the reasoning, and also because it is generally accepted in the
calculation of lag s autocorrelation, for a given value of s.

The correlation between both series can be defined as

ρxixi+1
=

σxixi+1

σxi
σxi+1

=
σxixi+1

σ2
= σxixi+1

assuming that σ = σxi
= σxi+1

= 1.
This correlation between the two series is the lag 1 autocorrelation of the series.
What happens with the values of the approximated Weibull distribution is the

following:
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Table 3. Moments of x and f(x).

Variable µ σ

x 0 1
f1(x) = a0 + a1x a0 a21

σf1(x)if1(x)i+1
=

1

M
·
M−1∑
i=1

(f1(xi)− µf1(x))(f1(xi+1)− µf1(x)) = a21σxixi+1

taking into account that f1(xi) − µf1(x) = a0 + a1xi − a0, and f1(xi+1) − µf1(x) =
a0 + a1xi+1 − a0, the autocorrelation is, then, calculated, as a correlation between
both series, i.e.

ρf1(x)if1(x)i+1
=

σf1(x)if1(x)i+1

σf1(x)iσf1(x)i+1

Previously it has been shown that σ2
f1(x)

= a21, which leads to σ2
f1(x)i

= σ2
f1(x)i+1

=

a21, and σf1(x)i = σf1(x)i+1
= a1. Finally:

ρf1(x)if1(x)i+1
=

a21σxixi+1

a1σxi
a1σxi+1

=
σxixi+1

σxi
σxi+1

= ρxixi+1

The conclusion is that substituting (1) by a first degree polynomial involves a
transformation where lag 1 autocorrelation is retained.

In fact, if subindices i + 1 are changed to subindices i + s, then s lag autocor-
relation must be kept in such a transformation. Thus, if an AR(s) instead of an
AR(1) process is used for generating the Normal distribution, the transformation
to approximated Weibull series should keep s lag autocorrelations for all s.

A summary of all these moments can be read in Table 3.

5.1.2. Second degree.
The conclusions of the previous section are not surprising because the proposed
transformation by means of f1 is linear.

A better approximation to (1) consists of a second order polynomial, such as
f2(x) = a0 + a1x + a2x

2. The term of second order contributes to confer a certain
degree of asymmetry to the distribution, which is a feature that makes it more
similar to a Weibull one.

The mean value of the given distribution is µf2(x) = E[a0+a1x+a2x
2] = a0+a2,

again because E[x] = µx = 0 and in addition because E[x2] = σ2
x = 1.

In the case of the variance the calculation is as follows, σ2
f2(x)

= E[(a0 + a1x +

a2x
2 − µf2(x))

2] = E[(a1x + a2(x2 − 1))2], by taking into account the fact that
µf2(x) = a0+a2, shown in the previous paragraph. If some operations are performed,

the following transformation can be obtained, σ2
f2(x)

= E[a22x
4 + 2a1a2x

3 + (a21 −
2a22)x2 − 2a1a2x + a22].

The values of the moments for a Normal distribution can be seen in appendix A,
and substituting them in this transformation, the result is that σ2

f2(x)
= a21 + 2a22.

Autocorrelation can be defined with the help of σxixi+1
=

∑M−1
i=1 xixi+1

M , for the
case of the original Normal series.
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For the transformed one:

σf2(x)if2(x)i+1
=

=
1

M
·
M−1∑
i=1

(f2(xi)− µf2(x))(f2(xi+1)− µf2(x)) =

=
1

M
·
M−1∑
i=1

(a1xi + a2(x2i − 1))(a1xi+1 + a2(x2i+1 − 1))

For simplicity, M will not be taken into account now. By operating the previous
equation:

M−1∑
i=1

(a21xixi+1 + a1a2xix
2
i+1 − a1a2xi + a1a2x

2
ixi+1

− a1a2xi+1 + a22x
2
ix

2
i+1 − a22x2i − a22x2i+1 + a22)

This transformation can be simplified by taking into account that, due to prop-
erties of the N(0, 1) distribution, with the help of expressions given in appendix A,
the final result is that σf(x)if(xi+1) = a21σxixi+1

+ 2a22σ
2
xixi+1

.
According to this:

ρf2(x)if2(x)i+1
=

σf2(x)if2(x)i+1

σf2(x)iσf2(x)i+1

= ρxixi+1

a21 + 2a22ρxixi+1

a21 + 2a22
(12)

where ρxixi+1
= σxixi+1

.
It is interesting to point out the values of ρf2(x)if2(x)i+1

in some particular cases,
which can be considered extreme cases:

ρf2(x)if2(x)i+1
=


1 if ρxixi+1

= 1

0 if ρxixi+1
= 0

−a21+2a22
a21+2a22

if ρxixi+1
= −1

Anyway, as generally a1 � a2, it can be concluded that ρf2(x)if2(x)i+1
≈ ρxixi+1

.
For example, by using the values obtained for a second degree approximation, i.e.,
a1 = 3.5227 and a2 = 0.1539, the result is that if ρxixi+1

= −1, then ρf2(x)if2(x)i+1
=

−0.9924. The meaning of this is that the autocorrelation of the distribution obtained
through the second degree polynomial is greater than 99% of the autocorrelation of
the initial Normal distribution.

All that has been explained in this section can be summarized as follows: assum-
ing a Normal distribution and the Weibull distribution obtained from this Normal
one by means of (1), different approximations to the Weibull distribution can be
run on a polynomial basis.

A degree one polynomial is a linear approximation which retains variance and
autocorrelation without dependency of the lag.

A degree two polynomial includes a certain degree of asymmetry, which makes the
transformed distribution be further from the Normal one and closer to the Weibull
one. In this case, the autocorrelation is not retained and its degree of approximation
to the values of the original distribution depends on the value itself.

As a second degree approximation is closer to the first degree approximation this
allows the conclusion to be made that the autocorrelation is not retained through
the exact transformation given by (1).
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Table 4. Moments of x and f(x).

Variable µ σ

x 0 1
f2(x) = a0 + a1x + a2x

2 a0 + a2 a21 + 2a22

5.2. Conservation of the correlation.
Correlations between series are retained through linear transformations, and this
can be argued in a similar way to the assertion made for the lag 1 autocorrelations.

If x ∼ N(0, 1) and y ∼ N(0, 1), and f1(x) = a0 + a1x and g1(y) = b0 + b1y,
where f1(x) and g1(y) are now two new series transformed from x and y, then the
correlation between x and y is given by ρxy =

σxy

σxσy
. As σx = σy = 1, it can be

expressed as ρxy = σxy. On the other side, σxy = E[(x − µx)(y − µy)], where
µx = µy = 0, by which σxy = E[xy].

This means that σf1(x)f1(y) = E[(f1(x)−µf1(x))(f1(y)−µf1(y))] = E[(a0 + a1x−
a0)(b0 + b1y − b0)] = a1b1σxy.

As σf1(x) = a1 and σg1(y) = b1, then ρf1(x)g1(y) =
σf1(x)g1(y)

σf1(x)σg1(y)
=

a1b1σf1(x)g1(y)

a1b1
=

ρf1(x)g1(y), and this proves that the correlation is also retained.
However, in nonlinear transformations, i.e., in the case of second degree approx-

imations, things operate in a different manner. If new approximations are taken,
such as f2(x) = a0 + a1x + a2x

2 and g2(y) = b0 + b1y + b2y
2, then both means are

µx = a0 + a2 and µy = b0 + b2 and the standard deviations are σx = a1 + 2a22 and
σy = b1 + 2b22.

The variance between f2(x) and g2(x) is calculated as σf2(x)g2(y) = E[(f2(x) −
µf2(x))(g2(y)− µg2(y))], which is E[(a1x + a2(x2 − 1))(b1y + b2(y2 − 1))].

By rearranging the previous expression and by taking into account appendix A,
it can be written as:

σf2(x)g2(y) = σxy(a1b1 + a2b2σxy)

Now, as σf2(x) = (a21 + 2a22)σx and σf2(y) = (a21 + 2a22)σy, and σxy = ρxy finally:

ρf2(x)g2(y) = ρxy
a1b1 + 2a2b2ρxy√
a21 + 2a22

√
b21 + 2b22

(13)

As can be deduced, things operate in a similar way to the case of lag 1 autocorre-
lation if both distributions coincide, i.e., if they have identical c and k parameters,
because in this case a1 = b1, a2 = b2 and (13) is an equation similar to (12). In this
case the conclusions achieved in (12) can be applied here.

However, when both distributions differ, then the four parameters a1, a2, b1 and
b2 in (13) cannot be substituted by only two of them, and the dependency on them
is more complex. But the conclusion is that correlation is not completely retained
when using (1).

5.3. Negative values.
Another consequence of the approximation is the appearance of negative values in
the conversion, a problem that was detected by Feijóo et al. [14], in a work where
correlated Weibull and Rayleigh distributed series of wind speeds were simulated,
and then avoided with new methods by Feijóo and Sobolewski [15], with the use of
nonparametric correlations, i.e., Spearman rank correlations.
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For representing wind speed values, the Weibull distribution can be treated just
as it has so far, i.e., assuming that its minimum value is 0.

But more generally, the Weibull distribution CDF with an origin γ 6= 0 can
be defined as W : [γ,+∞) → [0, 1]. As mentioned, in the case of wind speed
distributions, γ = 0 because wind speeds are supposed to be positive, so there are no
negative values in the distribution. The application of the explained approximations
gives a certain number of negative values as a result. This can be observed in
Figure 2. By multiple simulations, it has been estimated that no more than 0.5%
of the data are negative.

According to this, it is natural that when data represent wind speeds, there is
a tendency to reject negative values. However, other errors are accepted in all
simulations and an interesting question that begs to be answered is how much of a
problem it would be to accept negative values as wind speed values.

And the answer is that it does not necessary involve making a significant error
in the calculations.

A typical situation consists of combining wind speed data with WT power curves
with the aim of calculating either the power generated or the total energy produced
during a certain period of time.

In order to check the error made when substituting the exact formulation given
by (1) by a polynomial approximation of degree 2, a power curve for a WT has
been combined with data corresponding to a site with a Weibull distribution of
parameters c = 7 and k = 2.

The power curve has been proposed by Carta et al. [16] and described in appen-
dix B. For the following values, vCI = 4 ms−1 as cut-in wind speed, vR = 14 ms−1

as rated wind speed, and vCO = 25 ms−1 as cut-out wind speed, the error made
in the calculation of energy generated by the WT rises to a 3%. The value of this
error does not seem to depend on the maximum power. For WTs of rated powers
2, 3, ..., 7 MW the error is also around 3%.

As a conclusion, the acceptance of negative values as wind speeds for the calcu-
lation of power or energy values in a simulation is not so important, as they are
filtered by the WT power curve, i.e., if the value of wind speed is negative, then the
power generated by the WT will be 0. In many cases it will be just like when the
value is positive but under 3 or 4 ms−1 or above 25 ms−1.

An approximation with a polynomial of degree one is much less satisfactory, as
the errors made when calculating energy rise to values close to 13% for all the rated
powers given.

6. Conclusions.
In this paper two different polynomial approximations have been proposed for the
transformation of sets of Normally distributed data to sets of Weibull distributed
series, satisfying not only the parameters of Weibull distributions, but also their
correlations and even autocorrelations.

The approximations have been used to provide an approach to a better under-
standing of why these features are retained when an exact transformation is carried
out, with the following consequences:

1. The use of (1) for the Normal to Weibull transformation is very adequate and
gives very good results. It has no disadvantages from a computational point of
view. However, it is not easy to explain why certain statistical values, such as
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correlation and autocorrelation are highly retained, which has been previously
obtained by simulations.

2. In order to explain such phenomena, polynomial approximations based on the
least square method were used for the CDFWeibull = f(CDFNormal) curve.

3. A second degree approximation shows a high degree of accuracy, and also
shows that correlations and autocorrelations are not exactly retained, but
seem to explain why they are highly retained.

4. The appearance of negative values of the wind speed in simulations does not
involve an important error. Although there are no negative values of wind
speed, they can appear in the simulation, but even so, they are filtered by the
power curves of the WTs when used for estimating power or energy captured
from the wind.

Appendix A. Moments of the Normal distribution.
The following are the expressions of moments of the normal distribution that have
been necessary in the paper:

E[x] = µx = 0

E[x2] = σ2
x = 1

E[x3] = µ3
x + 3µxσ

2
x = 0

E[x4] = µ4
x + 6µ2

xσ
2
x + 3σ4

x = 3

E[xi] = E[xi+1] = 0

E[x2
i ] = E[x2

i+1] = 1

E[xixi+1] = σxixi+1

E[xix
2
i+1] = E[x2

i xi+1] = 0

E[x2
i x2

i+1] = σxi
σxi+1

+ 2σ2
xixi+1

= 1 + 2σ2
xixi+1

Appendix B. Power curves description.
A WT power curve can be described by means of a function such as the following
[17]:

P =


0 0 ≤ vw ≤ vCI
h(vw)PR vCI ≤ vw < VR

PR vR ≤ vw < vCO

0 vw ≥ vCO

where vw is the input variable, i.e., the wind speed, vCI stands for cut-in wind
speed, 4 ms−1 in the example proposed in the paper, vCO for cut-out wind speed,
25 ms−1, vR is the rated wind speed, 14 ms−1, and PR the rated power, 1 MW .

The function h(vw) is calculated as h(vw) = A+Bvw + Cv2w, and
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A = a(vCIb− 4vCIvRC)

B = a(4bd− 3vCIvR)

C = a(2− 4d)

a =
1

(vCI − vR)2

b = vCI + vR

d =

(
vCI + vR

2vR

)3
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