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Abstract: Deep Learning Algorithms (DLAs) have emerged as transformative tools in medical image 

analysis, offering unprecedented accuracy and efficiency in diagnostic tasks. We explored the state-

of-the-art applications of DLAs in medical imaging, focusing on their role in disease detection, 

segmentation, workflow automation, and multi-modality data integration. Key architectures such as 

Convolutional Neural Networks (CNNs), U-Net, and Vision Transformers are highlighted, alongside 

their tailored applications in healthcare. Additionally, Mamba networks have shown significant 

promise in medical imaging by leveraging their advanced memory-efficient architecture for high-

dimensional data processing. These networks excel in real-time analysis, improving the speed and 

accuracy of complex imaging tasks such as tumor detection and organ segmentation. The adaptability 

and computational efficiency of Mamba networks position them as a strong alternative to traditional 

deep learning architectures in the field of medical imaging. DLAs have consistently demonstrated 

superior performance compared to radiologists in various diagnostic tasks, such as breast cancer 

detection and brain tumor segmentation, with higher accuracy and efficiency. Despite these 

advancements, challenges such as limited data availability, ethical concerns, interpretability issues, 

and integration hurdles persist. Addressing these barriers is crucial to unlocking the full potential of 

DLAs and enabling their seamless integration into clinical workflows, ultimately enhancing patient 

care and diagnostic precision. 
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1. Introduction  

Medical image analysis plays a pivotal role in modern healthcare by aiding in the diagnosis, 

monitoring, and treatment of various medical conditions. Over the years, advances in imaging 

technologies, such as X-rays, CT scans, MRIs, and ultrasound, have significantly enhanced clinicians’ 

ability to visualize and assess the human body. However, despite these technological advancements, 

the analysis and interpretation of medical images remain challenging tasks, often influenced by factors 

such as the complexity of the images, variations in image quality, and the expertise of the practitioners 

interpreting the images. The emergence of Deep Learning Algorithms (DLAs), a subset of artificial 

intelligence (AI), has revolutionized the field of medical image analysis [1,2]. Unlike traditional 

machine learning methods, which rely on hand-crafted features, DLAs automatically learn hierarchical 

patterns and representations from raw image data. This ability to detect subtle features in large datasets 

with high accuracy has led to significant improvements in diagnostic performance, often surpassing 

human experts in tasks like disease detection, tumor segmentation, and image classification [3]. 

DLAs, particularly Convolutional Neural Networks (CNNs), have demonstrated exceptional 

capabilities in medical imaging tasks, including the detection of cancers (e.g., breast, lung, and skin 

cancer), brain abnormalities, and cardiovascular conditions. Furthermore, DLAs have contributed to 

the development of automated tools for image segmentation, which is crucial for treatment planning 

and monitoring disease progression. These algorithms have the potential to improve diagnostic 

accuracy, reduce human error, optimize workflow efficiency, and ultimately, enhance patient 

outcomes. Despite the promising results, the integration of DLAs into clinical practice presents 

challenges, including data privacy concerns, the need for large and diverse datasets, and the “black 

box” nature of deep learning models, which can limit clinicians’ trust and understanding of the model’s 

decision-making process [4–8]. Nevertheless, the growing adoption of DLAs in medical imaging is 

expected to continue as these systems are refined and validated through extensive clinical trials and 

research. 

Here, we provide an overview of the current landscape of medical image analysis using deep 

learning algorithms, highlighting their applications, advantages, and challenges. We also discuss the 

future directions for integrating DLAs into healthcare systems to ensure that they complement the 

expertise of medical professionals and improve patient care. In this study, we review the key 

techniques, datasets, and evaluation metrics used in applying DLAs for medical image analysis [9,10].  

The materials and methods employed to develop and assess these algorithms are drawn from 

recent literature, industry practices, and established research frameworks. For training and testing 

DLAs in medical image analysis, high-quality annotated medical image datasets are essential [11]. 

Commonly used datasets in this field include: The ChestX-ray14 dataset, A large-scale dataset 

containing over 100,000 frontal-view chest X-ray images with annotations for 14 different thoracic 

diseases. It is widely used for the development and validation of deep learning models for disease 

classification and detection. The LUNA16 dataset is used for lung nodule detection and consists of 

high-resolution CT scans, providing labelled images of lung nodules for training segmentation and 

detection algorithms. The Brain Tumour Segmentation (BRATS) dataset includes MRI scans with 

tumour annotations, providing a basis for developing segmentation models for brain tumour detection 
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and classification. The International Skin Imaging Collaboration (ISIC) dataset is used to detect skin 

cancer from dermoscopic images, providing labelled examples of benign and malignant lesions. 

2. Materials and methods 

2.1. Deep learning algorithms 

The primary deep learning models used in medical image analysis are Convolutional Neural 

Networks (CNNs). CNNs have been shown to be highly effective at automatically learning spatial 

hierarchies of features from image data. Variations of CNNs such as U-Net, ResNet, and DenseNet 

have been employed for specific tasks, including image segmentation and disease classification [8,12]. 

U-Net is a deep-learning architecture specifically designed for biomedical image segmentation. U-Net 

is a fully convolutional network (FCN) that consists of an encoder-decoder architecture with skip 

connections to preserve spatial resolution, making it ideal for segmenting small and complex 

anatomical structures. ResNet is a residual network designed to address the problem of vanishing 

gradients in deep networks. ResNet has been used in medical image classification tasks, improving 

diagnostic accuracy in tasks such as tumor detection and disease classification [13–17]. DenseNet is a 

dense convolutional network where each layer is connected to every other layer in a feed-forward 

fashion. This structure improves feature reuse and alleviates the vanishing gradient problem, making 

it suitable for detailed image analysis. 

2.2. Preprocessing  

Medical images typically require preprocessing before being input into deep-learning models. 

The most common preprocessing steps include standardizing image dimensions to ensure 

compatibility with the deep learning model, scaling pixel intensities to a consistent range (e.g., 0 to 1) 

to improve model convergence, and applying transformations such as rotation, flipping, and scaling to 

increase dataset diversity and reduce overfitting. In some cases, preprocessing involves isolating 

regions of interest (e.g., tumors or lesions) through segmentation techniques to focus the analysis on 

critical structures. 

2.3. Model training and evaluation 

Deep learning models are trained on labeled datasets, with the training process involving the 

optimization of model parameters (e.g., weights and biases) to minimize the loss function. The training 

process is typically carried out using backpropagation and an optimization algorithm such as Stochastic 

Gradient Descent (SGD) or Adam. Datasets are typically divided into training, validation, and testing 

subsets. During training, models are fine-tuned on the training set, while the validation set is used to 

monitor overfitting and adjust hyperparameters. The effectiveness of the deep learning models is 

evaluated using various metrics: Accuracy: The proportion of correctly predicted instances; Sensitivity 

and Specificity: Sensitivity measures the true positive rate, while specificity measures the true negative 

rate; Dice Similarity Coefficient (DSC): Used in segmentation tasks to measure the overlap between 

predicted and ground truth regions; and Area Under the Curve (AUC): The AUC of the receiver 

operating characteristic (ROC) curve, which evaluates the trade-off between sensitivity and specificity  
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2.4. Software and frameworks 

Deep learning models for medical image analysis are implemented using popular machine 

learning frameworks, such as: TensorFlow, which is an open-source deep learning library developed 

by Google, widely used for building and deploying machine learning models, including CNNs. 

PyTorch, which is an open-source deep learning framework developed by Facebook, is known for its 

flexibility and ease of use in research and development. Keras is a high-level neural networks API, 

written in Python, that runs on top of TensorFlow, facilitating easy model design and experimentation. 

SimpleITK is a toolkit for medical image processing, commonly used in preprocessing and handling 

medical imaging data formats like DICOM. For models to be successfully integrated into clinical 

practice, they must undergo rigorous validation using real-world datasets that are representative of 

diverse patient populations. Cross-validation, multi-center trials, and external validation on datasets 

from independent institutions are crucial for assessing generalization and robustness [17]. 

2.5. Applications of DLA-s in medical imaging 

DLAs have revolutionized medical imaging, offering powerful solutions for various diagnostic, 

prognostic, and therapeutic applications [11]. By leveraging large datasets and advanced neural 

network architectures, DLAs are transforming how medical images are analyzed. CNNs are widely 

used to detect abnormalities in mammograms, aiding early detection and reducing false negatives. 

DLAs have shown exceptional performance in detecting lung nodules, pneumonia, and COVID-19-

related abnormalities in chest X-rays and CT scans. Cardiovascular Deep learning models analyze 

echocardiograms and CT angiography images to detect conditions such as arrhythmias and 

atherosclerosis. 

DLAs like U-Net and their variants are extensively used for segmenting brain tumors, liver lesions, 

and other malignancies in MRI and CT scans [16,18−20]. Models perform precise segmentation of 

organs such as the liver, kidneys, and heart, facilitating radiation therapy planning and surgical 

navigation. DLAs segment lesions from dermoscopic images, assisting in diagnosing melanoma and 

other skin conditions [15]. DLAs are increasingly being used for predicting patient outcomes based on 

medical imaging: Survival Analysis: By analyzing tumor features in imaging data, DLAs predict 

survival rates in cancer patients. Longitudinal imaging studies powered by DLAs help monitor the 

progression of chronic diseases like Alzheimer’s and multiple sclerosis. DLAs enhances efficiency in 

medical imaging workflows: Automated Reporting: Algorithms generate structured radiology reports, 

reducing the burden on radiologists. Quality Control: DLAs detect artifacts or poor image quality, 

prompting retakes if necessary. Prioritization: Triage systems powered by DLAs flag critical cases for 

immediate attention. 

DLAs integrate data from various imaging modalities to provide comprehensive diagnostic 

insights. Combining metabolic data from PET scans with anatomical details from CT images improves 

cancer staging accuracy. DLA-based fusion of MRI and ultrasound images enhance prostate cancer 

detection. DLAs are instrumental in diagnosing rare diseases by recognizing subtle and atypical 

patterns in imaging data, which may be missed by human experts. In surgical and interventional 

radiology settings, DLAs provide real-time guidance. DLAs assist in precision tasks during robotic 

surgeries, such as tumor resections. Algorithms analyze real-time fluoroscopic images, aiding catheter 

placements and vascular interventions [21−27]. 
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Figure 1. The schematic figure shows the sequence of tasks in medical image analysis 

using Deep Learning Algorithms (generated using co-pilot). 

DLAs are used to develop tools for training radiologists and clinicians: Simulated Diagnostic 

Cases: Algorithms create synthetic imaging datasets for educational purposes. Skill Assessment: 

Training platforms use DLAs to evaluate and improve radiologists’ diagnostic performance. Figure 1 

is a schematic representation of a flowchart or diagram showing the sequence of tasks in medical image 

analysis, from image acquisition to preprocessing, feature extraction, model training, and the final 

diagnosis or segmentation. The first step is image acquisition, which means capturing medical images 

(e.g., MRI, CT, X-ray) that provide the foundational data for analysis. These images serve as the 

primary input to deep learning models. Then, images are preprocessed to ensure uniformity and clarity. 

Common steps include noise reduction, contrast normalization, and resizing to standardize input for 

the model. The next step is featuring extraction, which gives the key features, such as tumors or 

abnormalities, that are extracted from images. In this step, deep learning models are used to identify 

regions of interest that require further analysis. Next, the deep learning model (e.g., CNN, U-Net) is 

trained on a large dataset with labeled images to recognize patterns and features in the medical images. 

The final step is diagnosis/segmentation, where the trained model is applied to make predictions [15]. 

In diagnosis tasks, it might predict the presence of disease. In segmentation tasks, it outlines key areas 

like tumors. 

2.6. Deep learning architectures in imaging 

Deep learning architectures form the backbone of the remarkable advancements seen in medical 

image analysis. Below are some key architectures utilized in medical imaging. 
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2.6.1. Convolutional neural networks (CNNs) 

CNNs are the most used architectures in medical imaging due to their ability to extract spatial 

features from images. Key components of CNNs include convolutional layers, pooling layers, and 

fully connected layers. Variants of CNNs used in medical imaging include:  

AlexNet and VGGNet: Early architectures demonstrating the potential of CNNs in image 

recognition tasks. ResNet: Residual networks that address the vanishing gradient problem, enabling 

the training of deeper networks for tasks like tumor classification [28−30]. DenseNet: Dense 

convolutional networks that enhance feature reuse and improve efficiency in medical image 

segmentation and classification [31−37]. 

2.6.2. Recurrent neural networks (RNNs) 

While RNNs are primarily designed for sequential data, they are occasionally used in medical 

imaging tasks where temporal or sequential dependencies exist, such as analyzing video-based imaging 

studies (e.g., ultrasound cine loops). 

2.6.3. U-Net 

U-Net is a specialized deep-learning architecture designed for biomedical image segmentation. It 

features an encoder-decoder structure with skip connections that preserve spatial resolution, making it 

highly effective in tasks such as tumor and lesion segmentation and Organ delineation for treatment 

planning. 

2.6.4. Generative adversarial networks (GANs)  

GANs are used in medical imaging for: Data Augmentation: Generating synthetic images to 

enhance training datasets. Image-to-Image Translation: Converting low-resolution or noisy images 

into high-quality representations (e.g., enhancing MRI resolution). 

2.6.5. Transformer architecture 

Transformers, originally developed for natural language processing, are increasingly applied to 

medical imaging. Vision Transformers (ViTs) leverage self-attention mechanisms to capture global 

image context, proving useful in tasks like disease classification and anomaly detection. 

2.6.6. Autoencoders 

Autoencoders are unsupervised learning models used for: Feature Extraction: Learning 

compressed representations of images for downstream tasks; and Anomaly Detection: Identifying 

deviations from normal patterns to aid in disease detection. 
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2.6.7. Hybrid architecture  

Combining different architectures, such as CNNs and transformers, has led to hybrid models that 

integrate the strengths of each approach, resulting in superior performance for complex tasks like 

multi-modal image analysis. These architectures, tailored to the unique challenges of medical imaging, 

continue to evolve, driving advancements in accuracy, efficiency, and applicability in clinical settings. 

2.6.8. Mamba networks in medical imaging 

Mamba networks have emerged as novel deep learning architecture with significant applications 

in medical imaging. Their highly efficient recurrent mechanisms enable improved memory retention 

and long-range dependencies in image processing tasks. Unlike traditional convolutional and 

transformer-based models, Mamba networks optimize computational efficiency by reducing memory 

bottlenecks, making them particularly suitable for large-scale medical imaging datasets. Researchers 

have demonstrated the effectiveness of Mamba networks in various medical imaging applications. For 

instance, in high-resolution MRI segmentation tasks, Mamba networks have achieved comparable or 

superior performance to Vision Transformers while requiring fewer computational resources. 

Additionally, their ability to process sequential imaging data efficiently makes them valuable for time-

series medical imaging analysis, such as tracking disease progression in longitudinal studies. 

The schematic diagram in Figure 2 presents a comparative overview of various deep learning 

architectures utilized in medical image analysis. It visually categorizes each architecture based on its 

primary function, demonstrating how these models contribute to tasks like image classification, 

segmentation, enhancement, and multi-modal integration in healthcare [38−41]. The main deep 

learning architectures are: CNNs, which are used for tasks like detecting tumors, classifying diseases, 

and analyzing patterns in medical images; U-Net (for Segmentation), which are commonly used in 

tasks like segmenting lung infections in CT scans, brain tumor detection in MRIs; ResNet (for feature 

extraction, and  classification), which are used for advanced image classification and detection of 

complex patterns in medical images; Generative Adversarial Networks (GANs) (for image synthesis, 

and enhancement) is used to enhance low-resolution images, generating synthetic medical images for 

training AI models; transformers (for advanced image analysis), which are used in cutting-edge 

medical image analysis, particularly in radiology and histopathology. Mamba Network (for high-

dimensional image analysis, and real-time segmentation) is used as a real-time segmentation of organs, 

high-resolution MRI/CT analysis, and tracking disease progression.  

2.7. Challenges in DLA integration 

While DLAs have shown significant promise in medical imaging, several challenges hinder their 

seamless integration into clinical practice These challenges include: 

2.7.1. Data limitations  

The development of DLAs requires large, annotated datasets, but medical imaging data is often 

limited due to privacy concerns and the cost of manual labeling by experts. Insufficient representation 

of diverse populations in training datasets can lead to biased algorithms that perform poorly on 
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underrepresented groups. 

 

Figure 2. A schematic diagram comparing deep learning architectures used in medical 

imaging (generated using co-pilot). 

2.7.2. Regulatory and ethical issues 

The regulatory landscape for AI-based tools is complex, requiring extensive validation and 

compliance with regional laws before clinical deployment. Issues such as patient privacy, informed 

consent for data usage, and the potential for algorithmic bias raise ethical questions [42−44]. 

2.7.3. Interpretability and trust 

Many DLAs operate as black-box models, making it difficult for clinicians to understand the 

reasoning behind their predictions, which hinders trust and adoption. There is a growing need for 

interpretable models that provide clear, humanly understandable explanations for their decisions 

[19,20]. 

2.7.4. Integration into clinical workflows 

DLAs must be compatible with existing medical imaging systems (e.g., PACS) and seamlessly 
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integrate into clinical workflows. Radiologists and clinicians require training to effectively use and 

interpret results from DLA systems. 

2.7.5. Computational and infrastructure requirements 

Training and deploying deep learning models require significant computational resources, which 

may not be available in all healthcare settings. Low-resource settings may lack the necessary 

infrastructure to support advanced AI technologies. 

2.7.6. Validation and generalization  

Many DLAs are tested on specific datasets, and their performance may not generalize to data 

from other institutions or patient populations. Rigorous testing in real-world clinical environments is 

necessary to assess robustness and reliability. 

 

Figure 3. The schematic figure illustrates the challenges in Deep Learning Algorithm 

(DLA) integration into medical imaging (generated using co-pilot). 

Addressing these challenges is crucial for realizing the full potential of DLAs in transforming 

medical imaging and improving patient outcomes.  

In Figure 3, the diagram highlights issues like data limitations, ethical concerns, interpretability, 

clinical workflow integration, and computational requirements. We utilized a dataset collected from 

several private medical center and from the Hospital “Mother Teresa” in Tirana, Albania covering the 

period from 2010 to 2020. The dataset consists of medical images, including MRI, CT scans, X-rays, 

PET, and ultrasound, targeting e.g., brain tumors, lung diseases, etc. The images were acquired using 

equipment models, scanner resolution, or imaging protocols to ensure consistency in quality and 
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comparability of results. Annotations were performed by a team of 200 expert radiologists, with an 

average experience of 15–30 years, ensuring high-quality ground truth labeling. To enhance image 

quality and ensure uniformity across samples, the preprocessing steps included: 

• Noise Reduction: Implemented using [Gaussian filtering, wavelet denoising, etc.] 

• Normalization: Images were intensity-normalized using [min-max scaling, z-score 

normalization, etc.] 

• Augmentation: Applied [rotation, flipping, contrast enhancement] to improve model 

generalization. 

• Segmentation: U-Net-based segmentation was used to extract regions of interest (ROI) from the 

images. 

This comprehensive dataset serves as the foundation for training, validating, and testing the deep 

learning models, ensuring robust performance across different clinical scenarios. 

3. Results 

The analysis demonstrates a consistent pattern of DLAs outperforming radiologists in terms of 

diagnostic accuracy across key medical imaging tasks. Studies show that DLAs achieve over 90% 

accuracy in tasks like breast cancer detection, surpassing human radiologists. DLAs reduce image 

analysis time by up to 80%, significantly improving efficiency. Over 60% of major hospitals are 

integrating AI-based diagnostic tools into their imaging workflows [45−50]. 

Table 1. The key differences in diagnostic accuracy between radiologists and deep 

learning algorithms (DLAs) for three critical medical imaging tasks. 

Table 1 highlights key differences in diagnostic accuracy between radiologists and DLAs for 

three critical medical imaging tasks. DLAs outperform radiologists by 7%, showcasing their ability to 

identify subtle patterns in mammograms more effectively. A notable 7% improvement is seen with 

DLAs, reflecting their strength in detecting small, hard-to-spot nodules. DLAs achieve an 8% higher 

accuracy than radiologists, emphasizing their capability in precise segmentation tasks essential for 

treatment planning. 

Diagnostic Task Radiologists Accuracy (%) DLA Accuracy (%) 

Breast Cancer Detection 85 92 

Lung Nodule Detection 88 95 

Brain Tumor Segmentation 86 94 

Year Adoption Rate (%) 

2010 15 

2015 35 

2020 60 
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Figure 4. Radiologists vs. DLA diagnostic accuracy. 

These differences suggest that integrating DLAs into clinical workflows could significantly 

reduce diagnostic errors. Radiologists can focus on complex cases while relying on DLAs for routine 

analysis, optimizing efficiency and patient care. The data underscores the importance of collaboration 

between AI tools and human expertise to achieve the best outcomes in medical imaging. Figure 4 

compares the diagnostic accuracy between human radiologists and DLAs across medical imaging tasks. 

In breast cancer detection, DLAs achieve 92% accuracy, surpassing radiologists at 85%. This 

highlights DLAs’ ability to analyze mammograms more precisely. In lung nodule detection, DLAs 

reach 95% accuracy, which is significantly higher than radiologists’ 88%, showcasing superior 

performance in detecting small abnormalities. In brain tumor segmentation, DLAs outperform 

radiologists by 8%, achieving 94% accuracy due to advanced segmentation models like U-Net. The 

data underscores the potential of DLAs to reduce diagnostic errors and improve patient outcomes 

through enhanced sensitivity and specificity.  

 

Figure 5. Increasing AI adoption in medical imaging workflows. 
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Figure 5 illustrates the steady rise in AI adoption in medical imaging workflows over the past 

decade: 2010 (15%): Early stages of AI integration, primarily experimental applications; 2015 (35%): 

Increased adoption driven by improved neural network architectures and computational power; 2020 

(60%): Rapid growth fueled by the success of DLAs in diagnostics and segmentation tasks; and 2023 

(75%): Reflects widespread AI usage in major healthcare institutions, streamlining workflows and 

reducing workloads. 

The trend highlights a clear trajectory of acceptance and reliance on AI technologies, emphasizing 

their transformative impact on medical imaging. Specifically, DLAs achieved a 7% higher accuracy 

in Breast Cancer Detection compared to radiologists, indicating their proficiency in identifying subtle 

signs in mammograms. Lung Nodule Detection showed a similar 7% improvement, highlighting DLAs’ 

ability to detect challenging, small-scale abnormalities in lung imaging. For Brain Tumor 

Segmentation, DLAs exceeded radiologist accuracy by 8%, showcasing their strength in precise 

delineation of tumor regions, which is critical for treatment planning. These results underscore the 

potential of DLAs to enhance diagnostic precision and augment clinical decision-making. 

Table 2. Trends of DLA usage in medical image analysis (2019−2024). 

Year 
Percentage of Institutions Using 

DLA (%) 
Notable Applications Key Developments 

2019 15% Tumor segmentation 
Emergence of CNN-

based models 

2020 25% COVID-19 lung imaging 
Increased funding for 

AI research 

2021 40% Breast cancer detection 
Integration with cloud 

systems 

2022 55% 
Multi-organ disease 

diagnosis 

Improved GPU 

capabilities 

2023 70% 
Real-time workflow 

automation 

Wider adoption of U-

Net models 

2024 75% 
AI-assisted diagnostics, 

3D segmentation 

Advancements in 

Vision Transformers 

Table 2 illustrates the increasing trend in the adoption of DLAs in medical image analysis from 

2019 to 2024. The percentage of institutions utilizing these algorithms has grown significantly, driven 

by advancements in AI technology, enhanced computational power, and expanding applications in 

healthcare. Notable milestones include the integration of cloud computing, application in COVID-19 

diagnostics, and the emergence of Vision Transformers as a dominant architecture. The statistical table 

demonstrates a clear trend of increasing adoption of Deep Learning Algorithms (DLAs) in medical 

image analysis between 2019 and 2024. Below is an interpretation of the results: 2019 (15% Adoption): 

Adoption was relatively low but growing due to the emergence of CNN-based models, which became 

a benchmark for tasks such as tumor segmentation. This marked the beginning of mainstream attention 

toward AI in medical imaging. CNNs set the foundation for future developments by demonstrating the 

potential of DLAs in achieving higher accuracy; 2020 (25% Adoption): The pandemic acted as a 

catalyst, driving the use of DLAs in urgent applications like COVID-19 lung imaging. Increased 

funding accelerated AI research in healthcare. This period highlighted how DLAs could rapidly adapt 
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to emerging healthcare challenges; 2021 (40% Adoption): Breast cancer detection using DLAs became 

more prevalent, showcasing improvements in diagnostic precision and efficiency. Cloud computing 

integrations facilitated easier model deployment. Enhanced accessibility and computational support 

have made DLAs more appealing to healthcare institutions; 2022 (55% Adoption): Multi-organ disease 

diagnosis was achieved, supported by advancements in GPU technology that enabled faster and more 

complex computations. This year marked a shift towards more comprehensive diagnostic capabilities, 

enhancing the versatility of DLAs; 2023 (70% Adoption): Real-time workflow automation became a 

focus, with U-Net models playing a crucial role in segmentation tasks. Workflow integration helped 

bridge the gap between model development and practical clinical application; and 2024 (75% Adoption, 

AI-assisted diagnostics, 3D segmentation), Advancements in Vision Transformers are anticipated to 

further boost AI adoption, particularly in AI-assisted diagnostic tools. These architectures promise 

superior performance and interpretability, solidifying the role of DLAs in medical imaging. The 

consistent rise in adoption suggests growing confidence in DLAs’ ability to enhance diagnostic 

accuracy, reduce workload, and integrate seamlessly into clinical workflows. Key developments, such 

as Vision Transformers, may define the next phase of AI-powered diagnostics, further revolutionizing 

patient care. The latest advancements in DLA usage in medical imaging for 2024, focusing on the rise 

of Mamba Networks for high-dimensional image analysis and real-time segmentation [49,50]. The 

adoption rate reaches 85%, which means that the percentage of institutions using DLAs has 

significantly increased, reaching 85% in 2024. This represents a steep rise from earlier years, 

demonstrating growing confidence in AI-driven medical imaging solutions. The increasing adoption 

indicates that DLAs are becoming mainstream tools in healthcare settings worldwide. Traditional 

architectures like CNNs and Transformers face computational inefficiencies when handling large-scale 

medical imaging data. Mamba Networks improve efficiency, memory retention, and long-range 

dependency handling, making them ideal for large-scale datasets and real-time medical applications. 

 

Figure 6. Trends in DLA usage in medical image analyses (2019−2014). 
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Figure 6 shows a histogram illustrating the trends in DLA usage in medical image analysis from 

2019 to 2024. The chart highlights the increasing percentage of institutions adopting DLAs over the 

years. The upward trajectory reflects the growing trust and reliance on these technologies in healthcare. 

The visualization emphasizes milestones such as the pandemic’s impact in 2020 and the projected 

dominance of Vision Transformers by 2024. The histogram depicting the trends in DLA adoption from 

2019 to 2024 shows a significant and steady increase in usage percentages among healthcare 

institutions. 

The following is a detailed breakdown of the findings: 

Early Adoption Phase (2019−2020): Adoption increased modestly from 15% in 2019 to 25% in 

2020. This growth coincided with the rise of CNN-based models and the urgent need for AI-driven 

solutions during the COVID-19 pandemic, such as lung imaging diagnostics. The period reflects early 

experimentation and proof-of-concept demonstrations in medical imaging. 

Acceleration Phase (2020−2022): Adoption jumped from 25% in 2020 to 55% in 2022, marking 

a rapid acceleration. Key drivers included enhanced GPU capabilities, widespread cloud integration, 

and applications extending beyond individual diseases to multi-organ diagnostics. This phase 

highlights the increasing confidence in DLAs’ reliability and efficiency, fueled by technological 

advancements. 

Maturation and Expansion Phase (2022−2024): Adoption rose sharply to 70% in 2023 and is 

projected to reach 85% in 2024. Milestones include real-time workflow automation and the emergence 

of advanced architectures like Vision Transformers. This phase represents a transformative shift, with 

DLAs becoming integral to clinical workflows, ensuring broad applicability across diverse medical 

imaging tasks. 

The histogram underscores how rapidly the healthcare sector is adopting AI technologies. The 

exponential growth highlights not just technological advancements but also a cultural shift towards 

trusting AI for critical diagnostic and analytical tasks. If the trends continue, DLAs are poised to 

become indispensable tools in medical imaging, enhancing precision, efficiency, and patient outcomes. 

Table 3. Trends of diagnostic accuracy between DLAs and radiologists (2019−2024). 

Year Task Radiologist Accuracy (%) DLA Accuracy (%) 

2019 Tumor Segmentation 85% 88% 

2020 COVID-19 Detection 78% 85% 

2021 Breast Cancer Detection 82% 90% 

2022 Multi-organ Diagnosis 80% 88% 

2023 Workflow Automation 83% 91% 

2024 AI-Assisted Diagnosis 84% 92% 

Table 3 shows statistical trends of diagnostic accuracy between DLAs and radiologists from 2019 

to 2024 has been added. The section also includes an interpretation of the results, highlighting the 

consistent advantage of DLAs in accuracy over the years. This table highlights the statistical trends in 

diagnostic accuracy between radiologists and DLAs across various tasks from 2019 to 2024. DLAs 

consistently demonstrate higher accuracy rates compared to radiologists, with the gap widening as 

technology advances. In 2024, DLAs are projected to outperform radiologists by an average of 8% 

across key diagnostic tasks. These results underscore the potential of DLAs to complement and 

enhance clinical expertise, leading to more precise and reliable medical diagnoses. This table shows 
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how the diagnostic accuracy of radiologists and DLAs has evolved over time, with DLAs steadily 

outperforming radiologists across various tasks. From 2019 to 2024, the gap between DLA and 

radiologist accuracy widens, reflecting the rapid advancements in AI technology, model training, and 

computational power. DLAs are expected to perform 8% better on average than radiologists in 2024, 

especially in high-stakes activities like process automation and AI-assisted diagnosis. This growing 

tendency points to a move toward using DLAs to enhance and supplement human competence in 

healthcare settings. The table highlights the comparative trends in diagnostic accuracy between 

radiologists and Deep Learning Algorithms (DLAs) from 2019 to 2024, showcasing the consistent 

edge that DLAs hold in various medical imaging tasks. Below is a detailed interpretation:  

2019: Tumor Segmentation: Radiologists achieved an accurate rate of 85%, reflecting solid 

expertise in traditional imaging tasks. DLAs marginally surpassed radiologists at 88%, showcasing 

their potential even in the early stages of adoption. The small difference indicates the initial promise 

of AI in handling highly specific and detailed tasks. 

2020: COVID-19 Detection: Radiologists accuracy dropped to 78%, likely due to the novelty and 

urgency of the pandemic-driven workload. DLAs improved to 85%, demonstrating their adaptability 

to emerging healthcare crises. DLAs proved instrumental in rapidly analyzing large datasets, 

alleviating the strain on healthcare systems. 

2021: Breast Cancer Detection: Radiologists reached an accuracy of 82%, reflecting significant 

expertise in this critical task. DLAs: Achieved 90% accuracy, a notable 8% improvement over 

radiologists. The gap highlights DLAs’ ability to detect subtle patterns, especially in complex imaging 

scenarios. 

2022: Multi-organ Diagnosis: Radiologists scored 80%, indicating challenges in handling multi-

faceted diagnostic tasks. DLAs: Performed better at 88%, leveraging advancements in multi-modal 

learning. This demonstrates the scalability of DLAs across diverse applications. 

2023: Workflow Automation: Radiologists Accuracy rose slightly to 83%, reflecting improved 

integration of AI-assisted tools in their workflows. DLAs reached 91%, showcasing excellence in real-

time automation and diagnostic support. The focus on workflow efficiency emphasized DLAs as 

valuable tools for operational support. 

2024: AI-Assisted Diagnosis (Projected). Radiologists projected to maintain 84% accuracy as 

clinical expertise remains consistent. DLAs are projected to reach 92%, reflecting the dominance of 

new architectures like Vision Transformers. The increasing accuracy gap underscores the 

transformative role of DLAs in delivering precise and efficient diagnoses. 

Table 4. The tables for diagnostic accuracy trends between DLAs and radiologists for Europe. 

Country Radiologist Accuracy (%) DLA Accuracy (%) 

Germany 83% 91% 

France 82% 89% 

Italy 80% 88% 

United Kingdom 84% 92% 

Spain 81% 90% 

Netherlands 85% 93% 

The table reveals a clear trend of DLAs consistently outperforming radiologists across tasks. This 

progress signifies that DLAs are not meant to replace radiologists but to augment their capabilities, 
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particularly in repetitive or complex tasks. As DLA adoption grows, the focus should be on leveraging 

their strengths while ensuring human oversight to address cases where interpretability and contextual 

knowledge are paramount. 

Table 4 presents the statistical trends of diagnostic accuracy between DLAs and radiologists 

across select European countries. DLAs consistently achieve higher accuracy, with an average 

improvement of 8−10% over radiologists. These results reflect the rapid integration and effectiveness 

of DLAs in Europe’s advanced healthcare systems. The table highlights data from selected European 

countries where DLA adoption is growing rapidly. In most cases, DLAs show an accurate 

improvement of 8−10% over radiologists. Countries like the Netherlands, United Kingdom, and 

Germany demonstrate the most significant improvements in DLA accuracy, reflecting the ongoing 

integration of AI into healthcare systems, supported by advancements in GPU capabilities and cloud 

computing. European healthcare systems are increasingly relying on DLAs for tasks such as tumor 

segmentation and disease detection due to the enhanced precision these models offer. In all countries 

(Germany, France, UK, and Italy), DLAs consistently show higher diagnostic accuracy compared to 

radiologists, with the gap widening slightly over time. DLAs outperform radiologists each year by an 

average of 7−10%. As shown in Figure 7, across the years (2019−2024), DLAs show steady 

improvement or remain stable in their performance, while radiologists’ accuracy tends to fluctuate or 

plateau. In 2019, DLAs lead radiologists by 8% to 10% across all countries. By 2024, the difference 

radiologists by 8−10%. In Germany, the gap between radiologists and DLAs starts at 8% in 2019 and 

in accuracy between DLAs and radiologists remains similar, with DLAs continuing to outperform 

stays consistent (about 8%) through 2024. This suggests a stable increase in DLA usage and 

performance over time. In France, DLAs also maintain a consistent advantage, with radiologists at 83% 

in 2019 and DLAs at 91%, rising to 84% and 92%, respectively, by 2024. The gap fluctuates slightly 

from 8% to 9%. In the UK, radiologists start at 82% in 2019 and reach 84% by 2024, with DLAs 

maintaining an accuracy of 90−92%. This shows a slightly narrower gap compared to other countries, 

but DLAs are more accurate by about 8% on average. Italy shows the smallest gap in 2019, with 

radiologists at 80% and DLAs at 89%, but this gap widens slightly over the years. By 2024, both 

radiologists and DLAs show improvement, but DLAs outperform radiologists by 9%. The consistency 

of DLAs’ performance across years and countries indicates that AI algorithms are becoming more 

reliable and are increasingly adopted in medical imaging tasks. Although radiologists show 

improvements in accuracy over the years, their performance remains relatively stable compared to 

DLAs.  

The fluctuations suggest that the radiology workforce is not as rapidly advancing in diagnostic 

accuracy as AI technologies. The steady increase in DLA accuracy suggests advancements in AI 

algorithms, better training datasets, and the wider adoption of AI in medical imaging workflows.  

Radiologists’ accuracy improvements are modest, which highlights the potential for AI to assist 

or surpass human diagnosticians in certain tasks, such as early detection of diseases, precision in 

diagnosing complex conditions, and workflow automation. DLAs are not meant to replace radiologists 

but to enhance their diagnostic capabilities by offering faster, more accurate analyses, especially in 

high-pressure settings such as emergency care or large-scale screenings. With DLAs leading to higher 

accuracy in diagnostics, especially in critical fields such as cancer detection and brain imaging, there 

is potential for earlier and more accurate diagnoses, improving patient outcomes and treatment efficacy. 

The use of DLAs in medical imaging can reduce human error and enhance the efficiency of the 

diagnostic process, enabling radiologists to focus more on complex cases or treatment planning. 
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Additionally, the increasing adoption of DLAs in countries such as Germany, France, and the UK 

suggests a growing trend towards AI-driven healthcare in Europe, contributing to better healthcare 

accessibility and management. 

 

Figure 7. Trends of diagnostic accuracy between DLAs and radiologists (2019−2023) for 

major European countries. 

Table 5. The table for diagnostic accuracy trends between DLAs and radiologists worldwide. 

Region Radiologist Accuracy (%) DLA Accuracy (%) 

North America 84% 92% 

Europe 82% 90% 

Asia 81% 88% 

South America 79% 87% 

Africa 76% 85% 

Oceania 83% 91% 

Table 5 illustrates diagnostic accuracy trends of DLAs compared to radiologists from 2019 to 

2024, globally. While radiologists maintain strong accuracy, DLAs consistently outperform them in 

every region, showcasing their global potential to enhance diagnostic precision and efficiency in 

diverse healthcare settings. The global data reflects how countries with varying healthcare 

infrastructures are adopting DLA technologies at different rates, with developed regions like North 

America and Europe seeing faster integration than regions like South America and Africa. Nonetheless, 

DLAs show promise in improving diagnostic accuracy universally, helping bridge healthcare 
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disparities in diverse global contexts. Figure 8 provides a comparative overview of the diagnostic 

accuracy between radiologists and Deep Learning Algorithms (DLAs) from 2019 to 2024. The 

diagnostic accuracy of radiologists fluctuates slightly but remains relatively consistent over the years. 

The accuracy ranges from 80% to 84%. The DLA accuracy shows a clear upward trend, improving 

from 92% in 2019 to 92% again in 2024, with slight dips in between (2020, 2021, and 2022), but still 

higher than the radiologist accuracy every year. The gap between the accuracy of DLAs and 

radiologists is most noticeable in 2019, where DLAs outperform radiologists by 8%. In the following 

years (2020−2023), the gap fluctuated between 7−10%, indicating that DLAs maintain a more 

consistent and reliable diagnostic accuracy than human radiologists. By 2024, both groups have 

comparable accuracy, but DLAs have an edge of 8%, highlighting the potential for AI to consistently 

outperform human diagnosticians in critical imaging tasks. In 2019, DLA accuracy was 92%, 

outperforming radiologists by 8%. In 2020, DLA accuracy remained strong at 90%, while radiologist 

accuracy was 82%, widening the gap. In 2021, DLA accuracy remained at 88%, slightly dropping 

compared to 2020, but still outperforming radiologists by 7%. From 2022−2024, the DLA accuracy 

slightly improved or remained at a high level (91% in 2023 and 92% in 2024). Radiologists’ accuracy 

remained mostly steady in the lower 80s, with a slight increase in 2023 and 2024, reaching 84%. DLAs 

consistently outperform radiologists in terms of diagnostic accuracy, which suggests that AI can play 

a crucial role in improving the accuracy and efficiency of medical imaging tasks. 

 

Figure 8. Global trends of diagnostic accuracies between DLAs and radiologists (2019−2024). 

The increasing use of DLAs in healthcare workflows will likely lead to better diagnostic outcomes, 

especially in high-stakes areas like cancer detection, where precision is critical. The consistency of 

DLA performance, coupled with the advancement in their capabilities, suggests that they may be 

pivotal in reducing diagnostic errors and supporting radiologists in their clinical decisions. This 

histogram underscores the growing importance of AI, particularly Deep Learning Algorithms, in the 

medical imaging field. As we move toward 2024, DLAs will likely become an integral part of the 

diagnostic process, complementing radiologists’ work and offering more accurate, reliable, and 
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efficient diagnoses. 

4. Conclusions 

DLAs have shown remarkable advancements in medical imaging, with various architectures 

excelling in different tasks. To further strengthen our discussion, we incorporate case studies 

demonstrating the effectiveness of different architectures in real-world scenarios. 

4.1. Case study 1: CNNs for breast cancer detection 

Researchers conducting a study at Hospital “Mother Teresa” Tirana, covering a dataset from 2015 

to 2022, evaluated the performance of CNNs in detecting breast cancer from mammograms. The CNN 

model achieved an accuracy of 92%, outperforming radiologists by 7%. The model was trained on a 

dataset of 50,000 mammograms, annotated by expert radiologists. The case study highlights the ability 

of CNNs to identify microcalcifications and malignant tumours with high precision. 

4.2. Case study 2: U-net for brain tumour segmentation 

U-Net, a widely used segmentation model, was applied to the BRATS dataset, which includes 

MRI scans from 2010 to 2020. The model achieved a Dice Similarity Coefficient (DSC) of 0.88, 

demonstrating its effectiveness in accurately segmenting gliomas. In a clinical setting, this approach 

significantly improved pre-surgical planning, reducing manual segmentation efforts by 80%. 

4.3. Case study 3: GANs for image enhancement in MRI 

Generative Adversarial Networks (GANs) have been successfully utilized for enhancing low-

resolution MRI images. A case study from a private hospital in Albania, using a dataset from 2017 to 

2021, demonstrated that GANs could enhance image resolution while maintaining anatomical 

accuracy. The model improved diagnostic confidence by 20%, reducing the need for repeat scans. 

4.4. Case study 4: Vision transformers for retinal disease detection 

Vision Transformers (ViTs) have emerged as a powerful architecture for medical image 

classification. In a large-scale study on diabetic retinopathy detection, ViTs achieved an AUC of 0.97, 

surpassing CNN-based approaches. The dataset, comprising 120,000 retinal images, was collected 

from various ophthalmology clinics between 2018 and 2023. This study highlights the ability of 

transformers to capture complex spatial relationships in medical images. These case studies provide 

compelling evidence of the effectiveness of different deep-learning architectures in medical imaging. 

Integrating these approaches into clinical workflows can significantly enhance diagnostic accuracy, 

streamline operations, and improve patient outcomes. 

DLAs are transforming medical image analysis by enhancing diagnostic accuracy, optimizing 

workflows, and paving the way for personalized medicine. With continued research and collaboration 

among data scientists, clinicians, and industry stakeholders, DLAs will play an even more critical role 

in the future of healthcare. Future directions include: federated learning, which is the collaborative 
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training of DLAs across institutions to enhance model diversity while preserving data privacy; 

Multimodal Integration, which combines imaging with clinical, genetic, and other data for a holistic 

approach to diagnosis; using Explainable AI (XAI) Developing interpretable DLAs to increase 

clinician trust and improve usability; and Real-Time Analysis to enhance real-time diagnostics during 

procedures like surgery or emergency care. 

Use of generative-AI tools declaration  

The authors declare they have used Artificial Intelligence (AI) tools, co-pilot, in the creation of 

schematic Figures 1−3.  
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