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Abstract: Public health authorities face the issue of optimal vaccine distribution during the spread of 

pandemics. In this paper, we study the optimal way to distribute a finite supply rate of COVID-19 

doses between either the first or second doses for unvaccinated individuals and the third doses (booster 

shots) for fully vaccinated individuals. We introduce a novel compartmental model that accommodates 

the vaccinated populations. This Booster model is implemented to simulate two prototypes of 

populations: one with a highly infected and highly vaccinated proportion, and another with a lowly 

infected and lowly vaccinated percentage. We namely use sample data from Russia and Djibouti, 

respectively. 

Our findings show that around one quarter of the vaccines should be employed as booster shots 

and the rest as first and second doses to minimize the deaths for the first type of population. On the 

other hand, the second type of population can minimize their number of deaths by mainly focusing on 

administering the initial two doses, rather than giving any booster shots. The novel Booster model 

allows us to study the effect of the third dose on a community and provides a useful tool to draw public 

policies on the distribution of vaccines during pandemics. 
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1. Introduction  

Throughout history, mankind has faced numerous pandemics, causing health, economic, and 

political crises around the globe. Although these pandemics resulted in hundreds of millions of deaths, 
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in hindsight, these catastrophes motivated research that gave rise to major breakthroughs in the related 

public health and medical fields. The Coronavirus disease 2019 (COVID-19) was proclaimed a global 

pandemic in March of 2020 after spreading worldwide, starting from China, where the first case 

appeared in December 2019, then Italy and Iran, and subsequently the whole world. The most common 

symptoms of infection included fever or chills, cough, shortness of breath or difficulty breathing, 

fatigue, muscle or body aches, headache, loss of taste or smell, and so on. This is caused by the airborne 

SARS-CoV-2 virus, which is responsible for over 692 million confirmed cases and 6.9 million deaths 

globally as of July 2023 [1]. Governments around the world were obliged to enforce strict measures to 

mitigate the spread of this contagion, resulting in adverse effects on people's lives and routines. Since 

the beginning of the COVID-19 pandemic, the SARS-CoV-2 virus has mutated numerous times. In 

most cases, the changes made to the genetic material led to little to no impact on the properties of the 

virus itself. However, some mutations may lead to the formation of variants of concern (VOCs), which 

are classified as mutations of viruses that have proven to increase the transmissibility of the virus, 

increase the severity of the disease, and decrease the effectiveness of vaccines and other medical 

treatments [2]. There have been multiple cases of VOCs that originated from different countries around 

the world at different times, such as the Alpha variant from the United Kingdom in September 2020, 

the Delta variant from India in October 2020, and the Omicron variant from South Africa in November 

2021 [3]. 

The pharmaceutical industry has developed multiple forms of vaccines approved by the World 

Health Organization and other national health agencies. Each vaccine uses a specific approach to 

enhance the immune system's response against the virus. There are genetic vaccines that contain a 

segment of the virus, inactivated vaccines that contain a killed sample of the Sars-CoV-2 virus, 

attenuated vaccines that contain a weakened virus, and protein vaccines that contain different protein 

fragments of the virus [4]. Additional studies are currently investigating different forms of vaccines, 

such as dry vaccines and antiviral drugs [5]. Previous studies have shown that the effectiveness of the 

Moderna vaccine is around 93% two weeks after the second dose; similarly, the effectiveness remains 

around 92% 4 months after full vaccination. While the Pfizer-BioNTech vaccine starts off with 91% 

efficacy 2 weeks after the second dose, it slightly loses effectiveness with time to reach 77% efficacy 4 

months after the second dose. Finally, Johnson & Johnson, which is a one-dose vaccine, was shown to 

have a 71% vaccine effectiveness two weeks after vaccination, and a 68% effectiveness one month 

after vaccination [6]. 

Attempting to predict the number of active cases at any point in the future for any given set of 

initial conditions is important, since a recent study has shown that approximately 2% of the COVID-19 

cases were admitted to the hospital [7]. Therefore, if the number of cases drastically increases, then 

the number of infected individuals in need of hospitalization due to COVID-19 may exceed the 

hospital's capacity to admit these patients. 

The aim of this study is to predict the spread of infectious diseases, specifically COVID-19, and 

to explore the optimal use of a limited availability of vaccines by examining various proportions of 

vaccine doses that can be used for different initial conditions. The study investigates the expected 

number of active cases, deaths, as well as the number of hospitalized patients due to the COVID-19 

pandemic, during which the available vaccines are either administered as boosters for previously 

vaccinated individuals or as first and second doses for unvaccinated individuals. The results of this 

study are important, as the world still faces the imminent threat of the emergence of new variants and 

new viruses that may cause a resurgence in the pandemic, with a limited supply of vaccines that would 
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ultimately be available to fight them. Prioritizing the administration of vaccines for a specific group 

or another would be a very important factor to draw public policies by health authorities across the 

globe. 

2. Literature review 

Mathematical modeling of infectious diseases is a lively interdisciplinary field of research that 

brings together researchers from biology, epidemiology, mathematics, statistics, physics, and medicine. 

These models allow researchers to forecast, predict, and quantify the uncertainty of their forecasts. 

The first compartmental model used was the SIR model, created by Kermack and McKendrick 

in 1929, which splits the population into 3 compartments: Susceptible (S), Infected (I), and Removed 

(R) [8]. This model was later modified to consider other factors such as undetected infections, 

environmental factors, traveling, lockdown, non-pharmaceutical treatments, and vaccinations. 

Environmental factors are incorporated into the model to understand their impact on the viability and 

transmission of pathogens, thus allowing researchers to simulate seasonal variations in the disease 

spread. To account for travel effects, SIR models are extended to spatial models, which divides 

populations into distinct geographical regions and considers patterns of human movement between 

these areas. This integration of travel data enables the assessment of how population mobility 

influences the spread of infectious diseases. Moreover, SIR models are invaluable for evaluating the 

impact of lockdown measures on disease transmission. By modeling interventions such as social 

distancing, quarantines, and the closure of public spaces, researchers can assess the effectiveness of 

various strategies in slowing down the spread of the disease. Adjusting parameters, such as contact 

rates between individuals based on the severity and duration of lockdown measures, allows for the 

simulation of different scenarios to predict their influence on the epidemic's course [9,10]. Additionally, 

SIR models are employed to analyze the effects of vaccination on disease dynamics. Researchers can 

simulate the vaccination of susceptible individuals, thereby altering the parameters to reflect the 

coverage, efficacy, and timing of vaccination campaigns. This helps assess the potential impact of 

vaccination in reducing the overall transmission and severity of the disease within the population [11−16]. 

The issue of optimizing vaccine distribution was considered under several constraining scenarios. 

In [17], the authors argue that, under sufficient resources, the optimal strategy is to apply the 

administration of vaccines as quickly as possible to as many people as possible without much regard 

for nuanced targeting or prioritization, which is also known as the Bang-Bang control strategy. 

However, with limited resources, they conclude that time-variant vaccinations would be more efficient. 

Limited vaccines and time delays were also studied in [18], and the tradeoffs were investigated to 

minimize the severity of the pandemic by prioritizing vaccination to particular sub-populations. 

Vaccine prioritization studies focused on several key criteria tailored to the disease, vaccines, and the 

target population. Prioritization typically begins with assessing the risk of severe disease cases and 

death, favoring groups such as older adults, individuals with underlying health conditions, and those 

with compromised immune systems [19−21]. Exposure risk plays a significant role, thus prompting 

prioritization for frontline workers, healthcare personnel, and those in crowded or high-risk settings [22]. 

The transmission dynamics inform decisions to vaccinate individuals who are more likely to spread 

the disease, such as school-age children or those with frequent social interactions [23]. Moreover, the 

healthcare system capacity, ethical principles, public health impact, and vaccine acceptance are integral, 

guiding decisions to maximize benefits, minimize harm, and promote justice while optimizing vaccine 
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distribution to achieve the greatest population health outcomes. 

The question of optimizing the distribution of a limited flow of vaccines or a limited timely 

availability was not properly studied in available literature and its formal analysis constitutes a gap 

that this work aims to fill. 

While studying the durability of the vaccine, it was found that those who were successfully 

immunized after vaccination had a strong resistance to infection for 6 months, or 180 days, after 

vaccination [24]. For that reason, countries such as the United States and France have introduced a 

third shot, or a booster shot, to reimmunize those who have lost their immunity [25,26]. Recent studies 

revealed a dose-dependent reduction in the percentage of infected individuals within the vaccinated 

population. The simulation results exhibited a close alignment with real-world data on the infected 

patients, affirming the appropriateness of the model [27].  

3. Methods: the booster model 

One of the major topics that needs to be studied in detail is the COVID-19 third dose or booster 

shot. As mentioned previously, the immunity gained through vaccination is not permanent. In this 

model, it will be taken at 6 months, or 180 days, in accordance with the latest studies. 

However, this immunity can be reacquired through the administration of a single booster shot. 

Our study introduces a novel approach with the objective of minimizing deaths in two distinct 

population types. Therefore, a new question arises: Which vaccination scheme leads to less deaths: 

giving unvaccinated individuals 2 doses, or giving double the number of people, a booster shot? Given 

the huge disparities in the availability of vaccines among different countries, this issue could also be 

similarly addressed on the global level. For an ideal scenario of global vaccine equity, would it be more 

efficient to continue supplying booster shots in countries that already achieved high percentages of 

vaccination, or should we prioritize allocating these resources to spread the first doses among 

populations that didn’t have enough access into them yet? 

{
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To answer this question, the Booster model was introduced. It is a compartmental model made up 

of the following 9 compartments: Susceptible (𝑆), Susceptible vaccinated (𝑆𝑉), Susceptible with lost 

immunity (𝑆𝐿 ), Exposed (𝐸 ), Exposed Vaccinated (𝐸𝑉 ), Infected (𝐼 ), Infected vaccinated (𝐼𝑉 ), 

Recovered (𝑅), and Dead (𝐷). The Booster model can be represented with the following system of 

ordinary differential equations: 

where S is the fraction of the population that is unvaccinated and susceptible to the virus, 𝑆𝑉 is 

the vaccinated susceptible population, 𝐸  and 𝐸𝑉  are the exposed unvaccinated and vaccinated 

individuals who haven’t become infectious yet, respectively, 𝐼  is the unvaccinated infectious 

population, 𝐼𝑉 is the vaccinated infectious population, 𝑅 is the recovered population, and 𝐷 is the 

dead population. 

𝛽 = 𝑅𝑡 ∗ 𝛾𝑅 is the effective contact rate between the infected individuals (𝐼 + 𝐼𝑉 ) and the 

unvaccinated susceptible individuals S; likewise, 𝛽′ = 𝑅𝑡 ∗ 𝛾𝑅𝑉 is the contact rate between the infected 

individuals and the vaccinated susceptible individuals  𝑆𝑉 . 𝑒 is the efficiency of the vaccine, 𝑣𝑖 is 

the maximum possible vaccine intake, and v is the abundancy or roll out rate of the vaccine. 𝛾𝑅 =

1/14  and 𝛾𝐷 = 𝛾𝑅/50  are the average rate of recovery and death of unvaccinated individuals, 

respectively. The recovery rate is inversely related to an average of a 14 day infection duration [28], 

while the death rate amounts to about 2% or 1/50 of the infected individuals [1]. 

Similarly, 𝛾𝑅𝑉 = 𝛾𝑅  and 𝛾𝐷𝑉 = 𝛾𝐷/5  are the average rates of the recovery and death of 

vaccinated individuals, respectively. The vaccinated individuals would need a similar time for recovery, 

while the death rate among vaccinated individuals was about 20% or 1/5 of that among the 

unvaccinated [29]. 𝜎 is the rate at which the exposed individuals become infected, and it is associated 

to the mean incubation period, which is taken to be 
1

5.2
 in relation to a 5.2 day average incubation 

period [10]. 𝑇𝐼𝐼 = 360 𝑑𝑎𝑦𝑠 and 𝑇𝐼𝑉 = 180 𝑑𝑎𝑦𝑠 are the average lengths of immunity after infection 

and vaccination, respectively [30]. Finally, 𝜏 is the proportion of vaccine doses used as booster shots. 

For example, if 𝜏 = 0.75, then three quarters of the vaccines are booster shots, while the remaining 

25% are used as either the first or second doses. 

Notice that there is 2𝜏𝑣𝑆𝐿 rather than 𝜏𝑣𝑆𝐿 in the 3rd and 8th equation. This is because only one 

dose is required to give the booster shot to people who lost their immunity. Contrarily, 2 doses are 

needed to fully vaccinate unvaccinated individuals. As a result, half the doses are required to give 

booster shots; therefore, the rate at which the booster shots are given to the public should be twice the 

rollout rate to the unvaccinated population, thereby explaining the presence of a factor of 2. 

To visualize the interaction between different compartments, we graphically illustrate them in 

Figure 1. 
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Figure 1. Schematic diagram showing the 7 compartments of the Booster model: 

Susceptible (𝑆 ), Susceptible Vaccinated (𝑆𝑉 ), Susceptible with Lost immunity (𝑆𝐿 ), 

Exposed (𝐸), Exposed Vaccinated (𝐸𝑉), Infected (𝐼), Infected Vaccinated (𝐼𝑉), Recovered 

(𝑅), and Dead (𝐷) - along with the transfer dynamics between them. 

In order to apply the model to real life scenarios, two populations are taken as the prototypes: 

Russia and Djibouti. Russia is used to simulate the dynamics of COVID-19 in a population with a 

relatively high infection and vaccination rate, while Djibouti is used to model COVID-19 spread in a 

population with a low infection and vaccination rate. 

Throughout the study, nine vaccination schemes were tested, with vaccine efficacies (e) ranging 

between 55% and 92% [16], and a vaccine abundancy or rollout rate (v) ranging between 0.1% and 

1.5%. The schemes tested were as follows: 𝑒 = 92%  and 𝑣 = 0.1% , 𝑒 = 92%  and 𝑣 = 0.3% , 

𝑒 = 92%  and 𝑣 = 0.5% , 𝑒 = 72%  and 𝑣 = 0.3% , 𝑒 = 72%  and 𝑣 = 0.5% , 𝑒 = 72%  and 

𝑣 = 0.7%, 𝑒 = 55% and 𝑣 = 0.7%, 𝑒 = 55% and 𝑣 = 1%, and 𝑒 = 55% and 𝑣 = 1.5%, with 

the vaccine intake assumed to be 𝑣𝑖 = 90% for all scenarios.  

4. Results and discussion 

In mid-February 2022, there was a total of 2,668,036 active cases in Russia. Therefore, with a 

total population of 143.4 million, the percentage of the infected individuals was 1.84%. At that time, 

COVID-19 was the cause of 340,248 deaths in Russia, or 0.23% of the Russian population. In mid-

February, there were 71.32 million individuals, or 49.74% of the Russian population, who were fully 

vaccinated. However, 6 months prior, there were 32.43 million (22.62%) double vaccinated individuals; 

therefore 22.62% of the Russian population have probably lost their immunity after vaccination, 
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leaving 27.12% that are currently immune [1]. 

Table 1. A summary of the parameters used in the model and their numerical values. 

Parameter Description Value Source 

𝛾𝑅 Rate of recovery 1

14
 day−1 

[28] 

𝛾𝐷 Rate of death 1

50
 day−1 

[1] 

𝛾𝑅𝑉 Rate of recovery of the 

vaccinated 

𝛾𝑅 [29,30] 

𝛾𝐷𝑉 Rate of death of the 

vaccinated 

𝛾𝐷
5

 
[29,30] 

𝜎 Rate of infection of the 

exposed 

1

5.2
 day−1 

[10] 

𝑇𝐼𝐼 Duration of natural 

immunity 

365 days [31] 

𝑇𝐼𝑉 Duration of acquired 

immunity 

180 days [31] 

𝑒 Vaccine efficacy 55%− 92% [16] 

𝑣𝑖 Maximum Vaccine 

reach 

90% Assumed 

𝜈 Vaccine deployment 

rate 

0.1% −1.5% day−1 Assumed 

𝑅𝑡 Transmission 

coefficient 

1.5 Simulated 

𝜏 Proportion of booster 

vaccines 

0%−100% Simulated 

According to the data obtained in Figure 2, if the vaccination scheme consists of vaccines with a 

high efficacy (e = 92%), it is better to use all the vaccine doses to fully vaccinate unvaccinated 

individuals. This can be seen in the top row of the above Figure, as the curve resulting with the lowest 

number of cumulative deaths was achieved with a value of 𝜏 = 0. However, when the efficacy of the 

vaccine decreases, the significance of the third dose increases. Hence, if a vaccine has a low efficacy 

(e = 55%), the optimal value of tau is 𝜏 = 0.25; if a vaccine has a moderate efficacy (e = 72%), both 

𝜏 = 0 and 𝜏 = 0.25 were equally effective in decreasing mortality. 

In addition to that, the Figure also shows that the roll out rate of the vaccine has an important 

impact on the percentage of cumulative deaths. For any given efficacy of the vaccine, when the rollout 

rate increases, the cumulative deaths decrease. 
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Figure 2. Graphs showing the percentage of cumulative deaths in a population with 

infection characteristics similar to those of Russia with a transmission coefficient of 𝑅 =

1.5  with initial conditions: 1.84%  currently infected and currently exposed, 27.12% 

currently immune, 22.62% currently susceptible with lost immunity, 0.23% currently 

dead. Data collected using the following 9 vaccination schemes: e = 92% and 𝑣 =

0.1%, 𝑒 = 92%  and 𝑣 = 0.3%, 𝑒 = 92%  and 𝑣 = 0.5%, 𝑒 = 72%  and 𝑣 =

0.3%, 𝑒 = 72%  and 𝑣 = 0.5%, 𝑒 = 72%  and 𝑣 = 0.7%, 𝑒 = 55%  and 𝑣 = 0.7%, 𝑒 =

55% and 𝑣 = 1%, 𝑒 = 55% and 𝑣 = 1.5%, with 𝑣𝑖 = 90%. 

 

Figure 3. Graph showing the percentage of active cases in a population similar to Russia. 

Initial conditions and vaccination schemes are the same as those used in Figure 2. 
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To accurately study the dynamics of the spread of COVID-19 in a population, the percentage of 

active cases should be measured. By using the same initial conditions used in Figure 2, the percentage 

of active cases can be predicted in populations with high infection and vaccination rates, similar to 

Russia. 

According to Figure 3, all vaccination schemes reach a peak in the active cases shortly after the 

start of the simulation, then gradually decrease to reach approximately 0 after nearly 200 days. In order 

to minimize the number of active cases, the optimal value for tau needed is 𝜏 = 0.5. This is interesting 

since 𝜏 = 0.5 does not correspond to the least percentage of cumulative deaths in Figure 2. 

 

Figure 4. Graph showing the percentage of cumulative deaths in a population similar to 

that of Djibouti with a transmission coefficient of 𝑅 = 1.5 with initial conditions: 0.18% 

currently infected and equally currently exposed, 7.64%  currently immune, 2.33% 

currently susceptible with lost immunity, 0.02% currently dead. The data collected was 

collected using the same vaccination schemes as Figure 2. 

In Djibouti, there was a total of 2,017 active cases in early April 2022. Therefore, with a total 

population of 1.1 million, the percentage of currently infected individuals is 0.18%. At that time, 

COVID-19 was the cause of 189 deaths in Djibouti, or 0.02% of the population. In April, 9.97% of the 

population was fully vaccinated. However, 6 months prior, there were 2.33% double vaccinated 

individuals; therefore 2.33% of the population have probably lost their immunity after vaccination, 

leaving 7.64% that are currently immune [32]. 

In contrast to the graphs obtained in Figure 2, all the graphs in Figure 3 show the same trend, 

which is that when the proportion of vaccine doses used as the third dose decreases, the percentage of 

cumulative deaths also decreases. Consequently, the optimal value of tau that achieves the lowest 

percentage of deaths is 𝜏 = 0. However, Figures 2 and 3 share one finding, which is that as the roll 

out rate of vaccines increases, the percentage of deaths decreases. 

By graphing the percentage of active cases in a population similar to Djibouti, the following 
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graphs are obtained in Figure 5. 

 

Figure 5. Graph showing the percentage of active cases in a population similar to that of 

Djibouti. The data collected was collected using the same initial conditions and vaccination 

schemes as Figure 4. 

Figure 5 shows that in all vaccination schemes, the percentage of active cases reaches a peak 

around 200 days for 𝜏 = 1, reaching around 2.5% of the total population. However, as the proportion 

of vaccines used as the third dose decreases, the peak of the percentage of active cases decreases in 

amplitude and is shifted to the left. Therefore, it can be concluded that for a population with a low 

infection and vaccination rate, the optimal way to reduce the active cases is by using all the available 

doses to give two doses to the unvaccinated individuals. 

In addition to that, the roll out rate seems to play an important role in decreasing the peak of active 

cases. As seen in the bottom-right graph, which corresponds to a vaccination scheme with a 55% 

efficacy and the highest roll out rate of 1.5%, the peak for the optimal tau value of 𝜏 = 1 was obtained 

at around day 50 with an amplitude of approximately 0.3%. 

These findings are crucial in order to minimize the burden of infectious diseases such as COVID-19 

on medical care sectors. As previously mentioned, around 2% of the COVID-19 patients were 

hospitalized [6]; therefore, by decreasing the amplitude of the peaks, there will be fewer hospitalized 

patients at any given moment. 

Many previous studies have analyzed the spread of COVID infections in Russia and, to a lesser 

extent, in Djibouti. However, they mostly relied on analyzing and forecasting spreads using SIR 

(Susceptible -Infected-Recovered) and SEIR (Susceptible-Exposed-Infected-Recovered) models 

without introducing the effects of vaccination [33−36]. With the introduction of massive vaccination 

campaigns worldwide, including these two countries, the incorporation of vaccination models became 

essential to understand the spreads. In particular, vaccinations would decrease and may even prohibit 

the spread, leading to a huge reduction in infection, hospitalization, and deaths. Models incorporating 
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vaccination dynamics offer a more nuanced understanding of the disease spread compared to 

traditional compartmental models such as SIR or SEIR. By accounting for vaccination processes, such 

models can simulate factors such as vaccine efficacy, coverage, and distribution, thus providing a more 

realistic portrayal of how vaccinations can impact the disease transmission and immunity over time. 

This adaptability allows policymakers to assess various intervention strategies, from vaccination 

campaigns to booster doses, and make informed decisions to effectively curb the spread of infectious 

diseases. Our analysis added another aspect to be considered by policymakers, whether in these two 

countries or in other countries with similar conditions, which is the optimal allocation of a limited flow 

of vaccines among those in need for a booster or a first dose. 

Sensitivity analysis: In this paragraph, we analyze the sensitivity of our prototype model with 

respect to variations in the basic reproductive number 𝑅𝑡. In our study, we simulated various spread 

scenarios under different vaccination schemes, with a moderately reproductive value for 𝑅𝑡 = 1.5 > 1, 

which assumed an increased spread pattern. However, the reproductive number representing the 

average number of secondary infections produced by a single infected individual in a fully susceptible 

population directly depends on the contact rates and the acquired and natural immunities; hence, it 

represents a changing parameter that gets influenced by external factors such as mitigation measures, 

closures, awareness, and vaccination levels. 

 

Figure 6. Sensitivity analysis of cumulative deaths with respect to variations in 𝑅𝑡 in 

Russia under the conditions of vaccine efficacy 𝑒 = 0.55 and daily deployment rate 𝑣 =

1.5% of population. 

To analyze the sensitivity of our model to changes in the reproductive number, we simulated a 

range of values corresponding to 1 ≤ 𝑅𝑡 ≤ 2, ranging from the threshold value of spread up to a rapid 

spreading scenario. We applied this for each country under consideration, namely Russia and Djibouti, 

while deploying vaccines of efficacy 𝑒 = 0.55 at a deployment rate of 𝑣 = 1.5% of the population 

per day. These results are displayed in Figure 6 and Figure 7, respectively.  
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The main findings from this sensitivity analysis can be summarized as follows: 

1. The number of cumulative deaths in both countries under all considered scenarios were positively 

correlated to 𝑅𝑡, as expected, with an increased total number of deaths alongside an increased 𝑅𝑡.  

2. The second interesting sensitivity result is that in a country with a high number of previous 

infections and vaccinated people such as Russia, the optimal value of 𝜏, which is the proportion 

of administered booster doses, depends on the value of the reproductive number. In particular, for 

smaller values of (𝑅𝑡 ≤ 1.375), it would be more optimal to distribute all vaccines as the initial 

doses. Altenatively, for 𝑅𝑡 > 1.375, a quarter of these doses would better be assigned as booster 

shots. The optimal prioritization scheme is sensitive for a changing 𝑅𝑡 and the optimal strategy is 

𝑅𝑡-dependent. 

3. In a country with a low level of infection and vaccinated people such as Djibouti, it would always 

be better to totally spread the vaccines as first doses, for all values of 𝑅𝑡 under consideration. The 

prioritization scheme is not sensitive to this range of variation in the reproductive number. 

 

Figure 7. Sensitivity analysis of cumulative deaths with respect to variations in 𝑅𝑡 in 

Djibouti under the conditions of vaccine efficacy 𝑒 = 0.55  and daily deployment rate 

𝑣 = 1.5% of population. 

This sensitivity analysis on the infections and deaths in relation to the basic reproduction number 

(𝑅𝑡) in epidemiological models is essential for effective public health planning. It identifies which 

factors most influence the infection rates and mortality, thus allowing for precise adjustments in 

response strategies and assists in optimizing interventions, such as vaccinations, to reduce disease 

transmission and fatalities, ultimately enhancing the effectiveness of public health measures during an 

outbreak. 

The model equations (1−9) and all related Figures (2−7) were coded, solved, and plotted in Python. 

The codes are publicly available at the following link: https://github.com/JE-1/COVID_codes.  
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5. Limitations 

In this study, we introduced a novel model to simulate the expected results of using vaccine shots 

as either boosters or as first doses. However, in this Booster model, there are still gaps and limitations 

that stand in the way of this model accurately representing the dynamics of infectious spreads in certain 

communities. 

The maximum possible vaccine intake percentage is an important factor in analyzing and 

forecasting infection and death scenarios related to COVID19 and its related vaccination programs. In 

this study, we assumed that we were dealing with populations that would achieve around 90% 

vaccination rate. Though this was achieved across many countries across the world, it would be 

important to further continue this study and simulate different values for this parameter. This would 

account for populations that may be affected by anti-vaccination rhetoric and campaigns, or for poorer 

countries that may not have the logistics to widely spread the vaccine. A separate simulation for 𝑣𝑖 

could be the goal of future studies. 

Another important factor is that the transmission coefficient is also sensitive on mitigation 

measures and may vary depending on specific implementations of social distancing, cleanliness, face 

masks, and other mitigation schemes. 

Several limitations and biases may arise due to neglecting individual heterogeneity in the model 

dynamics. On the transmission dynamics level, differences in susceptibility, infectiousness, and 

behavior can significantly impact the spread within a population. Intervention strategies that fail to 

account for individual heterogeneity would not ultimately achieve the intended outcomes. For instance, 

interventions that target the general population may be less effective than targeted strategies focused 

on high-risk groups. Population characteristics, such as age distribution, comorbidities, and social 

networks, can widely vary between populations; failing to account for these differences can lead to 

models that are less applicable outside of the specific context in which they were developed. Finally, 

in the realm of vaccine prioritization, tackling specific vulnerable populations, such as the elderly and 

those carrying chronic diseases, specifically with booster shots in case of limited resources, could also 

prove effective enough to minimize deaths. This alternative was not addressed in our study. 

6. Conclusions 

The new Booster model allowed us to study the effect of a third vaccination dose on a community. 

It allowed us to find the optimal percentage of COVID-19 doses that should be administered as booster 

shots, rather than being used as either first or second shots for unvaccinated individuals. 

The obtained results show that for communities with a relatively high number of individuals that 

have lost their immunity after vaccination or after recovery from infection, allocating around 25% of 

the vaccines as third doses should lead to the lowest percentage of cumulative deaths. On the other 

hand, a population with a relatively low portion of individuals with lost immunity would find more 

benefit from vaccinating the susceptible unvaccinated individuals, rather than reimmunizing those who 

have received the first and second doses. 

Our model and results have important potential for tackling real world problems and informing 

policy makers on efficient strategies. In our prototype example, we could advise health officials in one 

country to dedicate a quarter of their vaccine resources for boosters in case there is still need for first 

doses, while calling for full dedication to first doses in another country with different infection 
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conditions. In this sense, this model is generic and flexible and could be implemented to reach optimal 

distribution scenarios under different needs. 
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