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has been obtained through the application of a Laplace transformation, along with the decomposition
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1. Introduction

In the middle of the 20th century, the disease of Poliomyelitis (polio) was one of the contagious
diseases which has been transmitted from the western regions of the Asian continent. Jonas Salk,
in the year 1952 developed a vaccination process for this outbreak. Poliovirus became the cause of
this outbreak among most societies. It affects the nerves of the human body and may cause whole-
body paralysis within a short duration. The associated disease mainly affects children in the first three
years of age but it may also affect anyone at any age. The poliovirus is transmitted to the children’s
bodies through the mouth, eventually reaching the intestines of the digestive system. The poliovirus
can be transferred from one person to the other. The starting signs of the associated infection are fever,
headache, fatigue, vomiting, and pain produced in the limbs. There is still no effective treatment for
the virus, but its spread can be controlled through the process of vaccination and immunizations which
commonly save many children’s lives.

Mostly, assumptions regarding dynamic problems of daily life are necessary to manage these
problems; therefore, in every mathematical model the infections are only transmitted to the
susceptible or healthy class due to the infective population. Several diseases like polio are contagious
during the time of incubation. So one can conclude that the interactions between the healthy
population classes exposed classes have their importance in the spread of diseases. Thus, scholars
have discussed the relationship between the susceptible and the exposed classes. Many scientists have
attempted to construct mathematical models of Polio. The authors [1] developed a mathematical
system spread of polio after the re-introduction of poliovirus. Garfinkel and Sarewitz et al. [2] briefly
studied the conditions that would lead to polio eradication. Furthermore, to prove efficacy of polio
vaccines in the control of polio infection, most scholars have constructed various models for the
spread of polio [3–5]. The authors of [6] specifically considered the SIR problem with pulse
vaccination and have shown that pulse vaccination can lead to eradication under specific conditions
related to the magnitude of vaccination proportion. In some of the articles like [7], the authors dealt
with a two-dimensional SIS polio system with the addition of vaccination terms for bifurcation in the
opposite direction. The authors of [8] developed a polio mathematical system to investigate its
dynamical behavior in the presence of vaccinations strategy with nonlinear incidence, which also
deals with the optimality of the model that converges the vaccine quantity to the threshold value.
Agarwal and Bhadauria [9] developed a polio epidemic model with vaccine quantity to investigate the
effect of vaccination once a strategy is applied to the susceptible and exposable populations. In this
study, the polio model was adapted from [9], and it has been divided into five subgroups, namely
susceptible persons S, exposed persons E, acutely infected persons I, chronically infected personsV
and recovered persons R :

Ṡ(t) = A − βSI − rβSE − (µ + ν)S,
Ė(t) = βSI + rβSE − (b + µ + ν1)E,

İ(t) = (b + ν1)E − (µ + α)I,
V̇(t) = νS − µV,

(1.1)

with the following initial conditions

S(0) = N1,E(0) = N2,I(0) = N3,V(0) = N4.
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The parameters used in model (1.1) are described as follows: A is the rate of immigration in the society,
µ is the rate of death that occurs naturally, β is the probability of disease transmission because of the
infectious population, rβ is the rate of chance of infection because of the exposed population, r is the
rate of reduction in the transmission of infection by exposed class, ν is the rate of individuals moving
from the susceptible to vaccinated class, ν1 is the rate at which exposed individuals are vaccinated, b
is the rate at which exposed individuals move to the infective class and α is the rate of death due to the
disease.

The utilization of fractional calculus in the fractional-order model, which combines differentiation
and integration, offers a more effective approach to comprehending real-world problems as compared
to classical derivatives [10–16]. The concept of fractional derivatives, originally introduced by
Riemann-Liouville based on the power law, has recently faced scrutiny from researchers due to the
presentation of experimental results questioning the adequacy of a single fractional operator, such as
the Caputo, Caputo-Fabrizio and Atangana-Baleanu operators, as a tool to describe complex
phenomena in science and engineering [17–21]. These findings suggest that a broader range of
fractional operators may be necessary to accurately capture the behavior of diverse systems [22–26].
The authors of [27] developed a model by using a new definition of the constant proportional Caputo
operator, which describes the generalized memory effects. A new recursive algorithm has been
constructed to solve certain initial value problems involving a fractional differential equation [28].
This new approach Adomian decomposition method (ADM) is based on the application of the ADM,
and it involves combining the decomposition with a recurrence formula and utilizing the solutions of
the generalized Abel equation. According to the researchers, a new fractional derivative can be
defined by utilizing the exponential kernel [29, 30]. The utilization of non-singular kernel fractional
derivatives in the modeling of epidemics offers valuable insights into the dynamics of infectious
disease outbreaks, particularly when applied to trigonometric and exponential functions [31–33].
Initialization can pose challenges when working with non-singular kernel fractional derivatives,
especially in cases involving non-singular kernels. Regardless of their type, equations in the following
form have been observed to present similar challenges, as noted by the authors of [34]:∫ x

a
F(x, τ)g(τ)dτ = y(x), a , x , b. (1.2)

The condition F(a, a) , 0 introduces distinct limitations on differential equations involving
non-singular kernels, implying that if F(x, τ) and y(x) are continuous and F(a, a) , 0, then y(a) , 0.
This condition gives rise to peculiar behaviors in these equations, necessitating careful consideration
during the development of models in various research fields. As mentioned in [34], this issue remains
unsolved. However, the problem associated with the operator introduced in [17] has been solved by
various researchers [35, 36]. To overcome the challenges associated with non-singular operators, the
authors of [37] proposed a modification to the operator that involves utilizing a Mittag-Leffler kernel.
They demonstrated that the resulting fractional differential equations, based on this modified operator,
are easier to initialize than those based on non-singular kernels. Additionally, they showcased that the
modified operator, known as the modified Atangana-Baleanu-Caputo (mABC) derivative, is capable
of solving multiple fractional differential problems, which is not possible for the
Atangana-Baleanu-Caputo (ABC) derivative. The mABC derivative possesses an integrable
singularity at the origin. In [38], the authors developed a unique numerical method for the mABC
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derivative, utilizing finite differences; the method streamlines the initialization of the corresponding
fractional differential equations. Researchers have also developed modified fractional difference
operators by employing the mABC derivative and Mittag-Leffler kernels [39].

We propose a memory-affected mABC model to model the spread of polio. Although the epidemic
model described by Eq (1.1) utilizes classical derivatives and should be considered, our memory-
affected mABC model provides additional insights and enhances the accuracy of hepatitis B spread
predictions. To convert the ordinary system of equations given by Eq (1.1) into the mABC operator,
we make the following transformation:

mABCDϑ
t S(t) = A − βSI − rβSE − (µ + ν)S,

mABCDϑ
t E(t) = βSI + rβSE − (b + µ + ν1)E,

mABCDϑ
t I(t) = (b + ν1)E − (µ + α)I,

mABCDϑ
tV(t) = νS − µV,

(1.3)

with the following initial conditions

S(0) = N1,E(0) = N2,I(0) = N3,V(0) = N4.

The rest of the paper is arranged as follows. In Section 2, we recall some basic definitions and
statements from the literature. In Section 3, we give some formulas and show the non-zero solution to
the homogeneous fractional initial value problem. With the use of the Laplace Adomian
decomposition method, we find the approximate solution for the mABC derivative in Section 4. In the
same section, we also establish the stability and uniqueness results for the considered system. The
approximate series solution is graphically presented in Section 5. We conclude our work in Section 6.

2. Basic results

Here, we recall basic results from the literature on fractional calculus.

Definition 2.1. [37] Let f(t) ∈ L1(0,T ) be a function; then, the mABC derivation is presented as
follows:

mABCDϑ
t f(t) =

M(ϑ)
1 − ϑ

[
f(t) − Eϑ(−µϑtϑ)f(0)

− µϑ

∫ t

0
(t − u)ϑ−1Eϑ,ϑ(−µϑ(t − u)ϑ)f(u)du

]
,

(2.1)

where Eθ is known as the Mittag-Leffler function for one parameter while Eθ,θ denotes the Mittag-
Leffler for two parameters; from the above definition one may prove that mABCDϑ

t f = 0.

Definition 2.2. [37] Let f(t) ∈ L1(0,T ) be a function, then, the integral of mABC operator is given as

mABCDϑ
0f =

M(1 − ϑ)
M(ϑ)

[f(t) − f(0)] + µϑ[RLIϑ0(f(t) − f(0))]. (2.2)

Lemma 2.2.1. For f′ ∈ L1(0,∞) and the order ϑ ∈ (0, 1), we obtain

mABCIϑ0
mABCDϑ

0f(t) = f(t) − f(0). (2.3)
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The Laplace transform for the mABC is defined as

L
[mABCDϑ

0f(t); s
]

=
M(ϑ)

(1 − ϑ)
sϑL(f; s) − f(0)sϑ−1

sϑ + µϑ
,

∣∣∣µϑ
sϑ

∣∣∣ < 1. (2.4)

3. Analysis of the model

We state that there is a non-zero solution to the homogeneous fractional initial value problem. To
achieve that, we use the following formulas:

L
[
Eϑ(~tϑ)

]
=

sϑ−1

sϑ − ~
,

∣∣∣∣∣ ~sϑ
∣∣∣∣∣ < 1, (3.1)

L
[
tϑ−1Eϑ,ϑ(~tϑ)

]
=

1
sϑ − ~

,

∣∣∣∣∣ ~sϑ
∣∣∣∣∣ < 1. (3.2)

Lemma 3.0.1. [37] Suppose that the fractional initial value problem is as follows:

mABCDϑ
0S(t) = ΩS, t > 0,S(0) = S0,

mABCDϑ
0E(t) = ΩE, t > 0,E(0) = E0,

mABCDϑ
0I(t) = ΩI, t > 0,I(0) = I0,

mABCDϑ
0V(t) = ΩV, t > 0,V(0) = V0,

(3.3)

where 0 < ϑ < 1.
(1) For Ω =

M(ϑ)
1−ϑ , the solution is as follows:

S(t) = S0

 −
t−ϑ

µϑΓ(1 − ϑ)
, t , 0,

1, t = 0.

E(t) = E0

 −
t−ϑ

µϑΓ(1 − ϑ)
, t , 0,

1, t = 0.

I(t) = I0

 −
t−ϑ

µϑΓ(1 − ϑ)
, t , 0,

1, t = 0.
(3.4)

V(t) = V0

 −
t−ϑ

µϑΓ(1 − ϑ)
, t , 0,

1, t = 0.

(2). For Ω , M(ϑ)
1−ϑ , the solution is as follows:

S(t) = S0


Eϑ

(
µϑ

τϑ
1−τϑ

tϑ
)

1 − τϑ
, t , 0,

1, t = 0.
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E(t) = E0


Eϑ

(
µϑ

τϑ
1−τϑ

tϑ
)

1 − τϑ
, t , 0,

1, t = 0.

I(t) = I0


Eϑ

(
µϑ

τϑ
1−τϑ

tϑ
)

1 − τϑ
, t , 0,

1, t = 0.

(3.5)

V(t) = V0


Eϑ

(
µϑ

τϑ
1−τϑ

tϑ
)

1 − τϑ
, t , 0,

1, t = 0.

where, τϑ =
Ω(1−ϑ)
M(ϑ) .

Proof. (1) Given that∫ t

0
(t − y)ϑ−1Eϑ,ϑ(−µϑ(1 − y)ϑ)y−ϑdy = Γ(1 − ϑ)Eϑ(−µtϑ), (3.6)

for 0 < t, we have

mABCDϑ
0S(t) =

M(ϑ)
1 − ϑ

(S(t) − Eϑ(−µϑtϑ)S0 − µϑ

∫ t

0
(t − y)ϑ−1Eϑ,ϑ(−µϑ(t − y)ϑ)

×

(
−

S0

µϑΓ(1 − Eϑ,ϑ)
y−ϑ

)
dy), (3.7)

mABCDϑ
0E(t) =

M(ϑ)
1 − ϑ

(E(t) − Eϑ(−µϑtϑ)E0 − µϑ

∫ t

0
(t − y)ϑ−1Eϑ,ϑ(−µϑ(t − y)ϑ)

×

(
−

E0

µϑΓ(1 − Eϑ,ϑ)
y−ϑ

)
dy), (3.8)

mABCDϑ
0I(t) =

M(ϑ)
1 − ϑ

(I(t) − Eϑ(−µϑtϑ)I0 − µϑ

∫ t

0
(t − y)ϑ−1Eϑ,ϑ(−µϑ(t − y)ϑ)

×

(
−

I0

µϑΓ(1 − Eϑ,ϑ)
y−ϑ

)
dy), (3.9)

mABCDϑ
0V(t) =

M(ϑ)
1 − ϑ

(V(t) − Eϑ(−µϑtϑ)V0 − µϑ

∫ t

0
(t − y)ϑ−1Eϑ,ϑ(−µϑ(t − y)ϑ)

×

(
−

V0

µϑΓ(1 − Eϑ,ϑ)
y−ϑ

)
dy), (3.10)
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mABCDϑ
0S(t) =

M(ϑ)
1 − ϑ

(S(t) − Eϑ(−µϑtϑ)S0 + Eϑ(−µϑtϑ)S0) = ΩS(t),

mABCDϑ
0E(t) =

M(ϑ)
1 − ϑ

(E(t) − Eϑ(−µϑtϑ)E0 + Eϑ(−µϑtϑ)E0) = ΩE(t),

mABCDϑ
0I(t) =

M(ϑ)
1 − ϑ

(I(t) − Eϑ(−µϑtϑ)I0 + Eϑ(−µϑtϑ)I0) = ΩI(t),

mABCDϑ
0V(t) =

M(ϑ)
1 − ϑ

(V(t) − Eϑ(−µϑtϑ)V0 + Eϑ(−µϑtϑ)V0) = ΩV(t),

(3.11)

which shows that the proof is complete.
Applying Eq.(3.1) and Eq.(3.2) for t > 0, we have

L
[mABCDϑ

0S; s
]

=
M(ϑ)
1 − ϑ

1
sϑ + µϑ

(
S0sϑ

1 − τϑ
×

sϑ−1

sϑ − µϑ
τϑ

1−τϑ

− S0sϑ−1
)

=
M(ϑ)
1 − ϑ

S0
τϑ

1 − τϑ

sϑ−1

sϑ − µϑ
τϑ

1−τϑ

= Ω
S0

1 − τϑ

sϑ−1

sϑ − µϑ
τϑ

1−τϑ

= Ω
S0

1 − τϑ
L

[
Eϑ

(
µϑ

τϑ
1 − τϑ

tϑ
)]
,

L
[mABCDϑ

0E; s
]

=
M(ϑ)
1 − ϑ

1
sϑ + µϑ

(
E0sϑ

1 − τϑ
×

sϑ−1

sϑ − µϑ
τϑ

1−τϑ

− E0sϑ−1
)

=
M(ϑ)
1 − ϑ

E0
τϑ

1 − τϑ

sϑ−1

sϑ − µϑ
τϑ

1−τϑ

= Ω
E0

1 − τϑ

sϑ−1

sϑ − µϑ
τϑ

1−τϑ

= Ω
E0

1 − τϑ
L

[
Eϑ

(
µϑ

τϑ
1 − τϑ

tϑ
)]
,

L
[mABCDϑ

0I; s
]

=
M(ϑ)
1 − ϑ

1
sϑ + µϑ

(
I0sϑ

1 − τϑ
×

sϑ−1

sϑ − µϑ
τϑ

1−τϑ

− I0sϑ−1
)

=
M(ϑ)
1 − ϑ

I0
τϑ

1 − τϑ

sϑ−1

sϑ − µϑ
τϑ

1−τϑ

= Ω
I0

1 − τϑ

sϑ−1

sϑ − µϑ
τϑ

1−τϑ

= Ω
I0

1 − τϑ
L

[
Eϑ

(
µϑ

τϑ
1 − τϑ

tϑ
)]
,

L
[mABCDϑ

0V; s
]

=
M(ϑ)
1 − ϑ

1
sϑ + µϑ

(
V0sϑ

1 − τϑ
×

sϑ−1

sϑ − µϑ
τϑ

1−τϑ

−V0sϑ−1
)

=
M(ϑ)
1 − ϑ

V0
τϑ

1 − τϑ

sϑ−1

sϑ − µϑ
τϑ

1−τϑ

= Ω
V0

1 − τϑ

sϑ−1

sϑ − µϑ
τϑ

1−τϑ

= Ω
V0

1 − τϑ
L

[
Eϑ

(
µϑ

τϑ
1 − τϑ

tϑ
)]
,

Thus, the proof is complete. �
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Lemma 3.0.2. [37] Assume the following fractional differential equations

mABCDϑ
0S(t) + ΩS = G1(t), t > 0,S(0) = S0,

mABCDϑ
0E(t) + ΩE = G2(t), t > 0,E(0) = E0,

mABCDϑ
0I(t) + ΩI = G3(t), t > 0,I(0) = I0,

mABCDϑ
0V(t) + ΩV = G4(t), t > 0,V(0) = V0,

where 0 < ϑ < 1 and Ω , −M(ϑ)
1−ϑ ; the solution of the above initial value system is given by

S(t) =

S̃, t , 0,
S0, t = 0,

E(t) =

Ẽ, t , 0,
E0, t = 0,

I(t) =

Ĩ, t , 0,
I0, t = 0,

(3.12)

V(t) =

Ṽ, t , 0,
V0, t = 0.

where

S̃ = S0
M(ϑ)

zϑ
Eϑ

(
−

Ωϑ

zϑ
tϑ
)

+
1 − ϑ

zϑ
G1(t) +

1 − ϑ
zϑ

(
µϑ −

Ωϑ

zϑ

)(
tϑ−1Eϑ,ϑ

(
−

Ωϑ

zϑ
tϑ
))
G1,

Ẽ = E0
M(ϑ)

zϑ
Eϑ

(
−

Ωϑ

zϑ
tϑ
)

+
1 − ϑ

zϑ
G2(t) +

1 − ϑ
zϑ

(
µϑ −

Ωϑ

zϑ

)(
tϑ−1Eϑ,ϑ

(
−

Ωϑ

zϑ
tϑ
))
G2,

Ĩ = I0
M(ϑ)

zϑ
Eϑ

(
−

Ωϑ

zϑ
tϑ
)

+
1 − ϑ

zϑ
G3(t) +

1 − ϑ
zϑ

(
µϑ −

Ωϑ

zϑ

)(
tϑ−1Eϑ,ϑ

(
−

Ωϑ

zϑ
tϑ
))
G3,

Ṽ = V0
M(ϑ)

zϑ
Eϑ

(
−

Ωϑ

zϑ
tϑ
)

+
1 − ϑ

zϑ
G4(t) +

1 − ϑ
zϑ

(
µϑ −

Ωϑ

zϑ

)(
tϑ−1Eϑ,ϑ

(
−

Ωϑ

zϑ
tϑ
))
G4,

(3.13)

and zϑ = M(ϑ + Ω(1 − ϑ)).

Proof. Utilizing Eq (3.1) and (3.2) we may verify that

L[S̃; s] =
S0M(ϑ)sϑ−1 + (1 − ϑ)(sϑ + µϑ)L[G1; s]

zϑsϑ + Ωϑ
,

L[Ẽ; s] =
E0M(ϑ)sϑ−1 + (1 − ϑ)(sϑ + µϑ)L[G2; s]

zϑsϑ + Ωϑ
,

L[Ĩ; s] =
I0M(ϑ)sϑ−1 + (1 − ϑ)(sϑ + µϑ)L[G3; s]

zϑsϑ + Ωϑ
,

L[Ṽ; s] =
V0M(ϑ)sϑ−1 + (1 − ϑ)(sϑ + µϑ)L[G4; s]

zϑsϑ + Ωϑ
,

(3.14)
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by Eq (2.4), we obtain



L
[mABCDϑ

0S + ΩS; s
]

=
M(ϑ)
1 − ϑ

sϑL(S̃; s) − sϑ−1S0

sϑ + µϑ
+L[S̃; s],

L
[mABCDϑ

0E + ΩE; s
]

=
M(ϑ)
1 − ϑ

sϑL(Ẽ; s) − sϑ−1E0

sϑ + µϑ
+L[Ẽ; s],

L
[mABCDϑ

0I + ΩI; s
]

=
M(ϑ)
1 − ϑ

sϑL(Ĩ; s) − sϑ−1I0

sϑ + µϑ
+L[Ĩ; s],

L
[mABCDϑ

0V + ΩV; s
]

=
M(ϑ)
1 − ϑ

sϑL(Ṽ; s) − sϑ−1V0

sϑ + µϑ
+L[Ṽ; s].

(3.15)

Further calculation then yields the following:



L
[mABCDϑ

0S + ΩS; s
]

=
1

(1 − ϑ)(sϑ + µϑ)

[
(zϑsϑ + Ωϑ)L(S̃; s) −M(ϑ)sϑ−1S0

]
,

L
[mABCDϑ

0E + ΩE; s
]

=
1

(1 − ϑ)(sϑ + µϑ)

[
(zϑsϑ + Ωϑ)L(Ẽ; s) −M(ϑ)sϑ−1E0

]
,

L
[mABCDϑ

0I + ΩI; s
]

=
1

(1 − ϑ)(sϑ + µϑ)

[
(zϑsϑ + Ωϑ)L(Ĩ; s) −M(ϑ)sϑ−1I0

]
,

L
[mABCDϑ

0V + ΩV; s
]

=
1

(1 − ϑ)(sϑ + µϑ)

[
(zϑsϑ + Ωϑ)L(Ṽ; s) −M(ϑ)sϑ−1V0

]
.

(3.16)

By substituting Eq (3.14) into Eq. (3.16), the following results are obtained:



L
[mABCDϑ

0S + ΩS; s
]

=
1

(1 − ϑ)(sϑ + µϑ)

[
S0M(ϑ)sϑ−1 + (1 − ϑ)(sϑ + µϑ)L[G1; s] −M(ϑ)sϑ−1S0

]
,

L
[mABCDϑ

0E + ΩE; s
]

=
1

(1 − ϑ)(sϑ + µϑ)

[
E0M(ϑ)sϑ−1 + (1 − ϑ)(sϑ + µϑ)L[G2; s] −M(ϑ)sϑ−1E0

]
,

L
[mABCDϑ

0I + ΩI; s
]

=
1

(1 − ϑ)(sϑ + µϑ)

[
I0M(ϑ)sϑ−1 + (1 − ϑ)(sϑ + µϑ)L[G3; s] −M(ϑ)sϑ−1I0

]
,

L
[mABCDϑ

0V + ΩV; s
]

=
1

(1 − ϑ)(sϑ + µϑ)

[
V0M(ϑ)sϑ−1 + (1 − ϑ)(sϑ + µϑ)L[G4; s] −M(ϑ)sϑ−1V0

]
.

(3.17)


= L[G1; s],
= L[G2; s],
= L[G3; s],
= L[G4; s].

(3.18)

This finishes the proof. �
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Remark 1. Suppose that Gi ∈ C[0,T ], with i = 1, 2, 3, 4,; then, we have

S̃ =
1
zϑ

[
S0M(ϑ) + (1 − ϑ)G1(0)

]
,

Ẽ =
1
zϑ

[
E0M(ϑ) + (1 − ϑ)G2(0)

]
,

Ĩ =
1
zϑ

[
I0M(ϑ) + (1 − ϑ)G3(0)

]
,

Ṽ =
1
zϑ

[
V0M(ϑ) + (1 − ϑ)G4(0)

]
,

(3.19)

subject to the following conditions:

ΩS0 = G1(0),
ΩE0 = G2(0),
ΩI0 = G3(0),
ΩV0 = G4(0),

(3.20)

Therefore, S̃ = S0, Ẽ = E0, Ĩ = I0 and Ṽ = V0; hence, the soultion given by Eq (3.12) presents
the condition of continuity. On the basis of the above conditions the solution exists for the proposed
model.

4. Approximate solution via the Laplace Adomian decomposition method

Applying the Laplace transform to the mABC, as given in [37] to the considered model (1.3) gives

L

[
mABCD

ϑ

t S(t)
]

= L

[
Π − aS(t)V(t) − (η2 + µ)S(t)

]
,

L

[
mABCD

ϑ

t E(t)
]

= L

[
aS(t)V(t) − (α + µ)E(t)

]
,

L

[
mABCD

ϑ

t I(t)
]

= L

[
αE(t) − (µ + a1 + a2)I(t)

]
,

L

[
mABCD

ϑ

tV(t)
]

= L

[
a2I(t) − (η1 + a3 + µ)V(t)

]
.

(4.1)

Proceeding we get

M(ϑ)
1 − ϑ

×
sϑL{S(t)} − sϑ−1S(0)

sϑ + µϑ
= L

[
Π − aS(t)V(t) − (η2 + µ)S(t)

]
,

M(ϑ)
1 − ϑ

×
sϑL{E(t)} − sϑ−1E(0)

sϑ + µϑ
= L

[
aS(t)V(t) − (α + µ)E(t)

]
,

M(ϑ)
1 − ϑ

×
sϑL{I(t)} − sϑ−1I(0)

sϑ + µϑ
= L

[
αE(t) − (µ + a1 + a2)I(t)

]
,

M(ϑ)
1 − ϑ

×
sϑL{V(t)} − sϑ−1V(0)

sϑ + µϑ
= L

[
a2I(t) − (η1 + a3 + µ)V(t)

]
.

(4.2)
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By application of the initial conditions we get

L{S(t)} =
S0

s
+

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
Π − aS(t)V(t) − (η2 + µ)S(t)

]]
,

L{E(t)} =
E0

s
+

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
aS(t)V(t) − (α + µ)E(t)

]]
,

L{I(t)} =
I0

s
+

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
αE(t) − (µ + a1 + a2)I(t)

]]
,

L{V(t)} =
V0

s
+

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
a2I(t) − (η1 + a3 + µ)V(t)

]]
.

(4.3)

Decomposing each quantity as yields

S(t) =

∞∑
i=0

Si, E(t) =

∞∑
i=0

Ei, I(t) =

∞∑
i=0

Ii, V(t) =

∞∑
i=0

Vi,

We write the non-linear term as follows:

S(t)V(t) =

∞∑
i=0

Gi

where

Gi =
1

Γ(i + 1)
di

dpi

[ ∞∑
k=0

pkS jV j

]∣∣∣∣∣
p=0
.

Plugging all of the above values into Eq (4.3) we get

L{

∞∑
i=0

Si} =
S0

s
+

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
Π − a

∞∑
i=0

Gi − (η2 + µ)
∞∑

i=0

Si

]]
,

L{

∞∑
i=0

Ei} =
E0

s
+

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
a
∞∑

i=0

Gi − (α + µ)
∞∑

i=0

Ei

]]
,

L{

∞∑
i=0

Ii(t)} =
I0

s
+

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
a
∞∑

i=0

Ei − (µ + a1 + a2)
∞∑

i=0

Si

]]
,

L{

∞∑
i=0

Vi(t)} =
V0

s
+

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
a2

∞∑
i=0

Ii − (η1 + a3 + µ)
∞∑

i=0

Vi

]]
.

(4.4)

after calculating the above Eq. (4.4) we get

L{S0} =
S0

s
,

L{S1} =

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
Π − aG0 − (η2 + µ)S0

]]
,

L{S2(t)} =

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
Π − aG1 − (η2 + µ)S1

]]
,

...

L{Si+1} =

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
Π − aGi − (η2 + µ)Si

]]
,

(4.5)
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L{E0} =
E0

s
,

L{E1} =

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
aG0 − (α + µ)E0

]]
,

L{E2(t)} =

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
aG1 − (α + µ)E1

]]
,

...

L{Ei+1} =

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
aGi − (α + µ)Ei

]]
,

(4.6)

L{I0} =
I0

s
,

L{I1} =

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
αE0 − (µ + a1 + a2)S0

]]
,

L{I2(t)} =

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
αE1 − (µ + a1 + a2)S1

]]
,

...

L{Ii+1} =

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
αEi − (µ + a1 + a2)Si

]]
,

(4.7)

L{V0} =
V0

s
,

L{V1} =

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
a2I0 − (η1 + a3 + µ)V0

]]
,

L{V2(t)} =

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
a2I1 − (η1 + a3 + µ)V1

]]
,

...

L{Vi+1} =

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L

[
a2Ii − (η1 + a3 + µ)Vi

]]
.

(4.8)

Considering the first three terms and by applying the inverse Laplace transform we get

S0 = S(0) = S(0),

S1(t) =

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

[
Π − aS0V0 − (η2 + µ)S0

]]
,

S2 =

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

Π

M(ϑ)

][
− aS1V1 − (η2 + µ)S1

]
,

(4.9)
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E0 = E(0) = E(0),

E1(t) =

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

[
aS0V0 − (α + µ)E0

]]
,

E2(t) =

[
aS1V1 − (α + µ)E1

]
,

(4.10)

I0 = I(0) = I(0),

I1(t) =

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

[
αE0 − (µ + a1 + a2)S0

]]
,

I2(t) =

[
αE1 − (µ + a1 + a2)S1

]
,

(4.11)

V0 = V(0) = V(0),

V1(t) =

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

[
a2I0 − (η1 + a3 + µ)V0

]]
,

V2(t) =

[
a2I1 − (η1 + a3 + µ)V1

]
.

(4.12)

By putting the values S1, E1, I1, V1 into the second term of each quantity, we get

S0 = S(0) = S(0),

S1(t) =

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

][
Π − aS0V0 − (η2 + µ)S0

]
,

S2 =

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

Π

M(ϑ)

]
− a

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

]2[
Π − aS0V0 − (η2 + µ)S0

]
×

[
a2I0 − (η1 + a3 + µ)V0

]
− (η2 + µ)

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

][
Π − aS0V0 − (η2 + µ)S0

]
,

(4.13)

E0 = E(0) = E(0),

E1(t) =

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

[
aS0V0 − (α + µ)E0

]]
,

E2(t) =

[
a
[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

]2[
Π − aS0V0 − (η2 + µ)S0

][
a2I0 − (η1 + a3 + µ)V0

]
− (α + µ)

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

[
aS0V0 − (α + µ)E0

]]]
,

(4.14)
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I0 = I(0) = I(0),

I1(t) =

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

[
αE0 − (µ + a1 + a2)S0

]]
,

I2(t) =

[
a
[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

[
aS0V0 − (α + µ)E0

]]
− (µ + a1 + a2)

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

][
Π − aS0V0 − (η2 + µ)S0

]]
,

(4.15)

V0 = V(0) = V(0),

V1(t) =

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

[
a2I0 − (η1 + a3 + µ)V0

]]
,

V2(t) =

[
a2

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

[
αE0 − (µ + a1 + a2)S0

]]
− (η1 + a3 + µ)

[
(1 − ϑ +

tϑ

Γ(ϑ)
)

1
M(ϑ)

[
a2I0 − (η1 + a3 + µ)V0

]]]
,

(4.16)

Lastly, each quantity can be written as follows:

S(t) = S0 + S1(t) + S2(t) . . .

E(t) = E0 + E1(t) + E2(t) . . .

I(t) = I0 + I1(t) + I2(t) . . .

V(t) = V0 +V1(t) +V2(t) . . .

4.1. Stability and uniqueness of the solution

Theorem 1. Suppose that a Banach space is denoted by (B, |.|) with a mapping T : B → B which
satisfies

‖Tx − Ty‖ ≤ Θ‖Tx − Ty‖ + π‖x − y‖

for every x, y ∈ B; also, 0 ≤ Θ and 0 ≤ π < 1. Then, T is Picard T-stable.

Theorem 2. Suppose T to be a self map defined as given below:

T[Sq(t)] = Sq+1(t) = Sn(0) +L−1
[ (1 − ϑ)(sϑ + µϑ)

M(ϑ)sϑ
L[Π − aSq(t)Vq(t) − (η2 + µ)Sq(t)]

]
,

T[Eq(t)] = Eq+1(t) = En(0) +L−1
[ (1 − ϑ)(sϑ + µϑ)

M(ϑ)sϑ
L[aSq(t)Vq(t) − (α + µ)Eq(t)]

]
,

T[Iq(t)] = Iq+1(t) = In(0) +L−1
[ (1 − ϑ)(sϑ + µϑ)

M(ϑ)sϑ
L[αEq(t) − (µ + a1 + a2)Sq(t)]

]
,

T[Vq(t)] = Vq+1(t) = Vn(0) +L−1
[ (1 − ϑ)(sϑ + µϑ)

M(ϑ)sϑ
L[a2Iq(t) − (η1 + a3 + µ)Vq(t)]

]
.

(4.17)
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Thus, the iteration is T-stable in L1(x, y), if we obtained the following results:

(1 − a(N1 + N4)w1(θ) − (η2 + µ)w2(θ)) < 1,
(1 + a(N1 + N4)w1(θ) − (α + µ)w3(θ)) < 1,

(1 + αw4(θ) − (µ + a1 + a2)w5(θ)) < 1,
(1 + a2w5(θ) − (η1 + a3 + µ)w6(θ)) < 1,

(4.18)

Proof. We need to prove that T has a fixed point; for this we use (q, p) ∈ N × N

T[Sq(t)] − T[Sp(t)] = Sq − Sp +L−1
[ (1 − ϑ)(sϑ + µϑ)

M(ϑ)sϑ
L[Π − aSq(t)Vq(t) − (η2 + µ)Sq(t)]

]
− L−1

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L[Π − aSp(t)Vp(t) − (η2 + µ)Sp(t)]
]
,

T[Eq(t)] − T[Ep(t)] = Eq − Ep +L−1
[ (1 − ϑ)(sϑ + µϑ)

M(ϑ)sϑ
L[aSq(t)Vq(t) − (α + µ)Eq(t)]

]
− L−1

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L[aSp(t)Vp(t) − (α + µ)Ep(t)]
]
,

T[Iq(t)] − T[Ip(t)] = Iq − Ip +L−1
[ (1 − ϑ)(sϑ + µϑ)

M(ϑ)sϑ
L[αEq(t) − (µ + a1 + a2)Sq(t)]

]
− L−1

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L[αEp(t) − (µ + a1 + a2)Sp(t)]
]
,

T[Vq(t)] − T[Vp(t)] = Vq −Vp +L−1
[ (1 − ϑ)(sϑ + µϑ)

M(ϑ)sϑ
L[a2Iq(t) − (η1 + a3 + µ)Vq(t)]

]
− L−1

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L[a2Ip(t) − (η1 + a3 + µ)Vp(t)]
]
.

(4.19)

Taking the first equation of Eq (4.19) and calculating the norm on both sides, we have∥∥∥T[Sq(t)] − T[Sp(t)]
∥∥∥ =

∥∥∥∥∥Sq − Sp +L−1
[ (1 − ϑ)(sϑ + µϑ)

M(ϑ)sϑ
L[Π − aSq(t)Vq(t) − (η2 + µ)Sq(t)]

]
− L−1

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L[Π − aSp(t)Vp(t) − (η2 + µ)Sp(t)]
]∥∥∥∥∥,(4.20)

with the help of the triangular inequality, and by solving Eq (4.20), we obtain∥∥∥T[Sq(t)] − T[Sp(t)]
∥∥∥ ≤ ‖Sq − Sp‖ +L−1

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L[‖ − aSq(t)(Vq(t) −Vp(t))‖

+ ‖ − aVq(t)(Sq(t) − Sp(t))‖ + ‖ − (η2 + µ)Sq(t) − Sp(t)‖,
(4.21)

By establishing the relation as follows:

‖Sq(t) − Sp(t)‖ � ‖Vq(t) −Vp(t)‖, (4.22)

replacing the above relation in Eq (4.21), we get the following relation∥∥∥T[Sq(t)] − T[Sp(t)]
∥∥∥ ≤ ‖Sq − Sp‖ +L−1

[ (1 − ϑ)(sϑ + µϑ)
M(ϑ)sϑ

L[‖ − aSq(t)(Sq(t) − Sp(t))‖

+ ‖ − aVq(t)(Sq(t) − Sp(t))‖ + ‖ − (η2 + µ)Sq(t) − Sp(t)‖.
(4.23)
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Furthermore, the convergent sequenceVq is bounded.
Additionally, one may obtain different constants N1,N2,N3 and N4 for every t such that

‖Sp‖ < N1, ‖Ep‖ < N2, ‖Ip‖ < N3, ‖Vp‖ < N4, (q, p) ∈ N × N. (4.24)

Therefore, considering Eq (4.23) and Eq (4.24), we obtain∥∥∥T[Sq(t)] − T[Sp(t)]
∥∥∥ ≤ (1 − a(N1 + N4)w1(θ) − (η2 + µ)w2(θ))‖(Sq − Sp)‖, (4.25)

here, w1 and w2 are the functions of L−1
[

(1−ϑ)(sϑ+µϑ)
M(ϑ)sϑ L

]
. Considering the same procedure for the

remaining equations, we have∥∥∥T[Eq(t)] − T[Ep(t)]
∥∥∥ ≤ (1 + a(N1 + N4)w1(θ) − (α + µ)w3(θ))‖(Eq − Ep)‖,∥∥∥T[Iq(t)] − T[Ip(t)]
∥∥∥ ≤ (1 + αw4(θ) − (µ + a1 + a2)w5(θ))‖(Iq − Ip)‖,∥∥∥T[Vq(t)] − T[Vp(t)]
∥∥∥ ≤ (1 + a2w5(θ) − (η1 + a3 + µ)w6(θ))‖(Vq −Vp)‖.

(4.26)

Hence, T has a fixed point. Applying Eq (4.25) and (4.26), we assume that

ψ = (0, 0, 0, 0),

Ψ =


(1 − a(N1 + N4)w1(θ) − (η2 + µ)w2(θ)),
(1 + a(N1 + N4)w1(θ) − (α + µ)w3(θ)),
(1 + αw4(θ) − (µ + a1 + a2)w5(θ)),
(1 + a2w5(θ) − (η1 + a3 + µ)w6(θ)),

(4.27)

Therefore, the conditions of Theorem 1 are satisfied; hence, the proof is complete.

Theorem 3. The aforementioned method gives a unique solution for the considered model.

�

5. Numerical simulation

The graphical representations for the proposed model under the modified operator have been
established by using the data taken from [9]. Four studied compartments of the model were tested on
different fractional orders by using the obtained numerical scheme. The initial values and
corresponding parameter descriptions are given in Table 1.

Table 1. Parameters and their numerical values for model (1.3).

l

Notation Value Source Notation Value Source
S0 500 [9] E0 200 [9]
I0 150 [9] E0 600 [9]
A 1000 [9] β 0.002, 0.003, 0.0016, 0.05 [9]
r 0.5 [9] µ 0.5 [9]
ν 0.6 [9] ν1 0.001 [9]
b 0.9 [9] α 0.6 [9]
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Figure 1. Plots for all four agents on six different fractional orders ϑ lying between 0 and 1;
β = 0.002.

In Figure 1(a–d), the dynamics of all four compartments are shown for different fractional orders
under the modified fractional operator which has extra terms as compared to the ABC operator. The
susceptible population gains stability after increasing to some peak value and the stability is best
achieved for relatively small fractional orders instead of the higher order. The exposed class declines
and then increases to the equilibrium point to achieve stability. During this period, the exposed
population is transferred to the infected population, whose density is increasing and then stabilizes, or
decreases as a result of individuals recovering from the infection after the vaccination is applied to the
population. The vaccination process is terminated once the infection is controlled.
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Figure 2. Plots for all four agents on six different fractional orders ϑ lying between 0 and 1;
β = 0.003.

In Figure 2(a–d), the dynamics of all four compartments are shown for different arbitrary orders
under the modified fractional operator with extra informative terms. The susceptible class gains
stability after declining to some small value and the stability is achieved faster with small fractional
orders. The exposed class here declines quickly and then increases to the equilibrium point to achieve
the convergence. During this period, the susceptible population is transferred to the exposed class,
and then to the infected class whose density increases and then stabilizes, or decreases as a result of
recovering from the infection after the vaccination is injected into the total population. The
vaccination process is reduced as the transmission rβ is increased and the infection is controlled after
more populations.
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Figure 3. Plots for all four agents on six different fractional orders ϑ lying between 0 and 1;
β = 0.0016.

In Figure 3(a–d), the rate of transmission is decreased which affects the dynamics of all four
compartments as shown for different arbitrary orders. The susceptible class increases and gains
stability after reaching some high value. The exposed class here declines much more quickly and then
converges to its equilibrium point. In this case, after a small increase, the infection is controlled
quickly. Here the vaccination rate also increases, i.e. as the vaccination rate increases the infection
may be easier to control.
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Figure 4. Plots for all four agents on six different fractional orders ϑ lying between 0 and 1;
β = 0.0002.

In Figure 4(a–d), the rate of transmission is again decreased which affects the dynamics of all the
four compartments, as shown for different arbitrary orders. In this case, the dynamics are about the
same as observed for the previous dynamics but the dynamics can be controlled more quickly. Such
dynamics provide the total density of each compartment in the form of a continuous spectrum lying
between 0 and 1.

6. Conclusions

This study developed the analysis of the impact of vaccination on the spread of polio in the human
population by using a four-compartment system with the generalized novel mABC fractional operator.
The dynamical behaviors of all compartments have been successfully examined for different fractional
orders to demonstrate the validity of an extra degree of freedom in the selection of the derivative order.
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The fixed-point theory shows the uniqueness of the solution in the generalized novel modified format.
The stability analysis of the model has been conducted by T-Picard-type stability techniques. The
numerical solution for the model has been achieved by using the Laplace transform, along with the
Adomian technique in the format of the decomposition process. Such a study involved the analysis of
the complex geometry in the dynamical system. The study was performed by using various fractional
orders and iterations with different transmission rate; also, each curve has been plotted for six different
fractional orders and compared with the integer-order result. The study also shows that the impact of
vaccination is more significant on the total population. In terms of stability, relatively smaller fractional
orders yield high accuracy. In all of the numerical simulations, decreasing the transmission rate led to
better control of the polio infection.
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