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Abstract: Artificial neural networks (ANNs) have transformed machine learning and computational 

intelligence by providing unprecedented powers in modeling complicated data and addressing a wide 

range of challenges. In the field of ANNs, back propagation is a key approach for training neural 

networks. However, obtaining optimum network efficiency while tackling over fitting and controlling 

uncertainty is a difficult task. The present study employs the Bayesian Regularization Method with 

Neural Network Backpropagation (BRM-NNB) technique to investigate the rumors spreading delay 

model. With their rapid spread, rumors have the potential to cause fear and even financial loss. Thus, 

we must take decisive actions to stop the rumor from spreading. Nowadays, rumors can spread through 

instant messaging, emails, or publishing, thanks to the development of the internet. In this research, an 

XY-SIR rumors spreading delay model (XY-SIR-RS-DM) is investigated in relation to the novel 

spreading pattern. Media networks can be categorized into susceptible and infected media, while 

friendship networks can be categorized into three groups: spreaders (S, I, and R), who actively 

disseminate rumors, those who are ignorant and those who have no desire to do so. To estimate the 

solution of the suggested model, the Bayesian regularization method with neural network back 
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propagation (BRM-NNB) is used. The data set is generated by applying the explicit Runge-Kutta 

method. The computing BRM-NNB strategy is implemented for three different performances, where 

the training, testing, and verification data are reported as 80%, 15%, and 5%, respectively, with 10 

hidden neurons. To verify the validity of the developed artificial intelligence (AI) approach represented 

by the BRM-NNB, outcome comparisons are presented. The result is compatible with obtaining a 

minimal absolute error that is nearly equal to zero, thereby proving the efficacy of the proposed method. 

Keywords: Bayesian regularization method; regression; neural networks backpropagation; rumors 

spread model 

 

Nomenclature: BRM-NNB: Bayesian Regularization Method with Neural Networks 

Backpropagation; MSE: Mean Square Error; X(t): susceptible media that isn't rumor-infected; Y(t): 

infected media that is rumor-infected; S(t): spreaders; who know and actively disseminate rumors; I(t): 

those who are ignorant and have never heard of rumors; R(t): those who know but have no desire in 

spreading rumors; τi: time delays; A1: susceptible media’s probability; ω: infected media’s specific 

probability; ε1: probability of leaving system by individuals; δ: the media action rate; A2: friendship 

network layer’s probability; υ: probability of changing the ignorant person to spreader; ε2: the migration 

rate; γ: Probability of changing the spreader into the stifler; EHs: Error Histograms; AI: Artificial 

Intelligence 

1. Introduction 

Artificial neural networks (ANNs) have emerged as a critical tool in the fields of data 

mining, modeling, and predicting. They have become critical components of current technology 

and the problem-solving abilities of adaptable computer models, which are based on the 

architecture and operations of the human brain and have spread across a wide range of 

disciplines and applications. In this study, we explore how artificial intelligence (AI) plays a 

critical role in addressing complicated challenges and enhancing knowledge in today's fast 

changing world. Their ability to replicate and analyze complicated trends in data makes them 

highly useful to a wide range of fields, including epidemiology and the study of data dispersion. 

In this work, we explore the application of AI to the interesting topic of rumor-spreading 

dynamics, with a particular focus on the influence of infected media and time delays. Ongoing 

pushing factors in the ever-advancing science of AI include achieving goals of greater efficiency, 

increasing generalization, & an improved model resilience. The back propagation technique, 

which is a key component of neural network training, is at the center of this search. Recognizing 

the mechanisms of rumor propagation is critical in modern society, as data can quickly move via 

multiple media outlets. Understanding the mechanisms, variables, and control measures 

governing this process is critical for both social and epidemiological purposes. It has the ability 

to capture non-linear interactions and to learn from data, which provides a robust foundation for 

modeling and analyzing such intricate processes. We investigate using advance techniques on 

analyses and forecast the dynamical behaviors of rumor propagation, thereby considering the 

presence of infected media alongside the temporal element provided by a time delay.  

Rumors are a type of social phenomenon that have existed throughout human evolution, in which 
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a statement spreads widely and quickly through networks of communication [1]. In a most basic sense, 

rumors are unreliable information that haven’t been verified. Typically, they are spread by some 

individuals to achieve a specific goal, such as defaming others, generating momentum, deflecting 

attention, inciting panic, etc. [2,3]. Over the past few decades, there has been a lot of attention on 

rumor spreading as a significant type of social communication. Online social networks play a crucial 

role in the dissemination of information, which has a significant impact on our way of life. This is due 

to the rapid development of online social media platforms in the past few years, such as Sina Weibo, 

WeChat, and others. 

In December 2019, Wuhan& Hubei reported a string of unidentified pneumonia cases, also known 

as the coronavirus disease 2019 (COVID-19) pneumonia cases. Numerous cases of illness have 

currently been confirmed in China, Italy, the United States, and other nations [4,5]. Since the beginning 

of 2020, COVID-19 has spread throughout the world and has become a pandemic, thus posing serious 

problems for healthcare systems and contributing to a downturn in the economy. The etiology, 

prevention, and treatment of the disease have all been the subject of numerous rumors and false facts 

that have concurrently been circulated on social media [6]. People across the world now face the 

possibility of infection, as COVID-19 has grown to be a big global issue; this has changed people's 

actions and produced emotional changes [7]. There were a lot of emotional remarks and sporadic 

rumors made on the internet during the COVID-19 breakouts in various regions of the world. 

Many researchers have evaluated various rumor-spreading models in an effort to better manage 

rumor dissemination. Initially, infectious epidemic models were used to create and assess the rumor-

spreading model. The traditional rumor spreading model (i.e., the Daley-Kendall (DK) model) was 

first put forth by Daley and Kendal in 1965 [8], which marked a significant advance in rumor 

transmission research. The DK model divided all closed and homogeneous populations into three 

groups: spreaders (i.e., those who heard the rumor and actively spread it), ignorant (i.e., those who were 

ignorant of the rumor), and stiflers (i.e., those who knew about the rumor but never spread it). This 

division was largely derived from the susceptible-infected-removed (SIR) model of epidemics [9]. In 

recent years, there has been significant advances in the study of rumor dissemination. Some researchers 

have updated the susceptible-exposed-infected-removed (SEIR) model by taking hesitant mechanisms 

of complex social networks into consideration [10,11]. In order to better understand how rumors travel 

in both homogeneous and heterogeneous networks, Zhao et al. investigated a new SHIR rumor 

spreading model [12]. Cheng and Zhao [13] and Ghosh and Das [14] conducted studies on the rumor 

propagation dynamics of infected media, time delay, and social networks, thereby offering valuable 

insights. 

The goal of this study is to develop numerical solvers using the Bayesian regularization method 

with neural network back propagation (BRM-NNB) method, which is based on AI that leverages either 

soft computing or machine learning to solve an improved rumor XY-SIR spreading model. This 

model was developed to investigate the novel aspects of the rumor-spreading process, while taking 

the delay of the interactive system into account [15]. ANNs are a versatile and flexible idea that has 

been explored and provided as one of many choices in the literature for credit scoring. They can be 

used to handle clustering, time series, and function approximation issues, as well as classification 

challenges [16]. They are the most efficient and reliable numerical approach and have many real-world 

applications. Using Bayesian regularization, the squares of the errors and weights are reduced linearly. 

In addition, the linear combination is altered such that the final network can effectively generalize after 

training. Compared to traditional back-propagation networks, BRM-NNB is more resilient and can 
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reduce or perhaps do away with the need for significant cross-validation. One main advantage of the 

Bayesian approach is its tremendous flexibility. Realistic models can be easily fitted to complex data 

sets with estimation errors, filtered or incomplete information, multilayer or regression analysis 

patterns, and many outcomes using BRM-NNB approaches. Recently, numerous studies utilized AI 

computing for solving different types of real-life problems [17−24]. Their capacity to learn from 

information, deal with transforming trends, and generalize facts makes them important in a wide range 

of industries, from robot learning and the recognition of trends to data evaluation and decision-making. 

In the context of COVID-19, the use of ANNs is growing as an exciting avenue for comprehending 

and handling the complexity involved with the epidemic. As a subtype of machine learning, ANNs 

have the capacity to discover sophisticated patterns and relationships among large datasets, thus 

making them particularly useful in analyzing the virus's multiple characteristics, such as propagation 

dynamics, infection rates, and probable outcomes. Atangana [25,26] made a significant contribution 

to COVID-19 modeling. Sindhu et al. provided an important investigation in the pursuit for an in-

depth understanding of the COVID-19 pandemic [27] and boost validity by combining the 

exponentiated inverse Weibull distribution and the inverse power law [28]. The investigation focuses 

on the dependability of the exponentiated Weibull distribution employing the inverse power law (IPL), 

which utilizes a combination of numerical computations and ANN modeling. This combines accurate 

numerical insights with the modeling capability of ANNs to grasp complicated patterns in data. Shafiq 

et al. presented detailed evidence to suggest the design of COVID-19 statistical modeling [29−31] by 

completely analyzing the efficiency of ANNs, in contrast with standard parametric techniques, and the 

enhanced robustness by integrating the exponentiated inverse Weibull distribution and the IPL [32]. 

The suggested BRM-NNB investigates the dynamic of XY-SIR-RS-DM and adds the following novel 

features: 

• By utilizing BRM-NNB, a unique embedded computational intelligence framework is created to 

investigate the XY-SIR-RS-DM. 

• The exact solutions for three different model variations of XY-SIR-RS-DM are contrasted with 

the results produced by the BRM-NNB approach. 

• To provide a more accurate solution to the XY-SIR-RS-DM model, an intelligent computing 

analysis with BRM-NNB is applied. 

• The outcomes of generated solutions and those that were referred to are compared using the 

explicit Runge-Kutta method approach. The data set is generated from the ND Solver tool using 

deterministic numerical computing in the processes of training, testing, and validation to acquire the 

approximation solution and compare it to the standard solution. 

• The neural network's decision variables are learned with the use of backpropagation via Bayesian 

regularization, which effectively optimizes the merit function at each epoch. 

• Statistical analyses demonstrate the accuracy and reliability of BRM-NNB; additionally, the 

predicted mean square error (MSE)-based measures predicted are precise and trustworthy. 

• The MSE graph depicts either the convergence of the model or the consistency, in the form of best 

performances up to 10−9. 

• The result corresponds with producing a minimal absolute error that is approximately close to zero, 

thereby demonstrating the usefulness of the proposed approach. 
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1.1. Organizational structure 

The study’s organization structure is as follows. The mathematical model for the nonlinear XY-

SIR-RS-DM is investigated in relation to the novel spreading pattern is described in the second section. 

A synopsis of the suggested algorithms and examples of its execution are provided in the third section. 

The suggested scheme's results are outlined in the fourth section's concluding remarks, which also 

include recommendations for additional research. 

2. Description and analysis of XY-SIR-RS-DM 

A new XY-SIR-RS-DM model was established to study the dynamics of rumor spreading [33], 

taking the interaction between media websites and friendship networks into account, as well as factors 

such as delay and cost in the spreading process, to more accurately describe the mechanism of rumor 

spreading under the influence of social media. The following are the model's presumptions: 

A1: Information flowing between individuals has a certain time delay due to the ad hoc nature of 

Internet browsing and the fact that various people have varied thought processes when it comes to 

accepting information. 

A2: The media has a specific ratio of registration to removal in the media website network layer. 

It is introduced to the susceptible media with the probability A1. It is assumed that the susceptible 

media is contaminated and will be transformed into the infected media with a specific probability ω, 

which is referred to as the infection rate of spreaders to websites when the spreader visits the 

susceptible media and leaves either a message or comment. Both the susceptible media and the infected 

media are simultaneously likely to leave the system with a probability of ε1 due to the healthy 

competition between media. 

A3: When an uninformed person sees an infected media, they will change into a rumor spreader 

with a probability of δ, which is known as the media action rate, with a probability of A2 in the 

friendship network layer. When an ignorant person is connected to a rumor spreader during the course 

of an offline interaction, the ignorant person will be persuaded by the spreader and change into the 

spreader with the probability υ, which is known as the general spreading rate. According to the 

migration rate ε2, which is similar to the population's death rate, a particular set of individuals have 

been eliminated from the population for some cause. 

A4: The spreader will eventually change into the stifler with the probability γ, which is known as 

the stifling rate, due to forgetfulness, losing interest, and other factors over time. 

The media in the network of media websites can be separated into two categories: susceptible 

media that isn't rumor-infected (expressed as X) and infected media that is rumor-infected (expressed 

as Y). The susceptible media does not contain any rumor information. The susceptible media will 

become infected and turn into an infected media when the extruders access the susceptible media and 

either post or leave comments regarding rumors on the media network. In the friendship network, 

individuals are categorized into three groups: those who know and actively disseminate rumors (denoted 

by S), those who are ignorant and have never heard of rumors (denoted by I), and those who know 

about rumors but have no desire to spread them (represented as R). 
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3. Proposed methodology 

Table 1. Description of default values of parameters and initial conditions. 

Parameter 

or  

Classes  

τi A1 ω ε1 δ A2 υ ε2 γ X(t) Y(t) S(t) I(t) R(t)  

Value or 

Initial 

Conditions  

1.6 0.05 0.8 0.1 0.5 0.2 0.8 0.2 0.5 0.99 0.01 0.001 0.995 0.004   

 

Figure 1. Neural network created for the BRM-NNB. 

Three phases constitute the suggested methodology. The dataset used as a reference input for 

ANNs is created by running explicit Runge-Kutta calculations for three different scenarios that are 

caused by variations in the various parameters of XY-SIR-RS-DM in phase one, formulating the BRM-

NNB's two-layer structure in phase two, and training the BRM-NNB using the Bayesian regularization 

technique in phase three. 
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Figure 2. Flowchart of the designed technique. 

In the literature, these AI algorithm-based approaches have a wide range of modern applications 

for solving differential equations across many different disciplines.  The "nftool" function in 

MATLAB provides access to the BRM-NNB processes, which uses the following data configuration: 

80% for training, 15% for assessment, and 5% for validation. Figure 1 shows the topology of the neural 

network created for the BRM-NNB, while Figure 2 shows a thorough flowchart of the design technique. 

Table 1 shows the default values of parameters and the initial conditions of classes involved in the 

model, which are taken from [33]. 
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3.1. Bayesian regularization 

A mathematical technique, known as Bayesian regularization, turns a nonlinear regression into a 

"well-posed" statistical problem similar to a ridge regression. An ANN variant called BRNN (Bayesian 

Regularization Neural Networks) is substantially more durable than a traditional ANN. Over-fitting of 

the model results from these networks with an immature convergence. The Bayesian approach is used 

to regularize networks by allowing optimization of characteristics using prior information. 

Theoretically intricate input-output relationships can be revealed by BRNN, thus making it a useful 

prediction model. The parameters of the presented study are adjusted to analyze the presented 

mathematical model after numerous experiments, experience, and over/under fitting scenarios. 

Moreover, the methodology is selected since it is responsible for calculating the gradient of a loss 

function with respect to all of the network weights. 

As a result of its probabilistic nature, Bayesian networks aid in event prediction and the 

identification of links among numerous variables or occurrences, which is why the following 

researchers have recently used these techniques in their work: Pantograph DDE [34], magneto 

rheological radiative hybrid Nano fluid flow [35], short-term wind forecasting [36], SEIR model for 

zika virus spreading [37], and a nonlinear model of the influenza virus [38]. 

4. Results and analysis 

This section includes numerical simulations with detailed descriptions for three distinct situations, 

each of which consists of three instances of the system (1) that represents the nonlinear XY-SIR-RS-

DM when using the suggested BRM-NNB.  

Figure 3 shows the use of the developed BRM-NNB in terms of the graphical outputs for scenario 

1 case 2. The fundamental performance function that directly impacts the network is the MSE factor. 

An effective system will come from minimizing this error. A smaller MSE suggests that the model's 

forecasts are more accurate. It is a measurement of reliability that indicates how well the model fits 

the data. A minimal MSE indicates an accuracy in forecasting the results and is essential when 

performing tasks that require precision (e.g., forecasting). Obtaining a minimal MSE is critical for 

assuring the forecast models' precision and dependability, as well as giving those making decisions the 

trust they need to use the model's results for better decision-making. 

We acquired the fitness of the data points in terms of the MSE for training in the range of 1.37E −

08 and the testing data points in the range of 1.44E − 08, thereby demonstrating a very low margin 

of error among the predicted and actual values. The presented MSE values indicate that the model 

obtained an exceptionally high level of efficiency on both data sets used for training and testing, with 

minimal errors. These results suggest that the model is stable, and its effectiveness in producing 

superior results is outstanding. Table 3 shows the MSE values for training and testing, as well as the 

best performance values. As shown, the values indicate a more powerful system result convergence.  

After the neural network is trained, the error histogram shows the discrepancies between the goal 

values and the predicted/output values. A histogram layer for ANNs is presented; the maximum samples 

hit an error at 1.67E-06, which is really close to the zero error. The identification of characteristics that 

illustrate the value distribution in certain local regions of space is a crucial component of the texture 

analysis. The spatial distribution of features is taken advantage of by the suggested histogram layer for 

the texture analysis, and the parameters for the layer are determined by backpropagation.  
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Figure 3. BRM-NN's outputs for scenario1 case2. 

The fitness function determines how closely a particular solution adheres to the ideal solution of 

the desired problem and establishes a solution's suitability. Each member of the population possesses 

all of the BRM-NNB network's weights and thresholds. Fitness functions can be used to determine 

individual fitness values. In order to limit the error until the BRM-NNB integrates the training data, 
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the backpropagation technique starts with random weights. Conventional backpropagation, which is a 

gradient decent technique, moves the network weights along the performance function's gradient's 

inverse. The learning problem is thought to have been solved by selecting a set of weights that 

minimize the error function. The values of mu and the gradient in the transition state at 500 epochs are 

500 and 7.78E-08, respectively. Additionally, a regression plot is illustrated, which shows that the 

regression is linearly distributed. 

Similarly, we have obtained these outputs for all three scenarios with three cases each, which are 

described in Table 2, and the numerical outcomes obtained by BRM-NNB for all cases are illustrated in 

Table 3.  

Table 2. Default parameter setting of all scenarios for XY-SIR rumors propagating dynamical model. 

Scenarios Parameters  Case 1 Case 2 Case 3 

S1 A1  A1 = 0.04 A1 = 0.03 A1 = 0.02 

A2  A2 = 0.4 A2 = 0.3 A2 = 0.2 

S2 δ  δ = 0.3 δ = 0.5 δ = 0.7 

 υ  υ =0.7 υ =0.5 υ =0.3 

S3 τ  τ = 0.5 τ = 1.5 τ = 2.5 

Table 3. Numerical Outcomes of BRM-NN for all scenarios. 

Scenarios Cases         MSE Performance Gradient Mu Epoch Time 

Training Testing     (s) 

I I 4.20E-08 3.88E-08 4.20E-08 9.68E-07 50.0 1000 53s 

II 1.37E-08 1.44E-08 1.37E-08 7.78E-08 500 98 5s 

III 9.04E-07 8.74E-07 9.04E-07 5.87E-06 500 1000 54s 

II I 1.53E-08 2.11E-08 1.53E-08 9.95E-08 5000 729 40s 

II 1.11E-08 1.25E-08 1.11E-08 9.98E-08 5000 648 35s 

III 4.72E-09 3.47E-09 4.72E-09 9.95E-08 500 814 44s 

III I 1.17E-07 1.29E-07 1.17E-07 4.92E-05 50.0 1000 58s 

II 4.40E-07 4.47E-07 4.40E-07 1.01E-06 50.0 1000 57s 

III 6.41E-06 6.52E--6 6.41E-06 2.18E-06 50.0 1000 59s 

Comparative studies of BRM-NN results with reference results obtained by explicit Runge-Kutta 

numerical method utilize the following variables: X(t), which represents the susceptible media that 

isn't rumor-infected, Y(t), which represents the infected media that is rumor-infected, S(t), which 

represents spreaders (i.e., individuals who know and actively disseminate rumors), I(t), which 

represents individuals who are ignorant and have never heard of rumors, and R(t), which represents 

individuals who know about rumors but have no desire to spread them. Figures (4−6) make it clear 

that BRM-NN solutions overlap with the explicit Runge-Kutta results, and the resultant values of 

absolute error (AE) for scenarios 1 to 3 for the nonlinear XY-SIR-RS-DM are astonishingly low in 

each case. For all scenarios of the nonlinear XY-SIR-RS-DM, the results of the BRM-NN characterize 

the accuracy and convergence of the proposed method.  
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Figure 4. Comparison of results of BRM-NN and absolute error for scenario 1. 
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Figure 5. Comparison of results of BRM-NN and absolute error for scenario 2. 
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Figure 6. Comparison of results of BRM-NN and absolute error for scenario 3. 

The discrepancy between a quantity's measured or inferred value and its actual value is known as 

the AE. The AE assists users in turning learning difficulties into optimization problems because it is 
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one of the most widely utilized loss functions for regression situations Moreover, it serves as a simple, 

quantifiable way to quantify errors in regression issues. For AE, we have illustrated the graphical 

outcomes of each scenario with three cases. For scenario 1 the AE lies between 2 810 10− −→    
2 710 10− −→ and 2 610 10− −→  for cases 1-3, respectively. Similarly, for scenario 2, the range of AE for 

all three cases lies from 3 910 10− −→ . Additionally, for scenario 3, the range of AE for all three cases 

lies from 1 710 10− −→ . 

5. Conclusions 

The BRM-NNB is explored in relation to the unique spreading pattern for different examples of 

three scenarios based on the modification in different parameters and time delays, and offers a numerical 

solution for the XY-SIR-RS-DM. The computing BRM-NNB approach is implemented using the 

training, testing, and verification data with 10 hidden neurons, which are divided as 80%, 15%, and 5%, 

respectively. In view of the aforementioned numerical discoveries and simulations, the nonlinear XY-

SIR-RS-DM has the following significant conclusions: 

❖ The suggested randomized computing paradigm offered by BRM-NNB was successfully used to 

find the solution to the XY-SIR-RS-DM simulation problem. The behavior of XY-SIR-RS-DM is 

strongly influenced by changes in the parameters. 

❖ Studies comparing the suggested BRM-NNB findings to the referenced numerical data produced 

by the explicit Runge-Kutta method displayed the planned technique's accuracy and convergence, as 

well as the amount of AE within the range of 3 910 10− −→ . The results certify the proper training, 

testing, and validation modelling for the various scenarios. 

❖ Regression matrices, MSE acquisition curves, and histogram error visualizations all demonstrate 

how effective, trustworthy, and resilient the built-in BRMNNs are for all tasks. 

In the future, one may take advantage of the design computing paradigm's strengths and their 

deep versions for the numerical treatment of epidemic models, fractional order problems, wave radar 

systems, and computational fluid dynamics models [39−43].  
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