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Abstract: Accurate detection of non-alcoholic fatty liver disease (NAFLD) through biopsies is 

challenging. Manual detection of the disease is not only prone to human error but is also time-

consuming. Using artificial intelligence and deep learning, we have successfully demonstrated the 

issues of the manual detection of liver diseases with a high degree of precision. This article uses various 

neural network-based techniques to assess non-alcoholic fatty liver disease. In this investigation, more 

than five thousand biopsy images were employed alongside the latest versions of the algorithms. To 

detect prominent characteristics in the liver from a collection of Biopsy pictures, we employed the 

YOLOv3, Faster R-CNN, YOLOv4, YOLOv5, YOLOv6, YOLOv7, YOLOv8, and SSD models. A 

highlighting point of this paper is comparing the state-of-the-art Instance Segmentation models, 

including Mask R-CNN, U-Net, YOLOv5 Instance Segmentation, YOLOv7 Instance Segmentation, 

and YOLOv8 Instance Segmentation. The extent of severity of NAFLD and non-alcoholic 

steatohepatitis was examined for liver cell ballooning, steatosis, lobular, and periportal inflammation, 

and fibrosis. Metrics used to evaluate the algorithms’ effectiveness include accuracy, precision, 

specificity, and recall. Improved metrics are achieved by optimizing the hyperparameters of the 

associated models. Additionally, the liver is scored in order to analyse the information gleaned from 

biopsy images. Statistical analyses are performed to establish the statistical relevance in evaluating the 

score for different zones. 

Keywords: hepatic steatosis; deep learning; convolutional neural network; biopsy images; scoring of 

liver; instance segmentation 
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1. Introduction  

Non-alcoholic fatty liver disease (NAFLD) is a worldwide issue that affects more than 10% of 

people globally [1]. The incidence of NAFLD exceeds 30% in industrialized nations, where corpulence 

and its accompanying illnesses of diabetes and metabolic disorders are prominent. In both adults and 

children with fatty liver disease, a liver biopsy examination remains an essential tool in clinical practice 

and scientific research. The ever-increasing complexity and number of complaints related to liver 

diseases pose a new set of challenges in efficiently detecting such diseases. NAFLD is characterized 

by an accumulation of excess adipose tissue in the hepatic region that is not induced by alcohol. 

NAFLD is a liver ailment marked by steatosis, which is one of the most frequent liver abnormalities 

in obese people. A fatty liver is characterized as one in which fat constitutes greater than 5% to 10% 

of the liver [2]. A liver biopsy is the benchmark process to quantify hepatic steatosis. A biopsy is an 

invasive technique (i.e., surgery) that has a significant chance of catastrophic consequences, including 

discomfort, internal bleeding, infection, and organ harm. The purpose of a liver biopsy is to provide 

crucial information for patient treatment, clinical trials, and continuing research on specific liver 

illnesses [3]. Though there are no symptoms associated with NAFLD, alcoholic fatty liver disease 

(AFLD), nonalcoholic steatohepatitis (NASH), and acute fatty liver of pregnancy (AFLP) are distinct 

forms of fatty liver diseases [3,4]. Among these, NAFLD encloses a broad clinical spectrum, spanning 

from bland steatosis to NASH, that might advance to liver cirrhosis and hepatic carcinoma (HCC). If 

NAFLD advances to cirrhosis, then fluid retention, internal bleeding, and loss of healthy liver function 

may occur. 

Alcohol retention prevents the liver from properly metabolizing fat, which results in AFLD. 

NASH develops when there is an abundance of liver fat and hepatic inflammation. It causes 

inflammation of the liver, which can ultimately result in cirrhosis and liver failure. Hepatitis B and C 

are two liver disorders brought on by viral infections [5]. There are two types of NAFLD detection 

methods: invasive and noninvasive. NAFLD is frequently detected using invasive techniques such as 

biopsies as well as non-invasive techniques such as ionizing radiation, computerized tomography (CT), 

magnetic resonance imaging (MRI), ultrasonography (USG), and liver enzyme tests. To find 

abdominal bleeding or injury, CT scans are used. This painless, non-invasive method of identifying 

internal damage may help save the lives of patients [6]. 

Due to the large sample size, the current procedures for the pathological diagnosis of the hepatic 

tissue are unable efficient, cost effective, and fast paced, which in turn demands new technology or 

methods to be imparted for the detection of liver diseases. Efficient liver disease diagnostic techniques 

using artificial intelligence (AI) is becoming indispensable. Recently, AI and deep learning have found 

tremendous applications in medical imaging. Sethunath et al. [7] executed a supervised machine 

learning algorithm to detect different areas in mouse liver biopsy pictures. Owjimehr et al. [8] proposed 

wavelet packet transforms to identify liver illness in ultrasound pictures. Additionally, computer-aided 

design (CAD) or deep learning algorithms have been utilized to diagnose NAFLD patients using 

ultrasound pictures [9–11]. Automated segmentation of the carotid intima-media thickness in 

ultrasound images was performed using a fast fuzzy c-mean clustering technique [12]. Tsiplakidou et 

al. [3] introduced a thresholding approach in which the fatty sections of images are monitored and 

assessed depending on the eccentricity of the area, whereas Liquori et al. [13] demonstrated the 

recognition of fat zones based on color homogeneity and circular shapes. 

To identify hepatic steatosis, certain powerful machine learning methods have been applied. 
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Additionally, convolutional neural networks (CNNs) have been utilized to automatically identify 

polyps in the colon [14–17]. Mulay et al. [6] accomplished liver segmentation utilizing MRI [18,19] 

and CT data employing HEDMask-R-CNNs (holistically-nested edge detection mask-region-

convolution neural network). Glomerulus detection in kidney biopsy images was performed utilizing 

a Mask R-CNN [20]. For hepatic segmentation from CT scan images, Cohen et al. [21] applied CNN. 

Along with the aforementioned studies, Tang et al. [22] executed Faster R-CNN and DeepLab for 

autonomous liver segmentation. Guo et al. [23] employed a deep learning method for hepatic steatosis 

segmentation to predict steatosis using boundary boxes and classification probability. From medical 

imaging, AI has always been a key component in illness detection [24,25]. Utilizing Mask R-CNN, 

Podder et al. [26] identified COVID-19 using chest X-ray images with a great degree of accuracy and 

specificity. Applications of the You Only Look Once (YOLO) algorithm include skin lesion 

segmentation [27], identification of blood cells from human blood smears [28,29], liver detection [30], 

and cholelithiasis and gallstone categorization in CT images [30]. 

Therefore, as far as NAFLD is concerned, the present status of the application of AI and deep 

learning has not been robustly explored; moreover, we have attempted various techniques of AI and 

deep learning on biopsy images of the liver. This research presents a methodology for accurately 

diagnosing hepatic steatosis that makes use of SSD (single shot multibox detector) [31], Faster R-

CNN [32], and YOLO [33]. The application of these techniques is compared for a more effective and 

practical use. The proposed networks are not specific to solely liver biopsy images. Instead, these 

networks can also be applied to all kinds of microscopic images from slides. 

Semantic segmentation is a deep learning technique that labels or categorizes each pixel in an 

image. Semantic segmentation, also referred to as image segmentation, is the technique of gathering 

areas of an image which correspond to the identical object class [34]. The use of semantic segmentation 

is found in medical imaging and diagnostics, self-driving cars, and facial recognition, and is a 

sophisticated technique for segmenting images that deals with finding instances of objects and 

identifying their boundaries with an image. In the case of segmentation, each object of interest that 

occurs in an image is both recognized and separated. Instance segmentation is crucial for autonomous 

vehicles, medical imaging, disease detection from microfluidic devices [35], and satellite photography. 

Instance segmentation is supported by the U-Net [36], Mask R-CNN [37], and numerous members of 

the YOLO family. 

A deep convolutional network known as Faster R-CNN contains two stages and uses an end-to-

end network with high accuracy. The network is capable of predicting the positions of myriad quickly 

and precisely. Each predictor improves the overall recall while predicting the particular object size, 

aspect ratio, or category, resulting in an overall improvement in recall. Along with object detection, 

Faster R-CNN utilizes a region proposal network to produce object proposals. 

YOLO utilizes a single neural network to perform detection across the entire image. The network 

splits the picture into regions and forecasts the probability and bounding boxes for every region [38]. 

The forecast, which has the maximum IoU (Intersection over Union) with the ground truth, allocates 

a predictor for each prediction of an object. By employing SSD, we can recognize multiple items inside 

an image with just one shot, as opposed to RPN-based systems such as the R-CNN series, which require 

two shots-one for making region suggestions and for recognizing the item of each proposal. It uses 

multi-scale features and default boxes for higher efficiency. Identifying things simply involves 

predicting their class and placement within a given area. 
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2. Materials and methods 

An overview of the proposed methods and the biopsy dataset required for fatty liver disease 

detection is described below. 

2.1. Training data preparation 

The dataset contains 21,435 images of liver biopsies. It is an open-source collection of data and 

is accessible in the Open Science Framework (https://osf.io/p48rd/) [39]. These anatomical images 

were captured on a Zeiss AxioScan Z1 scanner (Carl Zeiss, Jena, Germany), which is a high-definition 

color camera containing a 20× objective for bright field microscopy illumination and images with a 

pixel resolution of 0.22 m/px [40]. The images captured were 897 × 897 px2 in a BiggTIFF format. 

The sections of the liver were obtained from mice of various ages. The obtained sample was from an 

axial slice in the center of the liver lobe, which was a 3 µm thin section. It included both healthy and 

NAFLD/NASH liver. Additionally, Masson’s trichrome staining was performed on the slides. 

From the dataset, as large as 5,348 biopsy images were chosen for use in training, testing, and 

validating the Faster R-CNN, SSD, and YOLO algorithms. For this experiment, 4,000 images were 

taken for training, whereas 800 images were utilized for testing and 548 images were utilized for 

validation. The biopsy image dataset contained four classes, with 1,000 images each for the training 

dataset: ballooning, steatosis, inflammation, and fibrosis. On a single graphics processing unit (GPU), 

tests were conducted (16 GB RAM, NVIDIA GeForce RTX 3080 Ti) for the dataset. These images 

were annotated by skilled pathologists [41]. Data preprocessing included resizing the images to 

299×299 px2 for evaluation. Augmentations of the dataset were performed to boost its size and enhance 

training effectiveness. In this study, different augmentation techniques such as rotation, flipping, 

resizing, and gaussian blurring were considered. 

2.2. Deep learning model 

2.2.1. Faster R-CNN 

Faster R-CNN is an algorithm used in object recognition that predicts the object’s location 

utilizing the RPN (region proposal network). Fast R-CNN utilizes only region of interest (ROI) pooling, 

which consumes more time as compared to Faster R-CNN (which utilizes RPNs), and thus directly 

produces region proposals. RPN has been used in Faster R-CNN to supplement the selective search 

method employed by Fast R-CNN. VGG-16 was used to acquire an accurate valuation of an image. 

By its pooling layer, the ROI generates a feature map of uniform size [42]. The method was tested 

using the PASCAL VOC 2007 dataset. 

The ROI pooling layer receives bounding boxes of numerous forms and dimensions. For each 

anchor, the ROI pooling layer extracts fixed size feature maps. A fully connected layer with a Softmax 

activation function and a linear regression layer receives the feature maps. Finally, it separates fatty 

liver cells and forecasts the bounding boxes for the cells that have been found. The classification and 

bounding box regression losses are combined in the following multi-task loss function: 

𝐿({𝑝𝑖}, {𝑡𝑖}) =  
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗) +  𝜆 
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗)𝑖𝑖 ,   (1) 
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 where i and 𝑝𝑖 represent the anchor’s index and the predicted likelihood that the anchor is a 

fatty liver tissue, respectively. The value of the ground truth label, represented by 𝑝𝑖
∗, is 1, unless the 

anchor denotes fatty liver tissue, and 0 if otherwise. The vector 𝑡𝑖
∗ denotes the positive anchor's actual 

ground truth coordinates, while 𝑡𝑖  denotes the bounding box's four coordinates with the expected 

parameter. {𝑝𝑖}  and {𝑡𝑖}  are the respective outputs of the classification and regression layer. The 

classification loss is calculated utilizing the following equation: 

𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖
∗) =  − log[𝑝𝑖

∗𝑝𝑖 + (1 − 𝑝𝑖
∗)(1 − 𝑝𝑖)].    (2) 

The following equation indicates the regression loss: 

𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗) = 𝑅(𝑡𝑖 − 𝑡𝑖

∗)       (3) 

where R indicates smooth L1 function. Figure 1 depicts the Faster R-CNN architectural layout. 

The accurate diagnosis of fat tissues in the liver is accomplished using Faster R-CNN. 

 

Figure 1. Architecture of Faster R-CNN for fatty liver tissue detection. 

2.2.2. SSD 

SSD is another useful technique to identify steatosis in the liver. SSD is a form of convolutional 

neural network dependent on the feed-forward convolutional neural network, in which the nodes do 

not form a loop, which creates fixed-sized bounding boxes and a score for the liver tissues to be 

recognized within those boxes. To obtain the final detections, the non-max suppression step is followed. 

In contrast to CNN, SSD separately detects objects using multi-scale feature maps. 

The base network, the additional feature extraction layer, and the prediction layer make up the 

SSD architecture. The initial layer of any conventional image categorization within the neural network 

is the base network. The feature maps are derived utilizing VGG-16. 

At the conclusion, the convolutional layers take the place of completely linked layers. SSD 

generates anchor boxes and predicts their categories and offsets using feature maps, which are 

fundamentally based on many scales, as shown in Figure 2. The loss function consolidates the 

classification loss and bounding box regression loss [43]: 
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𝐿(𝑥, 𝑐, 𝑙, 𝑔) =  
1

𝑁
(𝐿𝑐𝑙𝑠(𝑥, 𝑐) + 𝛼 𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔)).     (4) 

The classification loss is calculated using the subsequent equation: 

 𝐿𝑐𝑙𝑠(𝑥, 𝑐) =  − ∑ 𝑥𝑖𝑗
𝑝
log(𝑐 

𝑖
𝑝) − ∑ log(𝑐 𝑖

𝑜)𝑖∈𝑁𝑒𝑔
𝑁
𝑖∈𝑃𝑜𝑠 ,   (5) 

where 𝑐 𝑖
𝑝
= 

exp𝑐𝑖
𝑝

∑ exp𝑐𝑖
𝑝

𝑝
 and N represents all of the prediction-matched boxes. 

The regression loss is shown by the following equation: 

𝐿𝑟𝑒𝑔(𝑥, 𝑙, 𝑔) =  ∑ ∑ 𝑥𝑖𝑗
𝑘 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1  (𝑙𝑖

𝑚 − 𝑔 
𝑗
𝑚) , 

𝑚∈𝑐𝑥,𝑐𝑦,𝑤,ℎ
𝑁
𝑖∈𝑝𝑜𝑠     (6) 

𝑔 
𝑗
𝑐𝑥  =  

(𝑔𝑗
𝑐𝑥 − 𝑏𝑖

𝑐𝑥)

𝑎𝑖
𝑤 , 𝑔 

𝑗

𝑐𝑦  =  
(𝑔

𝑗

𝑐𝑦 − 𝑏
𝑖

𝑐𝑦)

𝑎𝑖
ℎ , 

𝑔 
𝑗
𝑤  =  log (

𝑔𝑗
𝑤

𝑏𝑖
𝑤) , 𝑔 𝑗

ℎ  =  log (
𝑔𝑗
ℎ

𝑏𝑖
ℎ) , 

where 𝑔  indicates ground truth boxes, 𝑙  indicates predicted boxes, 𝑥𝑖𝑗
𝑝

  indicates the ith 

bounding box matched to jth ground truth box, and 𝑐𝑥 and 𝑐𝑦 are offsets of the bounding box b. 

 

Figure 2. Architecture of SSD for fatty liver tissue detection. 

2.2.3. YOLO 

You Only Look Once, also known as YOLO [44], is a relatively recent strategy that relies on 

regression. For the entire image under study, YOLO is used to forecast classes and boundary boxes in 

only one algorithm run. Its most common application is real-time object detection. YOLOv5, YOLOv7, 

and YOLOv8 all include instance segmentation as an extra feature with a rather high mAP (mean 

average precision) for each model. 

A new era in object identification and segmentation began with the introduction of anchor boxes 
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for YOLOv2 in 2017. On top of the current YOLO model, several enhancements were made. Its 

successor, YOLOv3, which generated predictions at three different granularity levels, was created in 

2018. The newer YOLO models focused on advances such as feature aggregations and architectural 

improvements enabled by PyTorch in YOLOv4 and YOLOv5, respectively. 

Other notable mentions in this category of algorithms with performance enhancements include 

PP-YOLO, Scaled YOLOv4, and PP-YOLOv2. In accordance with modifications in its architecture, 

the YOLOv6 algorithm also included a decoupled head, which has proven to increase its performance. 

YOLOv7 has a shorter gradient in the back propagation layers, thereby increasing the efficiency of the 

algorithm. Currently, YOLOv8 is among the most reliable algorithms in the world of computer vision, 

alongside an association of a tracking component. 

 

Figure 3. Architecture of YOLO for fatty liver tissue detection. 

The image is initially scaled to 224×224 pixels. Then, the picture is divided into 7 × 7 grid cells, 

each of which is responsible for estimating bounding boxes. Non-max suppression removes the 

bounding boxes that has the maximum common area and the boxes with a low likelihood of containing 

the classes. The anchor box allows the YOLO algorithm to identify several objects that are centered in 

a single grid cell [39,45]. The method employs a single neural network for detection. The architecture 

of YOLO is illustrated in Figure 3. 

At first, the model was tested on the PASCAL VOC detection dataset. The network design 

includes 24 convolutional layers and two fully connected layers for prediction. We have only one class 

for identifying hepatic steatosis. For the anchor box, the bounding box parameters and prediction 

probability are determined. As a result of the presence of five anchor boxes, it is likelihood that the 

object will be present in the grid cell pc; and therefore, the object's central coordinates (x, y) 

corresponding to the cell's top left corner of the predicted class, as well as the length and width of the 

rectangle's enclosing box can be calculated. The bounding box represents the newly identified fatty 

hepatic tissues. Consequently, if 𝑁𝐹 is the number of filters in the final convolution layer, 𝑁𝐴 is the 

number of anchor boxes and 𝑁𝐶  is the number of classes, which is summarized in the following 

equation: 

𝑁𝐹 = 𝑁𝐴  ×  (𝑁𝐶 + 5) 
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The YOLO algorithm, which is used to automatically diagnose fatty liver, uses an acceptable 

threshold. The typical absolute difference between our guess and the underlying data at different 

thresholds levels is used to compute the threshold value. The final generated prediction boxes on the 

photos tally the number of fatty liver tissues in the output. The settings define the boundary boundaries 

that surround each uncovered tissue. 

The total loss consists of classification, localization, and confidence losses combined. The total 

loss function calculated in YOLO algorithm is given by the following: 

𝐿 = 𝜆𝑐𝑜𝑜𝑟𝑑∑∑𝟏𝑖𝑗
𝑜𝑏𝑗(𝑥𝑖 − 𝑥̂𝑖)

2 + (𝑦𝑖 − 𝑦̂𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

 

+ 𝜆𝑐𝑜𝑜𝑟𝑑∑∑𝟏𝑖𝑗
𝑜𝑏𝑗

𝐵

𝑗=0

𝑆2

𝑖=0

(√𝑤𝑖 − √𝑤̂𝑖)
2 + (√ℎ𝑖 − √ℎ 𝑖)

2 

+ ∑∑𝟏𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − 𝐶̂𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

 

+ 𝜆𝑛𝑜𝑜𝑏𝑗∑∑𝟏𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − 𝐶̂𝑖)
2

𝐵

𝑗=0

𝑆2

𝑖=0

 

                                                          + ∑ 𝟏𝑖𝑗
𝑜𝑏𝑗 ∑ (𝑝𝑖(𝑐) − 𝑝 

𝑖
(𝑐))2𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑆2

𝑖=0       (7) 

where either𝟏𝑖
𝑜𝑏𝑗

= 1 specifies a detection comes into view inside the cell 𝑖, or else its 0. 𝟏𝑖𝑗
𝑜𝑏𝑗

=

1 shows the 𝑗th boundary box inside cell. 𝑖 is the cause of the fatty liver tissues being detected, or if 

not, its 0 [46]. 𝑝 
𝑖
(𝑐) demonstrates the conditional class likelihood of class c in cell I [47]. 𝜆𝑐𝑜𝑜𝑟𝑑 

indicates the weights for the boundary box coordinate losses. 𝐶̂𝑖 is the box confidence score of the 

box 𝑗 in cell 𝑖. The loss is reduced when the background is identified using 𝜆𝑛𝑜𝑜𝑏𝑗. For this research, 

𝜆𝑐𝑜𝑜𝑟𝑑 = 5 and 𝜆𝑛𝑜𝑜𝑏𝑗 = 0.5 was considered. 

2.3. Instance segmentation 

In this paper, the instance segmentation algorithms explored for the diagnosis of liver conditions 

include Mask R-CNN, U-Net, YOLOv5 Instance Segmentation, YOLOv7 Instance Segmentation, and 

YOLOv8 Instance Segmentation. The family of YOLO algorithm frameworks has shown consistent 

improvement, not just in image recognition, but also in instance segmentation. Within the duration of 

a couple of years, YOLO models have gained significant acclaim, not just from the community of 

people working in the field of computer vision, but also from associations of medical science because 

of their high accuracy of detection and faster processing of videos. The primary importance of using a 

YOLO model is its small size, which enables them to deploy in resource-constrained parallel 

computing edge devices while still allowing faster inference speeds. 

The aforementioned algorithms work both on images and videos. Therefore, they may also find 

applications in various AI-aided medical imaging applications in X-ray, Ultrasound, CT, MRI, positron 

emission tomography (PET), single photon emission computed tomography (SPECT), and video 
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applications in surgical endoscopy and capsule endoscopy [48]. The Mask R-CNN architecture has an 

extra layer for the prediction of the segmentation on top of the layers in Faster R-CNN. Thus, bounding 

boxes are generated along with masks for the ROIs. It consists of several layers including the 

convolutional layer, pooling layer, and fully connected layer. U-Net is one of the most popular 

algorithms for instance segmentation, and the derived characteristics have grown more abstract as the 

neural networks have grown even deeper. U-Net consists of several up-sampling and down-sampling 

steps. 

2.4. Scoring of liver 

A grade is the global measures of liver cells and inflammatory response due to injury which shows 

potentially changeable characteristics. The stage is an evaluation of the position of fibrosis [49] and 

constructive alteration; therefore, it is practically reversible. The grade describes the quantity [50], 

whereas the stage does not. The stage only provides information on the parenchymal location of 

collagen and matrix buildup, as well as modifications to the vascular/constructive system. Compared 

to staging, morphological measurement of fibrosis in hepatic disorders necesstitates a particular 

strategy that yields prominent but more contrasting information. There are three types of grades in 

scoring of liver: mild, moderate and severe [51,52]. However, scoring cannot be applied to stages due 

to the inclusion of fibrosis location and constructive modifications when present, such as in cirrhosis. 

Scoring can be performed after Hematoxylin and Eosin or Masson’s trichrome staining for the 

evaluation of several biopsies from patients in clinical trials. The histological features observed in the 

human liver are steatosis, lobular inflammation, ballooning, periportal inflammation, and fibrosis. The 

unweighted total NAFLD Activity Score (NAS) is independently calculated for each lesion. The value 

of NAS spans from 0−8. It comprises of steatosis (0-3), lobular inflammation (0-3), and hepatocyte 

ballooning (0-2) [53]. Ballooning injury & steatosis mainly contribute to inflammation & fibrosis in 

the NAFLD score framework [39]. Further morphological structures include acidophil bodies, 

Mallory-Denk bodies and the zonal location of steatosis. The staging of fibrosis progresses from none 

to portal or periportal. It might advance to bridging fibrosis and consequently cirrhosis in a linear 

manner. In NASH and NAFLD, the fibrosis progresses from none to perisinusoidal. Then, it advances 

to periportal or bridging. Bridging fibrosis might lead to cirrhosis of the liver [54]. At the moment, the 

most popular grading scale is the NAS. 

The distinct types of scoring frameworks are the Brunt system, NASH-CRN system & SAF 

system. Brunt et al. [50] divided the micro-inflammatory grades of NASH into grades: 1,2, and 3 [55]. 

Overall, they suggested a fibrosis severity and location-based rating system: zone 3 of stage 1 

perisinusoidal fibrosis; stage 2 portal fibrosis along with the aforementioned stage 1; stage 3 bridging 

fibrosis in addition to stage 2; and stage 4 is cirrhosis. Stage 1, zone 3 is divided into the subcategories 

1A, 1B, and 1C, which correspond to mild, moderate, and only portal/periportal, respectively [56]. 

Sorely obese patients and pediatric patients sporadically manifest fibrosis [57]. The NASH Clinical 

Research Network (NASH-CRN) formulated the NAS for clinical exploration. The primary objective 

of the NAS is to access the etiological changes in the patient’s liver with time. Recent work has utilized 

the criterion value of NAS, particularly NAS ≤ 5, as a substitute for the cytological determination of 

NASH. The SAF activity score is used to calculate hepatocyte ballooning and lobular inflammation, 

and a score of ≥ 3 indicates either bridging fibrosis or cirrhosis. 
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2.5. Statistical analysis 

The variables are continuous and is evidenced by mean and standard deviation. In order to predict 

quantitative data, percentages are used with the numbers. A paired sample T-Test is used to contrast 

the normally disctributed continuous variables. A one-way analysis of variance (UNIANOVA) was 

executed for the NAFLD diagnosis of different classes [58]. Weighted Kappa scores can be of two 

types: Inter-Rater & Intra-Rater. The intraclass correlation coefficient was obtained from the 

component of the variance model. The histological characteristics obtained from the diagnosis of 

steatohepatitis can be performed using the Chi-square test. A Chi-Square Test is an examination for 

autonomy; it indicates if there is a link but does not indicate the strength of the association. We 

measured the effect size using Cramer’s V. Fisher’s exact test and the Chi-Square test were performed 

using a Yates’ correction test for the data. The p-values can be obtained from Mantel Haenszel χ2 test 

for satisfying 2 × 2 tables. The IBM SPSS Version 27 and Graph Pad Prism software were used for 

statistical evaluation [55]. 

In statistics, the intraclass correlation coefficient is a summarization of data that can be applied 

when numerical quantifications are made on units that are assembled into groups. It expresses the units 

in the same group that are highly similar to each other. The inter-rater reliability determines the degree 

of consistency or reliability in a process. The inter-rater reliability is also estimated with Cohen’s 

Kappa. Cohen’s Kappa allows us to evaluate the inter-rater reliability when we have nominal or ordinal 

variables. We want to determine the –inter-rater reliability between these two classes. The Kruskal-

Wallis Test is a one-way ANOVA’s non-parametric counterpart. The dependent variable must be 

continuous, observations must be independent, there must be no notable outliers, homogeneity of 

variance, and an independent variable must exist with two or more categorical groups. Additionally, 

the dependent variable must have a distribution that is roughly normal at each level of the independent 

variable. Now, the assumptions for the Kruskal-Wallis test are slightly different. The data points must 

be independent of one another, there must be five data points in each sample, participants must be 

chosen at random from the population, and the sample size must be roughly equal. Both the normality 

of the distribution and the equality of the variances are not requirements. 

For the Wilcoxon W, if the asymptotic significance value is 0.05 or less, then there is a significant 

difference between the two scores. The Z-score is a numerical computation indicating a value’s linkage 

to the mean of a batch of values. Determination of the Z-score is performed with regard to standard 

deviations from the average. If the Z-score is zero, it implies that the value of the data element is 

similar to the average value. Multivariate associations with the identification of steatohepatitis were 

evaluated utilizing multinomial logistic regression models, which can produce an odds ratio with 95% 

confidence intervals. Additionally, these regression models were utilized to calculate the p-values. 

After performing a Bonferroni correction for numerous comparisons, a p-value of 0.025 was regarded 

to be important. 

3. Results 

Although the liver biopsy is the gold standard for detecting liver steatosis, it is insufficient in 

determining the disease’s frequency in a given population [59]. Steatosis refers to the buildup of 

triglycerides as macromolecules within the cytoplasm of hepatocytes. This condition must be present 

for any form of NAFLD to exist. A macrovesicular steatosis pattern will be present in the fat. Large 
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vacuoles, called fat vacuoles, usually contain a macrovesicular steatosis pattern in each cytoplasm and 

push the nucleus to one side. On one hand, some regions have medium-sized fat droplets, while others 

have very minute ones. This study uses metrics often utilized for object detection tasks. The four 

rectangle-shaped coordinates (x,y,w,h) of the identified bounding boxes constitute the model’s output, 

the parameters of which are shown below. 

True Positive (TP): the accurate recognition outcome if the recognized box corresponds to fatty liver 

tissue ground truth. 

False Positive (FP): the improper recognition outcome where the identified box lies outside fatty liver 

tissue ground truth. 

True Negative (TN): no recognition for images in which fatty liver cells are not present. 

False Negative (FN): no recognition for images in which fatty liver cells are present. 

To evaluate the performance, these parameters are used to calculate the following metrics [24]: 

Accuracy (AC): (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100)% ,     Recall (RC): (

𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100)% 

Specificity (SP): (
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100)% ,          Precision (PR): (

𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100)% 

F1-score (F1): (
2×𝑃𝑅×𝑅𝐶

𝑃𝑅+𝑅𝐶
× 100)% ,          F2-score (F2): (

5×𝑃𝑅×𝑅𝐶

4×𝑃𝑅+𝑅𝐶
× 100)% 

The diagnostic performance of various algorithms for fatty liver disease has been illustrated in 

Table 1. The model's performance is reflected by its value, which should be as near to 1 as possible. 

Table 1. Comparative image recognition performance of algorithms for fatty liver detection. 

Method TP FP TN FN AC (%) SP (%) PR (%) RC (%) F1 (%) F2 (%) 

Faster R-

CNN 

710 21 69 0 97.375 76.67 97.127 100 98.543 99.411 

SSD 653 10 134 3 98.375 93.055 98.491 99.543 99.014 99.33 

YOLO v3 728 17 55 0 97.875 76.39 97.718 100 98.846 99.535 

YOLO v4 731 11 57 1 98.5 83.823 98.517 99.863 99.185 99.591 

YOLO v5 793 1 6 0 99.875 85.714 99.874 100 99.937 99.975 

YOLO v6 744 12 42 2 98.25 77.78 98.413 99.732 99.068 99.465 

YOLO v7 746 11 38 5 98 77.551 98.547 99.334 98.939 99.176 

YOLO v8 795 1 4 0 99.875 80 99.874 100 99.937 99.975 
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For 8,000 iterations, the average loss are found to be 0.383155 and 1.779745 for YOLOv3 and 

YOLOv4, respectively. For 100 epochs, the total loss for YOLOv5, YOLOv6, YOLOv7, and YOLOv8 

algorithms are 0.0247318, 2.3778, 0.03914, and 0.023472, respectively. The mAP value for YOLOv8 

is found to be 99.1%, which is higher than the mAP value of all other algorithms which are used to test 

the models. The IoU value obtained is 0.999 for YOLOv8, thereby indicating that the predicted 

bounding box is quite close to the ground truth bounding box. The TP, TN, FP, and FN for the YOLOv8 

algorithm are 99.375%, 0.125%, 0.5%, and 0%, respectively. The accuracy, specificity, precision, 

recall, F1-score, and F2-score are 99.875%, 80%, 99.874%, 100%, 99.937%, and 99.975%, 

respectively. The FP is considerably low while testing the YOLOv8 model. A threshold value of 30% 

is utilized while testing every algorithm. The batch size of 16 is taken for training all the models. The 

performance comparison of the instance segmentation models is illustrated in Table 2. 

The analysis demonstrates that the suggested method can measure hepatic steatosis and properly 

identify fat. For quicker processing, the suggested approach has been improved. Table 3 displays the 

evaluation of the performance of various methods and a comparison of mAP and IoU. Figure 4 displays 

the results of Faster R-CNN, SSD, YOLOv3, and YOLOv4 for various classes. These models can be 

deployed effectively and efficiently on a server, mobile device, or edge device. According to the 

instance segmentation findings, the Mask R-CNN’s AC and SP are 97% and 81.905%, respectively, 

which are much better than all other methods. 

Table 2. Comparative image recognition performance of algorithms for fatty liver segmentation. 

Method TP FP TN FN AC (%) SP (%) PR (%) RC (%) F1 (%) F2 (%) 

Mask R-CNN 690 19 86 5 97 81.905 97.32 99.281 98.291 98.883 

U-Net 623 25 144 8 95.875 85.207 96.142 99.732 97.904 98.993 

YOLO v5 694 16 39 51 91.625 70.909 97.746 93.154 95.395 94.038 

YOLO v7 578 37 48 137 78.25 56.471 93.984 80.839 86.917 83.165 

YOLO v8 710 24 32 34 92.75 57.143 96.73 95.43 96.076 95.687 

Table 3. Study of state-of-the-art algorithms on biopsy dataset. 

Model mAP (%) IoU 

Faster R-CNN 49.2 0.971 

SSD 53.1 0.98 

YOLOv3 54.3 0.977 

YOLOv4 65.6 0.984 

YOLOv5 98.9 0.999 

YOLOv6 56.4 0.982 

YOLOv7 59.6 0.979 

YOLOv8 99.1 0.999 

The hallmark of ballooning in the liver is an enlarged hepatocyte with a rarefied cytoplasm. With 

hematoxylin and eosin staining, the detection is challenging; therefore, our deep learning methodology 

is found to be useful for a proper diagnosis. Fibrosis in NASH can be either perisinusoidal or 
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pericellular. The infiltration of mixed inflammatory cells that characterizes lobular inflammation in 

NASH is often modest, while periportal inflammation is rare in NASH and occurs mainly in other 

hepatic disorders such as hepatitis C and autoimmune hepatitis [56]. In NAFLD patients, liver steatosis 

manifests as either little or big fat droplets. 

According to the correlation values from the paired sample T-test, a patient with low ballooning 

scores is very likely to have low inflammation scores, and vice versa. Likewise, a patient with low 

inflammation scores is very likely to have low steatosis scores, and vice versa. However, for a patient 

with low ballooning score, a high steatosis score is very certain, and vice versa. Similarly, for a patient 

with low ballooning score, a high fibrosis score is very certain, and vice versa. UNIANOVA is 

performed to check if there is a difference among the classes, and the post hoc Bonferroni test is 

performed to discover the degree of difference between the classes. The intraclass correlation 

coefficient is 0.333, which is also statistically significant. 

 

Figure 4. Illustration of classes (ballooning, fibrosis, inflammation, and steatosis) for 

Faster R-CNN, SSD, YOLOv3, and YOLOv4 algorithms. The text generated by the 

program are not clearly readable in its present form. So the images with A = ballooning, B 

= fibrosis, C = inflammation, and D = steatosis. 
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When evaluated for the association of ballooning with inflammation, ballooning with steatosis, 

ballooning with fibrosis, inflammation with steatosis, inflammation with fibrosis, and steatosis with 

fibrosis, the Pearson Chi-Square values are 71.498, 22.295, 51.678, 78.567, 131.217, and 131.217, 

respectively. All of them are found to be statistically significant, and therefore, we can conclude that 

there is a significant association between the classes. The Cramer's value is found to be such that there 

is a small to moderate effect of each class on the other class. Here it is established with the intraclass 

correlation coefficient, which is 0.667 when the scores for all four classes are taken into consideration. 

It indicates that 66.7% of the consistency is noted among the statistically significant scores. We see 

that for a single measurement, the intraclass correlation coefficient is 0.333, which is also statistically 

significant. 

The highest correlation is observed between the inflammation score and the fibrosis score, which 

is 0.516; the lowest correlation is observed between the ballooning score and the steatosis score, which 

is 0.003. Between the four classes, we have a moderate inter-rater reliability. When comparing scores 

of ballooning with inflammation, inflammation with steatosis, inflammation with fibrosis, and 

steatosis with fibrosis, the Cohen's Kappa value are 0.205, 0.187, 0.191, and 0.347, respectively, which 

are found to be statistically significant, and the rest are found statistically insignificant. 

The Kruskal-Wallis H for ballooning, fibrosis, inflammation, and steatosis are 71.739, 86.237, 

121.546, and 76.626, respectively. The Mann-White U-Test is performed and the values are found to 

be statistically significant for all classes. The Wilcoxon W is 21 for the ballooning score, 29 for the 

inflammation score, 35 for the steatosis score, 33 for the fibrosis score, and the Z-score is -3.028 for 

the ballooning score, which is statistically significant, -0.202 for the inflammation score, -0.213 for 

steatosis score, and -0.601 for fibrosis score, which are not statistically significant. 

From the multinomial logistic regression model, we can conclude that when steatosis is from 5% to 

33%, we observe inflammation with no foci, < 2 foci, and 2 to 4 foci. When steatosis is greater than 

33% to 66%, we see inflammation < 2 foci per 200x field and 2 to 4 foci per 200x field. If steatosis is 

from 5% to 33%, we observe no ballooning. However, if steatosis is greater than 33% to 66%, a few 

ballooning cells occur. When there are numerous ballooning cells, we observe < 2 foci per 200x field 

[60]. On the other hand, when there are few ballooning cells, we observe no fibrosis, perisinusoidal or 

periportal fibrosis, perisinusoidal, and periportal fibrosis. Additionally, when there are a lot of 

ballooning cells, we observe perisinusoidal or periportal fibrosis, perisinusoidal, and periportal fibrosis, 

and bridging fibrosis. From the analysis, we observed that when there is no inflammation. When there 

is no fibrosis and when steatosis is < 5%, we observe perisinusoidal and periportal fibrosis. 

For the purpose of detecting the fat automatically in the liver from B-mode ultrasound image 

sequences, Byra et al. [2] used an Inception-ResNet-v2 deep convolutional neural network that had 

been previously trained on the ImageNet dataset. They achieved an accuracy of 90.9% and a specificity 

of 94.1%. By incorporating migration learning into the DenseNet model, Yang et. al. [46] developed a 

deep learning-based technique to grade liver steatosis. Then, the system’s efficiency was confirmed by 

using it to grade actual cases of liver steatosis. The model has an accuracy of about 88.5% and a 

specificity of about 80%. A customized CNN deep learning model was developed by Arjmand et. al. 

with an accuracy and specificity of 95% and 98.3%, respectively [61,62]. 

A CNN to assess scores of the liver was developed by Heinemann et. al. [39] with an accuracy of 

90.63%. Ugail et. al. [63] demonstrated a deep learning algorithm to classify livers suitable for 

transplantation, while achieving a high accuracy of 99.63%. Gaber et. al. designed a voting-based 

classifier and machine learning algorithm, which are used to construct a computer-aided diagnosis 
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method that classifies hepatic tissues as either fatty or normal, utilizing attributes extracted from 

ultrasound images [64] with an accuracy of 95.71% and specificity of 94.44%. A random forest model 

by Wu et. al. [65] showed a high accuracy and specificity of 86.48% and 85.89%, respectively. 

 

Figure 5. Illustration of classes (ballooning, fibrosis, inflammation, and steatosis) for 

Faster R-CNN, SSD, YOLOv3, and YOLOv4 algorithms. The text generated by the 

program are not clearly readable in its present form. So the images with A = ballooning, B 

= fibrosis, C = inflammation and D = steatosis. 

In this work, for the YOLOv8 algorithm, the larger model YOLOv8-x is used as a pretrained 

weight. Different state-of-the-art algorithms such as YOLOv5, YOLOv6, YOLOv7, and YOLOv8 

have been used to obtained the following output, as shown in Figure 5. A better architecture could 

emerge by fine-tuning the hyperparameters associated with an architecture. The architecture, such as 

Faster R-CNN, YOLOv8, and Mask R-CNN, is fine-tuned with several hyperparameters, and the 

results of this tuning are shown in Figure 6. The onfidence threshold is set to 80%. YOLOv8 performs 

better in terms of Average Precision on the MS COCO dataset. The hyperparameters are fine-tuned 

with PyTorch and it is observed that the losses are reduced (See Figure 6). The batch size, learning 
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rate, number of epochs, anchor boxes, and IoU threshold can be adjusted for each specific application. 

In this work, the hyperparameters are tuned for an improved accuracy that includes setting the initial 

learning rate to 0.01, SGD momentum to 0.937, and warmup epochs to 3. The IoU (intersection over 

union) training threshold is set to 0.2 and the anchor multiple thresholds is set to 4 for better mAP. 

These results are shown in Table 3. The investigation on the fine-tuning of the hyperparameters yields 

a higher accuracy and decreased training time. The performance of the instance segmentation 

algorithms is illustrated in Figure 7 and Figure 8, respectively. Table 4 compares various efficient AI-

based models for detecting liver diseases. 

 

Figure 6. Fine-tuning of hyperparamaters shows better prediction accuracy for the classes 

with A = ballooning, B = fibrosis, C = inflammation, and D = steatosis. 

 

Figure 7. Illustration of classes (ballooning, fibrosis, inflammation, and steatosis) for 

Instance Segmentation using Mask R-CNN and U-Net. The text generated by the program 

are not clearly readable in its present form. So the images with A = ballooning, B = fibrosis, 

C = inflammation, and D = steatosis. 
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Figure 8. Illustration of classes (ballooning, fibrosis, inflammation, and steatosis) for 

Instance Segmentation using YOLOv5, YOLOv7, and YOLOv8. The text generated by the 

program are not clearly readable in its present form. So the images with A = ballooning, B 

= fibrosis, C = inflammation, and D = steatosis. 

It is quite possible to evaluate the overall steatosis percentage from the biopsy images according 

to physican’s requirement. To determine the percentage of steatosis on a slide, the average of the marks 

is obtained and compared to the overall area of the image. Thus, the percentage of steatosis obtained: 

= (
𝑀𝑒𝑎𝑛 𝑜𝑓 𝑚𝑎𝑠𝑘 𝑎𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒
× 100)%. As an example, for the YOLOv8 Instance Segmentation technique, 

the area of coverage of the mask is being determined and is illustrated in Figure 9. In addition to this 

result, it would be interesting to compare the ground truth with the predicted images for the four classes. 

An investigation on such comparison is performed and shown in Figure 10. In detecting certain images, 

difficulties are faced, for which, a few inference results are compromised. These facts are explained in 

Figure 11. 
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Table 4. Comparative performance of our work with recent work. 

Model used Reference AC 

(%) 

SP 

(%) 

PR 

(%) 

RC 

(%) 

F1 

(%) 

YOLOv5 Our model 99.875 85.714 99.874 100 99.937 

Steatosis detection using eccentricity 

and roundness 

[3] Tsiplikadou 

et al. 

97.78 - 100 97.78 - 

Transfer learning to extract CNN-

based features 

[2] Byra et al. 90.9 94.1 - 89.5 - 

Mask R-CNN ResNet50 [23] Guo et al. - - 75.87 60.66 65.88 

Supervised machine learning model [7] Sethunath et 

al. 

84.26 - 95.01 94.23 - 

Improved DenseNet [66] Yang et al. 88.49 81.6 - 95.44 - 

Deep learning using classification 

network 

[10] Cao et al. 95.45 - - - - 

Curvelet Transform and Entropy 

feature extraction 

[11] Acharya et 

al. 

97.33 100 - 96 - 

ROI select and SVM classifier [8] Owjimehr et 

al. 

97.9 - 92.7 100 - 

CNN SGDM model [61] Arjmand et 

al. 

95 98.3 95 95 95 

Trained CNN [39] Heinemann 

et al. 

90.63 - - - - 

ImageNet model with SVM classifier [63] Ugail et al. 99.63 - - - - 

CAD model with voting-based 

classifier 

[64] Gaber et al. 95.71 94.44 94.28 97.05 95.64 

Random forest model [65] Wu et al. 86.48 85.89 - 87.16 - 
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Figure 9. Predicted area for the classes with A = ballooning, B = fibrosis, C = inflammation, 

and D = steatosis. 

 

Figure 10. The comparison of ground truth with predicted images for the four classes. 
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Figure 11. Regions for difficult prediction by the YOLOv8 (A) Inflammation predicted 

with high steatosis, (B) Fibrosis on the corner of the tissue on the slide, (C) Out of focus 

region, (D) Steatosis covered by high fibrosis, (E) Corner of the tissue sample, (F) 

Inflammation region undetected, (G) Steatosis with signs of inflammation, (H) Fibrosis 

region covering the steatosis. 

 

Figure 12. Scoring of liver according to histology. 
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The scoring of the liver according to histology is illustrated in Figure 12. The scoring system 

definitions, scores, and total number of detections done are illustrated in Table 5. Table 6 indicates the 

Wilcoxon W, Kruskal-Wallis H, and Z-score of the different liver conditions. The different classes for 

ballooning, steatosis, inflammation, fibrosis, and background classes for YOLOv5 algorithm are 

shown in the Confusion Matrix in Figure 13. The graphs in Figure 14 show the variation of F1-score 

vs Confidence, Precision vs Confidence, Precision vs Recall, and Recall vs Confidence for YOLOv5 

algorithm. 

Table 5. Scoring system and corresponding detections for YOLOv8 model. 

Histology type Definition Scores of 

liver 

Number of 

images 

Steatosis Grade 

Low- to medium-power evaluation of 

parenchymal involvement by steatosis 

<5% 0 145 

 5%-33% 1 35 

 >33%-66% 2 72 

 >66% 3 6 

Fibrosis Stage 

None 

Perisinusoidal or periportal 

Perisinusoidal and portal/periportal 

0  

1 

2 

129 

31 

31 

 Bridging fibrosis 3 52 

 Cirrhosis 4 15 

Lobular 

inflammation 

No foci 0 70 

 <2 foci per 200 × field 1 51 

 2-4 foci per 200 × field 2 89 

 >4 foci per 200 × field 3 48 

Ballooning None 0 172 

 Few balloon cells 1 30 

 Many cells/prominent ballooning 2 56 
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Table 6. Comparative performance of various algorithms for fatty liver detection. 

Item Wilcoxon W Kruskal-Wallis H Z-score 

Steatosis score 35 76.626 -0.213 

Ballooning score 21 71.739 -3.028 

Inflammation score 29 121.546 -0.202 

Fibrosis score 33 86.237 -0.601 

 

Figure 13. Confusion matrix for ballooning, steatosis, inflammation, fibrosis, and 

background for YOLOv8 algorithm. 

 

Figure 14. Graphs showing the (A) F1-score vs Confidence, (B) Precision vs Confidence, 

(C) Precision vs Recall, and (D) Recall vs Confidence for the YOLOv8 algorithm. 
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4. Discussion 

A liver biopsy procedure is commonly conducted on NAFLD patients to either confirm or rule 

out the diagnosis, identify any associated liver diseases, and determine the degree of liver liver damage, 

if any, for treatment and prognosis. The biopsy images used in this work are high-resolution 

(2×magnification) images, which are acquired using a microscope from a pathological laboratory to 

achieve a higher degree of accuracy. The key benefit of the suggested method over reported ones is 

that the processing time is same even though we are using biopsy images of a higher resolution. It is 

to be noted here that obtaining high-resolution images (which are demonstrated in this article) takes 

time and requires advanced equipment [67]. As a result, processing high-quality images takes much 

less time and requires low computing power. Another benefit of the suggested method is that the entire 

process is automated without manual involvement. 

Recently, there have been significant advancements in the field of computer vision. It is utilized 

for a variety of practical applications, including disease diagnosis and therapy. Our models are 

designed to provide a more user-friendly technique for liver disease diagnosis while reducing the loss 

of efficiency due to the lack of data, as we are using a large number of samples. To evaluate which 

technique is more accurate and efficient, we made comparisons among the networks under 

consideration. Compared to other algorithms, YOLOv5, YOLOv6, YOLOv7, and YOLOv8 have 

faster training, testing and outperform them regarding their mAP and IoU values (note that our 

algorithms are fine-tuned with the associated hyperparameters). The YOLO algorithms depend on the 

PyTorch framework. Utilizing a large dataset of liver biopsy images, the full training and testing 

process is conducted on a single GPU for 100 epochs and the results are found to be robust. 

Deep learning frameworks have been the fastest-growing approach for biomedical image analysis. 

The baseline histological criteria for NASH diagnosis, listed most recently by the American 

Association for the Study of Liver Diseases (AASLD) suggestions are steatosis, lobular inflammation, 

and ballooning in the liver [51,68]. Our suggested methodology makes it simple to identify hepatic 

steatosis from liver biopsy images. The overall loss for each method is determined to be quite minimal. 

An accurate diagnosis of steatosis is crucial for understanding the pathophysiology of the condition 

and evaluating the effectiveness of therapeutic treatment. A radiologist may take enough time to study 

a patient’s image, depending on how challenging a case is; however, the deep learning model requires 

only a few seconds. In the future, clinical routines may combine deep learning algorithms and CAD 

technologies [64]. 

With Faster R-CNN, the region proposals’ bottleneck is removed. In order to improve the 

robustness of region proposals, the learned RPN is used, which enhances the overall accuracy of object 

detection. SSD benefits from eliminating proposal generation and uses just one deep neural network. 

The SSD algorithm’s performance is quite dependable because it utilizes default boxes with different 

aspect ratios for every feature map position. On the other hand, YOLO has the benefit of 

simultaneously completing the bounding box and class forecasting. The mAP values and accuracy of 

the YOLO algorithms are found to be higher than those of other cutting-edge algorithms. Given that 

the processing time is reduced and the images are easily obtained, the suggested technique is simple 

enough to incorporate into ordinary clinical practice. The algorithms utilized in this study could be 

applied in other investigations to pinpoint additional stomach problems. 
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5. Conclusions 

Artificial intelligence is gaining popularity in medical imaging due to its improved performance 

in image-recognition techniques. This study is used to understand different patients with different 

degrees of hepatic steatosis. We are able to obtain a promising degree of accuracy in the testing phase 

with faster prediction based on the number of annotations in biopsy images during training. Based on 

convolutional neural network models such Faster R-CNN, YOLO, and SSD, the suggested technique 

displays specificity, accuracy, and recall for fatty liver diagnosis. For Faster R-CNN, YOLOv8, and 

SSD, the accuracy is 97.375%, 99.875%, and 98.375%, respectively. Hence, the algorithms are proven 

to reduce human error in steatosis detection. 
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