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Abstract: This study uses laminar and turbulent flow models to investigate the blood flow dynamics 

in a specific carotid bifurcation. Pulsatile boundary conditions and the rigid carotid artery wall are 

considered. Three viscosity models describe the non-Newtonian blood behavior. The Fluent solver 

and the finite volume method solve the equations. Results show a Poiseuille-like flow in the common 

carotid artery (CCA), unaffected by the flow regime, viscosity model, or boundary conditions. The 

branching zone exhibits a C-shaped stagnation zone with low velocity and wall shear stress due to 

the CCA widening and ICA/ECA curvature. Strong secondary flow is observed in the carotid sinus; 

the flow is directed towards the inner wall with higher velocity in the internal carotid artery. 

Discrepancies between viscosity models are pronounced in laminar flow, particularly with the natural 

boundary conditions. The non-Newtonian blood behavior is more apparent in the laminar flow of the 

external carotid artery, especially with the second set of boundary conditions. 
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1. Introduction 

The carotid artery is one of the most important arteries in the human body [1]; its primary 

function is to supply blood to the brain through the basilar trunk. Its complex structure has many 

curved areas, particularly the carotid sinus. Furthermore, at the carotid branches, there is a siphon 

that forms a highly curved spiral. Under real physiological conditions, hemodynamic factors (blood 
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pressure, blood flow, flow velocity, etc.) in this complex anatomy contribute to the appearance of 

atherosclerosis [2–4]. The latter is strongly linked to stenotic obstruction (reduction of the section of 

the blood vessel). In addition to differential pressure, bifurcation geometry, and arterial wall 

properties, several studies confirm that hemodynamic factors such as flow distribution, recirculation, 

low and oscillatory wall shear stress play a significant role in the development and progression of 

atherosclerotic plaques and other arterial lesions [5–7]. Therefore, thoroughly understanding the 

carotid artery's blood flow seems crucial. 

Accessing biological flows poses a significant challenge in the study of hemodynamic 

phenomena. In recent years, computational fluid dynamics (CFD) has proven to be an effective 

solution to study similar problems and understand hemodynamics using mathematical tools [8,9]. 

Numerical simulation of constitutive models can accurately describe the rheological blood response 

under physiological flow conditions [10]. It is recognized as an invaluable tool for interpretation and 

analysis of the functionality of the circulatory system in physiological and pathological situations [11,12]. 

In this context, the present work studies blood flow in a specific carotid bifurcation. The flow is 

considered incompressible, laminar in the first case, and turbulent modeled with the k-  model in the 

second case. The carotid wall is assumed to be rigid. Two different forms of physiological pulses 

from the literature were applied as boundary conditions to generate blood movement. These pulses 

are summarized in two pressure-velocity states: P1-V1 (theoretical) and P2-V2 (actual). Three 

viscosity models were used to model the non-Newtonian blood flow: Cross, Carreau, and Quemada. 

The resolution of the governing equations system is carried out using the Fluent solver based on the 

finite volume method. The calculations are performed over a total time of 2.4 s with a period of 0.8 s. 

2. Mathematical modeling 

2.1. Problem description 

The study investigates the blood flow characteristics in a specific rigid carotid bifurcation. (Figure 1, 

Table 1). It consists of two main parts, separately examining laminar and turbulent flow regimes. The 

laminar flow case considers incompressible blood with a 1050 kg/m3 density. In the turbulent flow 

case, the k-ε model is employed. 

The rheological behavior of blood is analyzed by comparing the Newtonian case, where the 

blood viscosity is constant at 0.0035 Pa.s, with the non-Newtonian instances described by the 

Cross (1), Carreau (2) and Quemada (3) models [13]. These models capture the non-Newtonian 

characteristics of blood flow. 

Physiological pulsatile flow is modeled using two pairs of periodic boundary conditions: P1-V1 

(theoretical) and P2-V2 (real). The velocity conditions are imposed at the inlet, while the pressure 

conditions are imposed at the outlets of the carotid artery. The Reynolds number at the inlet ranges 

from 431.15 to 605.81, indicating the flow regime. 

The calculations are performed for a period of 0.8 s and a total time of 2.4 s, which covers three 

complete periods of the physiological flow. 

𝜇 = 𝜇∞ + (𝜇0 − 𝜇∞)/(1 + 𝜆𝛾̇)𝑛 (1) 

𝜇 = 𝜇∞ + (𝜇0 − 𝜇∞)[(1 + 𝜆𝛾̇)2]
𝑛−1
2  (2) 
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𝜇 = (√𝜇𝑐 +
𝜏𝑦

√𝜆 + √𝛾̇
)

2

 (3) 

𝜇∞ = 0.00345 Pa.s, 𝜇0 = 0.0364 Pa.s, 𝜆 = 0.380, 𝑛 = 1.45 for the Cross model (1); 

𝜇∞ = 0.00345 Pa.s, 𝜇0 = 0.056 Pa.s, 𝜆 = 3.313, 𝑛 = 0.3568 for the Carreau model (2); 

𝜇𝑐 = 0.002982 Pa.s, 𝜏𝑦 = 0.02876 Pa.s et 𝜆 = 4.020 s for the Quemada model (3).  

 

Figure 1. Carotid bifurcation geometry. 

Table 1. Geometry dimension. 

CCA diameter ICA diameter ECA diameter Bifurcation total length 

7.37 mm 5.22 mm 4 mm 51.84m 

2.2. Governing equations 

The mathematical system for transient, incompressible and laminar blood flow in a rigid artery 

includes the continuity (4) and the Navier-Stokes equations (5): 

𝜕𝜌

𝜕𝑡
+ ∇(𝜌𝑣 ⃗⃗⃗  ) = 0 (4) 

𝜕

𝜕𝑡
(𝜌𝑣 ⃗⃗⃗  ) + 𝜌∇ 𝑣 ⃗⃗⃗  . ∇ 𝑣 ⃗⃗⃗  = −∇𝑝 + 𝜇∇2𝑣 ⃗⃗⃗   (5) 

For turbulent flows, the use of turbulent models is needed, and some modifications are included to 

the momentum equation (6): 

𝜕(𝜌𝑣𝑖̅)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑣𝑖̅𝑣𝑗̅ + 𝑣𝑖

′𝑣𝑗
′̅̅ ̅̅ ̅̅ ̅) = −

𝜕𝑝 ̅

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗̿̿ ̿

𝜕𝑥𝑗
 (6) 

The turbulent blood flow is modeled using the k- model. The turbulent kinetic energy k, as well as 

its dissipation rate , are obtained from the following transport equations: 

𝜕

𝜕𝑡
(𝜌𝑘) + ∇(𝜌𝑣 ⃗⃗⃗  𝑘) = ∇ [(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝐺𝑘 − 𝜌𝜀 (7) 

𝜕

𝜕𝑡
(𝜌𝜀) + ∇(𝜌𝑣 ⃗⃗⃗  𝜀) = ∇ [(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗
] + 𝐶1𝜀

𝜀

𝑘
𝐺𝑘 − 𝐶2𝜀𝜌

𝜀2

𝑘
 (8) 
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𝜇𝑡 is the turbulent viscosity and it is given as follow: 𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
 

𝐺𝑘 is the generation of turbulence kinetic energy due to mean velocity gradients; 𝜎𝑘 = 1 and 𝜎𝜀 =

1.3  are the turbulent Prandtl numbers for 𝑘  and 𝜀 , respectively; 𝐶1𝜀 = 1.44  and 𝐶2𝜀 = 1.92  are 

constants. 

2.3. Boundary conditions 

In our study, several pressure and velocity profiles have been considered to solve the above 

system. Taking into account the Womersley approximation [14], the pulsating velocity profile V1 

(Figure 2a) [15], given by equation (9), will be used as the first condition at the inlet of the carotid 

bifurcation. 

𝑉1(𝑡) = 𝑢0(1 + 𝐴𝑠𝑖𝑛(𝜔𝑡)) (9) 

Where: A = 2/3 and 𝜔 =
2𝜋

𝑇
 . 

The second velocity condition, V2, is fitted using a Gaussian function (10) as described by 

Kleinstreuer [16]: 

𝑉2(𝑡) = 𝑎1𝑒𝑥𝑝 [(−
(𝑡 − 𝑏1)

𝑐1
)

2

] + 𝑎2 [(−
(𝑡 − 𝑏2)

𝑐2
)

2

] + 𝑎3 [(−
(𝑡 − 𝑏3)

𝑐3
)

2

]

+ 𝑎4 [(−
(𝑡 − 𝑏4)

𝑐4
)

2

] + 𝑎5 [(−
(𝑡 − 𝑏5)

𝑐5
)

2

] + 𝑎6 [(−
(𝑡 − 𝑏6)

𝑐6
)

2

] 
(10) 

The coefficients values 𝑎𝑖 𝑏𝑖 and 𝑐𝑖 are given in the Table 2 below: 

Table 2. Values of the coefficients for the velocity condition u2.  

𝒂𝟏 -0.0214 𝒃𝟏 0.5458 𝒄𝟏 0.008372 

𝒂𝟐 0.04842 𝒃𝟐 0.3374 𝒄𝟐 0.1284 

𝒂𝟑 0.0407 𝒃𝟑 0.4749 𝒄𝟑 0.1268 

𝒂𝟒 0.08353 𝒃𝟒 0.6215 𝒄𝟒 0.234 

𝒂𝟓 0.09432 𝒃𝟓 0.002087 𝒄𝟓 0.3171 

𝒂𝟔 0.08364 𝒃𝟔 1.006 𝒄𝟔 0.314 

The pressure conditions have been used to model the pulsating pressure at the carotid outlets. 

The first condition P1 (11) is the one used by P. Kumar Mandal et al [17,18]. The pressure gradient 

was taken according to Burton [19] as follows [20,21]: 

−
𝜕𝑝

𝜕𝑧
= 𝐴0 + 𝐴1𝑐𝑜𝑠(𝜔𝑡), 𝑡 < 1 (11) 

Where A0 is the constant amplitude of the pressure gradient, A1 is the amplitude of the pulsatile 

component giving rise to the systolic and diastolic pressures. 

The second condition, P2, is the one used by Vasava et al. [22], it is given as an eighth-degree 

polynomial correlation (12) developed from data provided by Conlon et al. [23]. 
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𝑃2 = {
∑𝐶𝑖(𝑡 − 0.85𝑛)𝑖 + 79.20       𝑖𝑓 𝑡 ∈ [0.85𝑛, 0.85(𝑛 + 1) − 0.34]

9

𝑖=1

−61.50(𝑡 − 0.85𝑛) + 131.47           𝑖𝑓 𝑡 ∈ [0.85(𝑛 + 1) − 0.34, 0.85(𝑛 + 1)]

 (12) 

The 𝐶𝑖 coefficients are summarized in Table 3: 

Table 3. Values of coefficients for polynomial used as pressure pulse (× 105). 

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 

0.5601 0.1882 -1.4424 1.2239 -0.426 0.0664 -0.00492 0.000432 

The discussed conditions (V1, V2, P1 and P2) are shown in Figure 2: 

 

Figure 2. Boundary conditions used: (a) velocity, (b) pressure. 

3. Resolution method 

Our study employed the finite volume method [24] implemented in the Fluent solver to solve 

the governing equations. The pressure-velocity coupling was achieved using the SIMPLE algorithm. 

Spatial discretization involved using a second-order scheme for pressure and a second-order upwind 

scheme for momentum. 

The boundary conditions mentioned earlier, specifically the P1-V1 and P2-V2 pairs, were applied 

as boundary conditions in the solver using User-Defined Function (UDF) files. These files defined 

the prescribed velocity and pressure conditions at the respective boundaries. 

Since the phenomenon being investigated is transient, we adopted an implicit first-order scheme 

for time discretization. The calculations were conducted for a total duration of 2.4 seconds, 

equivalent to three periods of the pulsatile flow. A time step size of 0.004 seconds was employed 

during the simulations. 

Convergence of the solution was determined based on the criterion that the velocity components 

fall below a threshold value of 10-6. 

As presented below, we utilized an undisclosed formula (13) to evaluate the wall shear stress at 

the carotid walls. 
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𝑊𝑆𝑆 = 𝜇
𝜕𝑣

𝜕𝑛
 (13) 

4. Mesh size effect and validation 

The discretization of the physical domain directly impacts the computational process and the 

accuracy of the results. Thus, the analysis of the mesh effect is a precious step in any simulation 

procedure, aiming to ensure the independence of the obtained results from the chosen mesh. With 

this objective in mind, a thorough investigation of the mesh effect on the phenomena under study 

was conducted. Due to the intricate nature of the carotid structure, an unstructured mesh composed 

of tetrahedral elements proves to be more suitable for addressing our specific problem. By Figure 3, 

a mesh of 145068 elements was carefully chosen to accurately solve the blood flow within the 

designated domain, as indicated in Table 4. 

 

Figure 3. Grid of the study area. 

Table 4. Analysis of the mesh effect. 

Nombre d’éléments 𝒖 ̅(m/s) 

105438 0,00372 

110007 0,00383 

119054 0,00402 

133468 0,00426 

145068 0,00432 

209791 0,00432 

466421 0,00459 

To establish our solver's reliability, we compared our results with those obtained by K. Mamuna 

and K. Funazakia [25], who investigated blood flow in a rigid and elastic stenotic artery. Their study 

considered the flow incompressible, non-Newtonian using the Cross model, and turbulent utilizing 

the k-omega model. We specifically focused on comparing the diastole wall shear stress (at t = 

0.5945 s) for the 55% stenotic artery. The results comparison, as depicted in Figure 4, reveals a slight 

disparity between the two curves, indicating a significant level of agreement between our findings 

and those of K. Mamuna and K. Funazakia [25]. 
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Figure 4. Validation study: diastole WSS (t = 0.5945 s) for the 55% stenotic artery. 

5. Results 

The subsequent section presents the results obtained from simulating pulsed blood flow through 

a rigid carotid bifurcation, considering two sets of pressure-velocity boundary conditions (P1-V1 and 

P2-V2) and three viscosity models (Cross, Carreau, and Quemada). Three radial sections were created 

to visualize the evolution of velocity profiles within the studied geometry (Figure 5). To ensure a 

fully developed flow, the results are presented for the second heart cycle, specifically within the 

interval of [0.8 s, 1.6 s]. For each set of boundary conditions, pressure, velocity, and wall shear stress 

variations are presented at the systolic peak and early diastole moments. The corresponding timing 

for each of these moments is summarized in Table 5.  

 

 

 

Figure 5. Sections created to present radial velocity. 

Table 5. Presentation moments. 

Systolic peak Early diastole 

P1 V1 P2 V2 P1 V1 P2 V2 

1 s 1.04 s 0.967 s 1.056 s 1.42 s 1.23 s 1.072 s 1.12 

5.1. Time evolutions 

Figures 6, 7, 8, and 9 illustrate the temporal evolution of pressure and velocity in the CCA (common 

carotid artery) for all viscosity models and boundary conditions mentioned in section 2.1. From 

Figures 6a, 7a, 8a, and 9a, it can be observed that the pressure in the carotid bifurcation remains 

unaffected by the various parameters investigated, including the flow regime, viscosity model, and 



288 

AIMS Biophysics  Volume 10, Issue 3, 281–316. 

type of boundary conditions. However, when examining velocity variations, it becomes evident that 

the impact of the viscosity model is more pronounced in laminar flow than turbulent flow. 

Despite the slight differences observed in the curves (Figures 6a and 7a), it is apparent that the 

Carreau model yields the highest velocity value (37 m/s). The Cross model exhibits a lower weight 

(36.5 m/s). In turbulent flow, the simulation results using the P1-V1 boundary condition (Figure 8b) 

demonstrate that the velocity differences between the Newtonian, Cross, and Carreau cases are 

negligible, with all curves reaching a maximum velocity of 38 m/s. However, the Quemada model 

predicts the highest velocity value (38.5 m/s). When considering the second boundary condition pair, 

P2-V2 (Figure 9b), it is noteworthy that the Cross model yields the highest velocity value, while the 

Carreau model corresponds to the lowest velocity value. 

 

Figure 6. Time evolution of (a) Pressure P1, (b) Velocity V1 for the laminar case. 

 

Figure 7. Time evolution of (a) Pressure P2, (b) Velocity V2 for the laminar case.

(b) 
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Figure 8. Time evolution of (a) Pressure P1, (b) Velocity V1 for the turbulent case. 

 

Figure 9. Time evolution of (a) Pressure P2, (b) Velocity V2 for the turbulent case. 

5.2. Pressure 

Figures 10 to 17 depict the variations in flow field pressure during the systolic peak and early 

diastole under different conditions, including flow regime (laminar and turbulent), viscosity models 

(Newtonian, Cross, Carreau, and Quemada), and boundary conditions (P1-V1, P2-V2). Across all the 

figures, a common observation is that the pressure rapidly decreases in the CCA (Common Carotid 

Artery), regardless of these parameters. The unique anatomy of the carotid bifurcation, particularly 

the branching of the CCA and the curvature of the ECA (External Carotid Artery), introduces a radial 

pressure gradient and gives rise to significant secondary flows (Figures 24, 25, 26, and 27), unlike 

typical internal flows characterized by axial pressure gradients. 

Furthermore, the pressure in the ICA (Internal Carotid Artery) is higher than in the ECA. 

However, the branch point of the bifurcation exhibits the highest-pressure values due to the abrupt 

change in velocity. The pressure distribution in this region varies depending on the viscosity model 

and the pair of boundary conditions. Figures 11 and 13 show that the P2-V2 boundary condition 

yields the highest-pressure values. 
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Figure 10. Pressure contours P1 (t = 1.2 s) for laminar flow: (a) Newtonian, (b) Cross, (c) 

Carreau, (d) Quemada. 

  

Figure 11. Pressure contours P2 (t = 0.97 s) for laminar flow: (a) Newtonian, (b) Cross, 

(c) Carreau, (d) Quemada. 

 

Figure 12. Pressure Contours P1 (t = 1.42 s) for laminar flow: (a) Newtonian, (b) Cross, 

(c) Carreau, (d) Quemada. 
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Figure 13. Pressure Contours P2 (t = 1.072 s) for laminar flow: (a) Newtonian, (b) Cross, 

(c) Carreau, (d) Quemada. 

 

Figure 14. Pressure contours P1 (t = 1.2 s) for turbulent flow: (a) Newtonian, (b) Cross, 

(c) Carreau, (d) Quemada. 

 

Figure 15. Pressure contours P2 (t = 0.976 s) for turbulent flow: (a) Newtonian, (b) Cross, 

(c) Carreau, (d) Quemada. 
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Figure 16. Pressure contours P1 (t = 1.42 s) for turbulent flow: (a) Newtonian, (b) Cross, 

(c) Carreau, (d) Quemada. 

 

Figure 17. Pressure contours P2 (t = 1.072 s) for turbulent flow: (a) Newtonian, (b) Cross, 

(c) Carreau, (d) Quemada. 

The transition from laminar to turbulent blood flow modeling in the carotid bifurcation is 

essential. The intricate anatomy of this artery theoretically promotes the development of chaotic 

movements, particularly in the ICA. Figures 24, 25, 26, and 27 vividly demonstrate the presence of 

secondary solid flows in the carotid sinus. 

By examining Figures 14, 15, 16, and 17, it is evident that the pressure difference between the 

laminar and turbulent regimes is minimal during the systolic peak. However, during early diastole, 

the turbulent flow exhibits higher pressure, potentially damaging endothelial cells [26,27]. 

5.3. Velocity 

The Figures presented in this section depict the velocity profiles in different areas of the 

geometry (S1, S2, and S3) for each case studied. In section S1, the velocity profile exhibits a quasi-

parabolic shape (Figures 18 and 19). Notably, the asymmetry of the carotid artery alters the position 

of the velocity maxima, which is shifted towards the ICA (internal carotid artery). 

In the branching zone, as shown in contours (Figures 20, 21, 22, and 23), it is observed that a 

significant amount of fluid is dragged towards the inner wall of the ICA [10,28]. This region is of 



293 

AIMS Biophysics  Volume 10, Issue 3, 281–316. 

great physiological importance and exhibits more complex physical phenomena than those observed 

in the CCA (common carotid artery). 

Typically, in circular pipes, decreasing the flow section results in an increase in velocity values. 

However, in the case of carotid bifurcation, this relationship no longer holds. The velocity values in 

the ICA (more extensive section) are higher than those in the ECA (smaller section). This is 

attributed to the increase in the CCA section for a constant flow rate and the curvature of the ECA, 

which introduces an opposite pressure gradient and relatively lower flow in the ECA compared to the 

ICA. A compensatory increase in the ICA velocity occurs to maintain flow conservation, explaining 

the apparent differences in velocity values between the two branches. 

 

Figure 18. Velocity profile V1 (Section 1) for laminar flow: (a) t = 1.04 s, (b) t = 1.23 s. 

  

Figure 19. Velocity profile V2 (Section 1) for laminar flow: (a) t = 1.056 s, (b) t = 1.12 s. 
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Figure 20. Axial velocity contours V1 (t = 1.04 s) for laminar flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 

 

Figure 21. Axial velocity contours V2 (t = 1.056 s) for laminar flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 

 

Figure 22. Axial velocity contours V1 (t = 1.23 s) for laminar flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 
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Figure 23. Axial velocity contours V2 (t = 1.12 s) for laminar flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 

The shape of the branching zone plays a significant role in the deformation of flow and the 

interference of streamlines, leading to complex blood movement in the carotid sinus. Examining the 

contours in Figures 24, 25, 26, and 27, as well as the curves presented in Figures 28 and 31, it is 

evident that the velocity profiles are aligned towards the internal wall of the ICA (internal carotid 

artery). This profile shape is closely associated with a secondary flow near the outer wall of the 

carotid sinus and the formation of a strong vortex in the positive direction within this acceleration 

region. 

 

Figure 24. Velocity contours V1 of the carotid sinus (t = 1.04 s) for laminar flow: (a) 

Newtonian, (b) Cross, (c) Carreau, (d) Quemada. 

However, despite the vortex motion, it is essential to note that this region cannot be regarded as 

a recirculation zone since the fluid is not trapped within it. The contours also demonstrate that 

velocity variations along this branch are not dependent on the flow cross-section. It can be observed 
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that the velocity increases from the carotid sinus towards the exit of the ICA, with values higher than 

those surveyed in the ECA (external carotid artery). This acceleration near the wall results from 

locally large pressure gradients induced by the effects of curvature. 

 

Figure 25. Velocity contours V2 of the carotid sinus (t = 1.056 s) for laminar flow: (a) 

Newtonian, (b) Cross, (c) Carreau, (d) Quemada. 

  

Figure 26. Velocity contours V1 of the carotid sinus (t = 1.23 s) for laminar flow: (a) 

Newtonian, (b) Cross, (c) Carreau, (d) Quemada. 
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Figure 27. Velocity contours V2 of the carotid sinus (t = 1.12 s) for laminar flow: (a) 

Newtonian, (b) Cross, (c) Carreau, (d) Quemada. 

 

Figure 28. Velocity profile V1 (Section 2) for laminar flow: (a) t = 1.04 s, (b) t = 1.23 s. 

 

Figure 29. Velocity contours V1 (Section 2, t = 1.04 s) for laminar flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 
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Figure 30. Velocity contours V1 (Section 2, t = 1.23 s) for laminar flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 

 

Figure 31. Velocity profile V2 (Section 2) for laminar flow: (a) t = 1.056 s, (b) t = 1.12 s. 

 

Figure 32. Velocity contours V2 (Section 2, t = 1.056 s) for laminar flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 
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Figure 33. Velocity contours V2 (Section 2, t = 1.12 s) for laminar flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 

 

Figure 34. Velocity profile V1 (Section 3) for laminar flow: (a) t = 1.04 s, (b) t = 1.23 s. 

Considering the ECA (external carotid artery), the curvature of the vessel contributes to 

generating a radial pressure gradient, as observed in Figures 10–17. This gradient leads to a 

secondary flow and the emergence of two counter-rotating vortices directed toward the center of the 

artery, as depicted in Figures 35, 36, 38, and 39. 

Pathologically, these phenomena observed in the carotid sinus are closely associated with 

developing atheromatous plaques, particularly in atherosclerosis's early and moderate stages. It is 

worth noting that the ECA is typically affected by lipid deposits, primarily in the advanced stages of 

the disease. 

 

Figure 35. Velocity contours V1 (Section 3, t = 1.04 s) for laminar flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 
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Figure 36. Velocity contours V1 (Section 3, t = 1.23 s) for laminar flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 

The dimensions of the physical domain highly influence the rheological behavior of blood in the 

carotid artery. In the CCA (common carotid artery), the distinction between Newtonian and non-

Newtonian behavior of blood is minimal. As depicted in Figures 18 and 19, the curves for the 

Newtonian case and the non-Newtonian instances described by the Cross, Carreau, and Quemada 

models overlap, and the velocity values are nearly identical at the selected presentation times of 

systolic peak and early diastole. 

However, in the ECA (external carotid artery) (Figures 34 and 37), a noticeable difference is 

observed compared to the ICA (internal carotid artery) (Figures 28 and 31). The diameter of the 

vessel directly impacts the rheological behavior of blood. Moreover, the figures indicate that the non-

Newtonian behavior of blood becomes more prominent at the P2-V2 systolic peak. Among the non-

Newtonian models, the Carreau model exhibits the highest velocity values, followed by the Quemada 

and Cross models. The Newtonian case demonstrates the lowest velocity values. 

 

Figure 37. Velocity profile V2 (Section 3) for laminar flow: (a) t = 1.056 s, (b) t = 1.12 s. 
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Figure 38. Velocity contours V2 (Section 3, t = 1.056 s) for laminar flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 

 

Figure 39. Velocity contours V2 (Section 3, t = 1.12 s) for laminar flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 

The following figures depict the velocity variations obtained from turbulent blood flow 

modeling using the k-epsilon (k-ε) model. In the CCA and ICA (Figures 40, 41, 50, and 53), the 

viscosity model and type of boundary conditions have a negligible effect on the velocity curves. 

However, a slight difference can be observed in the velocity curves of the ECA for the P2-V2 

boundary condition pair (Figure 59). The velocity obtained using the Carreau model is slightly 

higher than that of the Quemada model, followed by the Cross model. The Cross model yields the 

same velocity as the Newtonian approach. This difference in velocity is more noticeable in laminar 

flow than in turbulent flow. 

Regarding axial velocity, the contours presented in Figures (42, 43, 44, and 45) appear to have 

similar distributions, with only the velocity values changing with the presentation moments and the 

pairs of boundary conditions (P1-V1 and P2-V2). 
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Figure 40. Velocity profile V1 (Section 1) for turbulent flow: (a) t = 1.04 s, (b) t = 1.23 s. 

  

Figure 41. Velocity profile V2 (Section 1) for turbulent flow: (a) t = 1.056 s, (b) t = 1.12 s. 

 

Figure 42. Axial velocity contours V1 (t = 1.04 s) for turbulent flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 
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Figure 43. Axial velocity contours V2 (t = 1.056 s) for turbulent flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 

 

Figure 44. Axial velocity contours V1 (t = 1.23 s) for turbulent flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 

 

Figure 45. Axial velocity contours V2 (t = 1.12 s) for turbulent flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 
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Figure 46. Velocity contours V1 of the carotid sinus (t = 1.04 s) for turbulent flow: (a) 

Newtonian, (b) Cross, (c) Carreau, (d) Quemada. 

 

Figure 47. Velocity contours V2 of the carotid sinus (t = 1.056 s) for turbulent flow: (a) 

Newtonian, (b) Cross, (c) Carreau, (d) Quemada. 
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Figure 48. Velocity contours V1 of the carotid sinus (t = 1.23 s) for turbulent flow: (a) 

Newtonian, (b) Cross, (c) Carreau, (d) Quemada. 

 

Figure 49. Velocity contours V2 of the carotid sinus (t = 1.12 s) for turbulent flow: (a) 

Newtonian, (b) Cross, (c) Carreau, (d) Quemada. 
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Figure 50. Velocity profile V1 (Section 2) for turbulent flow: (a) t = 1.04 s, (b) t = 1.23 s. 

 

Figure 51. Velocity contours V1 (Section 2, t = 1.04 s) for turbulent flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 

 

Figure 52. Velocity contours V1 (Section 2, t = 1.23 s) for turbulent flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 
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Figure 53. Velocity profile V2 (Section 2) for turbulent flow: (a) t = 1.056 s, (b) t = 1.12 s. 

 

Figure 54. Velocity contours V2 (Section 2, t = 1.056 s) for turbulent flow: (a) 

Newtonian, (b) Cross, (c) Carreau, (d) Quemada. 

 

Figure 55. Velocity contours V2 (Section 2, t = 1.12 s) for turbulent flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 
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Figur 56. Velocity profile V1 (Section 3) for turbulent flow: (a) t = 1.04 s, (b) t = 1.23 s. 

 

Figure 57. Velocity contours V1 (Section 3, t = 1.04 s) for turbulent flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 

 

Figure 58. Velocity contours V1 (Section 3, t = 1.23 s) for turbulent flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 



309 

AIMS Biophysics  Volume 10, Issue 3, 281–316. 

Figure 59. Velocity profile V2 (Section 3) for turbulent flow: (a) t = 1.056 s, (b) t = 1.12 s. 

 

Figure 60. Velocity contours V2 (Section 3, t = 1.056 s) for turbulent flow: (a) 

Newtonian, (b) Cross, (c) Carreau, (d) Quemada. 

 

Figure 61. Velocity contours V2 (Section 3, t = 1.12 s) for turbulent flow: (a) Newtonian, 

(b) Cross, (c) Carreau, (d) Quemada. 

5.4. Wall shear stress 

The figures presented in this section depict the distribution of wall shear stress along the carotid 

artery during the systolic peak and early diastole for all conducted simulations. In general, the wall 

shear stress exhibits variations, reaching a maximum value of approximately 10 Pa during the 

systolic peak and 8 Pa during early diastole. 
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Due to the Poiseuille-like flow in the CCA, it is evident that the wall shear stress decreases 

rapidly along this branch. However, in the branching zone, an important observation can be made. A 

blue C-shaped band represents a stagnation zone, indicating a significantly low wall shear stress 

value. Moving downstream from this band, the wall shear stress increases again, and the maximum 

values are found in the inner wall of the carotid sinus near the apex, creating a region of high shear 

stress. Wall shear stress values are higher towards the height of the bifurcation and lower towards the 

outer wall. 

In the external carotid artery, the wall shear stress exhibits relatively high values near the apex 

and lower values at the outer corner. 

 

Figure 62. Wall shear stress Contours (t = 1.04 s) for laminar flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 

 

Figure 63. Wall shear stress Contours (t = 1.056 s) for laminar flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 

According to studies, variations in wall shear stress within the carotid bifurcation significantly 

impact the development of lipid plaques and the occurrence of atherosclerosis [29]. Several 

experimental studies [30–32] have demonstrated that areas affected by atherosclerosis correspond to 

regions of low wall shear stress. It is commonly observed that lipid particles tend to accumulate in 

the C-shaped part rather than at the apex of the bifurcation. The presence of low velocity and wall 

shear stress in this region of the carotid artery promotes the accumulation of lipid particles [33,34]. 
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Moreover, some researchers have identified flow separation and carotid sinus vortices as additional 

factors contributing to the formation of lipid particles [35,36]. 

Comparing the figures also reveals that the impact of changing between the proposed boundary 

conditions (P1-V1 and P2-V2) on the wall shear stress is relatively small, with comparable values 

observed between the two states. 

 

Figure 64. Wall shear stress Contours (t = 1.23 s) for laminar flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 

 

Figure 65. Wall shear stress Contours (t = 1.12 s) for laminar flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 

When transitioning to turbulent modeling, it becomes apparent that the CCA's wall shear stress 

is higher than that observed in laminar flow (Figures 66, 67, 68, and 69). Regarding the viscosity 

model effect, the results obtained in laminar flow are consistent with turbulent flow simulations. The 

Newtonian behavior aligns with the Cross model (66.a, 66.b, 67.a, 67.b, 68.a, 68.b, 69.a, and 69.b), 

while the Carreau model exhibits similarities to the Quemada model (66.c, 66.d, 67.c, 67.d, 68.c, 

68.d, 69.c, and 69.d). Moreover, slightly higher wall shear stress values are observed when using 

turbulent flow and the P2-V2 boundary conditions than those obtained using the P1-V1 pair. 
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Figure 66. Wall shear stress Contours (t = 1.04 s) for turbulent flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 

 

Figure 67. Wall shear stress Contours (t = 1.056 s) for turbulent flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 

 

Figure 68. Wall shear stress Contours (t = 1.23 s) for turbulent flow: (a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 
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Figure 69. Wall shear stress Contours (t = 1.12 s) for turbulent flow: a) Newtonian, (b) 

Cross, (c) Carreau, (d) Quemada. 

6. Conclusions 

This study looked at the dynamics of blood flow in a rigid carotid bifurcation, taking into 

account things like the flow regime, the viscosity model, and the boundary conditions. Utilizing the 

Fluent solver, we observed intriguing phenomena within the carotid bifurcation and presented the 

results through diverse visualization methods, including curves, contours, and vectors. The findings 

obtained can be summarized as follows: 

In the common carotid artery (CCA), the flow exhibits a Poiseuille-like profile, independent of 

the flow regime, viscosity model, and boundary conditions form. 

The branching zone creates a depression area, where the enlargement of the CCA cross-section 

and the curvature of the internal carotid artery (ICA) and external carotid artery (ECA) significantly 

impact velocity and wall shear stress. This leads to the formation of a C-shaped stagnation zone with 

low velocity and wall shear stress values, accompanied by secondary flow development in the 

carotid sinus. These currents are most prominent during early diastole under P2-V2 boundary 

conditions. 

In the ICA, the flow is directed towards the inner wall with a higher velocity than in the ECA. 

The differences between the viscosity models are more noticeable in laminar flow than in turbulent 

flow, particularly when considering the actual boundary conditions of P2-V2. 

The non-Newtonian behavior of blood in the ECA is more apparent during laminar flow when 

utilizing the P2-V2 boundary conditions. 

It's imperative to acknowledge an inherent limitation in our analysis. We admit that we didn't 

factor in the variations in distal vascular resistance between the internal and external carotid arteries, 

which could significantly impact the formation of observed flow patterns and fluid behavior at the 

bifurcation point. These fluctuations in vascular resistance might introduce complexities that haven't 

been examined in this study. While we've considered this limitation when interpreting our findings, 

the fact that we haven't explicitly analyzed this variable is a limited aspect of our investigation. 

Subsequent research could benefit from a more comprehensive exploration of this factor to fully 

understand the mechanisms influencing flow patterns at the bifurcation. 
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