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Abstract: In this essay, we have presented a fractional numerical model of breast cancer stages with 

cardiac outcomes. Five compartments were used to build the model, each of which represented a 

subpopulation of breast cancer patients. Variables A, B, C, D, and E each represent a certain 

subpopulation. They are levels 1 and 2 (A), level 3 (B), level 4 (C), disease-free (D) and cardiotoxic 

(E). We have demonstrated that the fractional model has a stable solution. We also discuss how to 

optimally control this model and numerically simulate the control problem. Using numerical 

simulations, we computed the results of the dissection. The model's compartment diagram has been 

completed. A predictor-corrector method has been used to manage the fractional derivatives and 

produce numerical solutions. The Caputo sense has been used to describe fractional derivatives. The 

results have been illustrated through numerical simulations. Furthermore, the numerical simulations 

show that the cancer breast malignant growth fractional order model is easier to model than the 

traditional integer-order model. To compute the results, we have used mathematical programming. We 

have made it clear that the numerical method that was applied in this publication to solve this model 

was not utilized by any other author before that, nor has this method been investigated in the past. Our 

investigation established this approach. 

Keywords: Cancer bosom malignant growth; Caputo sense; graph of a signal; optimal control; 
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predictor-corrector method 
 

1. Introduction 

Every woman is susceptible to breast cancer. Breast cancer is the second most lethal cancer after 

lung cancer, according to data from the World Health Organization (WHO) from 2004. The tumor, 

lymph node, metastasis (TNM) system establishes the malignancy phase [1]. The tumor size (T), the 

number of lymph nodes (N), and the spread (Metastasis) to other sites (M) are used by the TNM system 

to determine the degree of malignancy. If the cancer is identified in its early stages, the recovery from 

breast disease is not at all difficult. There is less chance of recovery as the stage increases. There are 

several different types of cancer medications, including chemotherapy, radiotherapy, hormone therapy, 

focused therapy and other claimed medical treatments. Cancer treatment kills cancer cells, prevents 

cancer cells from becoming cancer cells, or prevents cancer cells from receiving signals for cell 

proliferation. In this paper, we create a numerical model to analyze the effects of chemotherapy on the 

hearts of patients and the stages of breast cancer [2]. 

Models of heart failure based on the cardiotoxicity of anticancer medications are discussed in [1] 

and [3], dissecting cancer through mathematics: from the cell to the animal model in [4], a 

mathematical model analysis of breast cancer stages with heart side effects in chemotherapy patients 

in [5], optimal control and solution of the cellular DNA cancer model in [6], optimal control is used to 

study the dynamical behaviors of fractional financial awareness models in [7]. In [8], a Caputo-

Fabrizio derivative is used to solve fractional glioblastoma multiforme. In [9] studies numerical, 

approximate solutions and optimal control of Lassa Hemorrhagic Fever in pregnant women. In [10] 

studies on a general formulation for numerical optimization of control problems and [11] the 

formulation of Euler-Lagrange equations for fractional variational problems. A formulation and 

numerical scheme for fractional optimal control problems are presented in [12]. In [13], fractional 

optimal control problems with multiple states and control variables are considered. A numerical 

method for solving the nonlinear equations of Emden-Fowler models is described in [14] and a 

numerical approach is used in optimal control [15] for a nonlinear mathematical model of the tumor 

under immune suppression. [16] studies optimal control for a fractional tuberculosis infection model 

taking diabetes and resistant strains into account and a numerical approach to fractional optimal control 

in the transmission dynamics of the West Nile model with state and control time delays is presented 

in [17]. [18] describes numerical treatments of West Nile virus transmission dynamics and optimal 

control. Studies on the dynamics of a fractional mathematical model of cancer tumor disease are 

presented in [19]. Approximate numerical methods for mathematical and physical studies for 

COVID-19 models are discussed in [20]. The 3-dimensional multispecies nonlinear tumor growth-I: 

model and numerical approach is studied in [21]. Studies [22] used symmetry approaches on a 

mathematical model of a brain tumor. The fractional-order susceptible-infected-susceptible (SIS) 

epidemic model with variable population size is described in [23]. An equation of fractional diffusion 

is used to simulate a cancer tumor in investigations [24]. The optimal control and spectral colocation 

method for solving smoking models are described in [25]. In [26], the authors present a numerical 

solution and dynamical behaviors for solving a fractional nonlinear rubella disease model. Dynamical 

behaviors of a nonlinear coronavirus (COVID-19) model with numerical studies are described in [27]. 

The fractional mathematical model for the concentration of tumor cells for a constant death rate has 
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analytical solutions in [28] research. The fractional-order mathematical model that underlies immune 

chemotherapeutic therapy for breast cancer was numerically investigated in studies [29] employing 

neural networks. A non-local tumor growth model has solutions and numerical approximations in 

works by [30]. The numerical solutions for a tumor cell invasion and migration model in [31] studies. 

Computational simulations for solving nonlinear composite oscillation fractional are described in [32]. 

For the chaotic-cancer-model, investigations [33] enhanced the numerical solutions. [34] studies 

general fractional financial models of awareness using the Caputo Fabrizio derivative. [35] studies 

algorithms for fractional calculus using a variety of numerical methods. [36] studies finite-time event-

triggered adaptive neural control for fractional-order nonlinear systems. Event-triggered adaptive 

neural control of fractional-order nonlinear systems with full-state constraints is described in [37]. [38] 

studies adaptive asymptotic tracking of nonlinear systems with unknown virtual control coefficients 

using the Barrier Lyapunov function. A fractional mathematical model of the breast cancer competition 

model is described in [39].  

We provide a brand-new fractional numerical model of the stages of bosom disease with cardiac 

findings that demonstrate the existence of a stable arrangement in the partial model. Additionally 

explored are the model's ideal control and the mathematical procedure for simulating the control 

problem. With the help of mathematical games, we were able to attain the investigation's results. 

Similar to this, when various starting conditions are applied, the mathematics have a conclusion, which 

is supposedly a balance point that is constantly steady without conditions.  

The paper is organized as follows: A predictor-corrector approach, marking, and preliminary work 

have been represented in Section 2. In Section 2, we also used a signal flow diagram to illustrate the 

cancer model. In Section 3, we talked about the uniformly stable solution after control and the optimal 

control (OC) for the fractional cancer model. In Section 4, we have resolved the nonlinear fractional 

cancer model using a predictor-corrector approach. The cancer model has been numerically simulated in 

Section 5. In Section 6, conclusions have been discussed. We describe the upcoming work in Section 7. 

2. Methods 

2.1. Preparations and marking 

The following are some essential advantages and benefits of the concept of fractional calculus 

that will be helpful in this paper: 

Definition 2.1. In Caputo's sense, the derivative fractional ( r ) is [6,26,32,35]:
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2.2. Predictor-corrector method algorithm 

The following system of variable fractional order differential equations will be solved using the 

predictor-corrector method algorithm [34,35], which we shall present. 

( )

( )

( )

1

2

3

1

2

3

( ) , , ,

( ) , , , 0 .

( ) , , ,

r

r

r

x t A x y z

y t A x y z t T

z t A x y z

 =

 =  

 =

 

with ( )0 1, 1,2,3jr j  =  and initial condition ( )0 0 0, ,x y z . 

(1) Determine these predicted values: 

( )( )
( )

( )( )
( )

( )( )
( )

1, , 1

1 0 1

0 1 1

2, , 1

1 0 2

0 2 1

3, , 1

1 0 3

0 3 1

, , ,

, , ,

, , ,

m
j mq

m j j j

j m

m
j mq

m j j j

j m

m
j mq

m j j j

j m

x x A x y z
r t

y y A x y z
r t

z z A x y z
r t







+

+

= +

+

+

= +

+

+

= +

= +


= +


= +








 

where  

( ) ( ), , 1 1 . , .
i

i i

r
r r

i j m m

i

k T
m j m j k T mk

r M
 +

 = − + − − = =
 

 

(2) Perform the following analysis on the corrected values: 
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See [40,41] for more information on the method. 
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2.3. Our proposed model 

The following innovative mathematical fractional of cancer mamma stages with cardiac side effects 

is researched in this piece for its approximative analytical solutions at r. The analytical approximate 

solution of the fractional order cancer model is the subject of recent research [5]: 

1
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(2.3) 

with initial conditions 0 0 0 0(0) ,B(0) ,C(0) ,D(0)A A B C D= = = = and 0(0) .E E=   

Five compartments representing different subpopulations of breast cancer patients were used to 

build the model. Variables A, B, C, D and E each represent a certain subpopulation. Patients with ductal 

carcinoma in situ, stages 1, 2A and 2B are represented by sub-population A. Cancer patients in stages 

3A and 3B are represented by subpopulation B. Patients with stage 4 cancer make up subpopulation C. 

Cancer patients in subpopulation D who are free of the disease following chemotherapy are represented. 

Cancer cannot be observed in an environment free of sickness. Cardiotoxic cancer patients are expressed 

in sub-population E. In Figure 1, the sign stream diagram is displayed. A system of differential equations 

is used to express the rate of change for each subpopulation (1). Be aware of the set defined by 

( ) , , , , 0, 0, 0, 0, 0 .A B C D E A B C D E =        It's important to notice that all of the 

parameters shown in Table 1 are taken to have positive values. 

Figure 1: The signal flow diagram is a tool that may illustrate the relationships between the states 

of the system and give us access to graph-theoretic tools for finding novel system characteristics. 

 

Figure 1. Graph of a signal, see [24,26,29,30]. 
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Table 1. The physical significance and description of each parameter. 

Parameter Description 

1 5 =  Number of patients examined to be in stages 1 and 2 of cancer 

2 20 =  The number of patients undergoing treatment for stage 3 cancer  

3 11 =  
The number of patients examined to endure malignant growth in phase 4 

 

0.56AB =  Rate increased from phase 1 or 2 to stage 3 (reformist illness) 

0.63AD =  Pace of phase 1 or 2 patients who experience a total reaction 

0.35BD =  The rate at which phase 3 sick people experience a total reaction 

0.62BC =  Expanded average from phase 3 to phase 4 (reformist illness) 

0.3BE =  Pace of phase 3 malignant growth chemotherapy in sick patients who experiment with 

cardiotoxic treatment 

0.42CD =  Pace of Phase 4 patients undergoing total reaction 

0.3CE =  The rate of phase 4 malignant growth chemotherapy in sick patients undergoing 

cardiotoxic treatment  

0.36DB =  The rate of illness releases ill people who fall back to position 3 

0.42DC =  The tempo of illness releases stickers that revert to arrangement 4 

0.3DE =  Ailment release rate of sick people who experiment cardiotoxic treatment 

1 0.4 =  Cardiotoxic patients are dying at a faster rate 

2 0.5 =  Patients with stage 3 malignant growth are dying at a faster rate 

3 0.8 =  
Patients with stage 4 malignant growth are dying at a faster rate 

 

3. Numerical modeling 

3.1. Optimal control for the fractional cancer model 

This section explains the ideal control for the fractional cancer system. 
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The equations (3.1.1) in 5R , generated from references [11–15,18–21,29], will be explained as follows: 
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where fT is time final, (.)CD  is the typical value of phase 4 patients testing a complete echo and 
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cardiotoxicity. (.)CD   and (.)BE   are the mechanisms for control. The standard is the space 
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For the objective of the fractional optimal control problem (FOCP), see [26–29]: 
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The control equation (3.1.1) and objective Hamiltonian (3.1.6) are shown be pursuing the following 

goals:  
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In [26–29] describe the necessary and sufficient conditions. 
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furthermore, 

, ( ) 0,i fT =                      (3.1.12) 

where , 1, 2,3,4,5i i =   are the Lagrange multipliers. The following theorem completes our 

finding: 

Theorem 1. 

If andCD BE   are optimal controls with alike states 
* * * * *, , , and ,A B C D E  then there dwell 
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*, 1,2,3,4,5,j j =  which satisfy the following requirements: 

(i) Equations adjoint  

The five equations below can be created by combining the criteria in the text theorem with equations 

(3.1.9) shown ([26–29]).  
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(ii) Condition of transversality: 
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Reasoning. Eqs. (3.1.11) through (3.1.16) of the co-state system, where the Hamiltonian is found *H  

is given by 

* * *2 *2 * * * * * * * * * *

1 2 3 1 2 3 4 4 .
CD BE

q q q q qH a A a a D A D B D C D D D E      = + + + + + + +  (3.1.23) 

Then, Eq. (3.1.12)'s case satisfied, and Eqs. (3.1.21)–(3.1.22)'s optimal control can be deduced from 

Eq (3.1.10). Starting to put 
* , 1, 2ju j =  in Eq (3.1.1), moreover 
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       (3.1.24)

 

Refer to the references for more information on optimal control fractional [11–15,18–21,29]. 

3.2. Existence solution (after control) 

This section will demonstrate the existence of the solution to the system Eqs (3.1.13)-(3.1.16), 

which can be found in [24,26,28,30] as follows: 

Let  

     * * *

1 1 1 2 4 ,AD AB AB ADw a       = + − − + +
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4 2 3 4 5 ,DB DC DB DC DE DEw          = + + − − − +   *

5 5 1 .w  = −  

Let
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2 2 2 2 2
21 22 23 24 25* * * * *
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where: 11 12 13 14 15, , , , ,c c c c c 21 22 23 24 25, , , , ,c c c c c 31 32 33 34 35, , , , ,c c c c c 41 42 43 44 45, , , , ,c c c c c  and 

51 52 53 54 55, , , , ,c c c c c  have positive constants. This implies that each of the five roles 4321 ,,, ffff  and 

5f  have the Lipschitz case exception. See for more information about the presence and distinction 

[24,26,28–30]. 

4. Implementation of numerical simulation  

The numerical solution of the model Eq (2.3) using the GABM approach is related to this section. 

Following is a description of the model Eq (2.3)’s numerical methodology using GABMM: 
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where  
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5. Numerical and simulation outcomes  

This section uses the GABMM with values for the values and parameters that are consistent with 

Table 1 to provide feedback on the numerical results of the fractional-order model Eq (2.3). This 

approach is very effective at producing numerical FODE solutions. 

Here, we've provided numerical simulations that emulate mathematical concepts utilizing the 

GABMM method. In Figures 2 and 3, we depict the behavior that gave rise to the models at various q. 

 

Figure 2. The connection between whole variables at q=0.9, 0.85, 0.75. The variable A(t) 

with various q. 

The effectiveness of the existing method is greatly enhanced by counting more expressions of 

A(t), B(t), C(t), D(t), and E(t) using GABMM. Figures 2 and 3 show the various places' reactions. 

Figures 2 and 3 make the GABMM's accuracy more clear. The time-partial features of the several 

stages of bosom malignant growth are also shown by various estimates of alpha, with implications for 

the heart. With this foundational set of characteristics, the effect of cancer on different stages of breast 

cancer growth and its effects on the heart have been amply shown. These numbers reflect the heavy 

cancer patient's outlook if the disease is not cured. Mathematica 9.0 was used to carry out all 

mathematical recreations. 
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Figure 3. The variable B(t), C(t), D(t), E(t) with various q. 

6. Conclusions 

The stages of breast malignant development and their impact on the heart are examined in this 

research using a unique fractional numerical model. This model's ideal control is explored. The 

solutions that come closest to the model are obtained using the GABMM. This model's stability at its 

equilibrium point is investigated toward. creation of the ideal control. We introduce a numerical 

method for simulating the control problem. The stability analysis also discusses a numerical approach. 

The proposed concept can be explained using numerical simulations. The model's compartment 

diagrams are finished. To calculate the results, Maple 15 programming has been used. 

7. Further work 

In the forthcoming future work. 

(a) These methods can be extended to solve other models. 

(b) These methods can be extended to solve an optimal control problem for the variable-order 

fractional-integer mathematical model. 
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