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Abstract: Water pollution is a critical global concern that demands ongoing scrutiny and revision
of water resource policies at all levels to safeguard a healthy living environment. In this study, we
focus on examining the dynamics of a fractional-order model involving three interconnected lakes,
utilizing the Caputo differential operator. The aim is to investigate the issue of lake pollution by
analyzing a system of linear equations that represent the interconnecting waterways. To numerically
solve the model, we employ two methods: The Laplace transform with the Adomian decomposition
method (LADM) and the Homotopy perturbation method (HPM). We compare the obtained numerical
solutions from both methods and present the results. The study encompasses three variations of the
model: the periodic input model, the exponentially decaying input model, and the linear input model.
MATLAB is employed to conduct numerical simulations for the proposed scheme, considering various
fractional orders. The numerical results are further supported by informative graphical illustrations.
Through simulation, we validate the suitability of the proposed model for addressing the issue at hand.
The outcomes of this research contribute to the understanding and management of water pollution,
aiding policymakers and researchers in formulating effective strategies for maintaining water quality
and protecting our environment.
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1. Introduction

In line with the Environmental Health Association of America’s committee definition, the
environment encompasses the habitats where humans reside, work, and engage in recreational
activities. It includes the air we breathe, the food we consume, the water we drink, and the shelter we
seek for protection against the elements. Additionally, it comprises harmful pollutants and other
environmental factors that significantly impact our well-being and overall health. Our survival
depends on access to nutritious food, clean air, and safe drinking water, which necessitates the
promotion of a healthy atmosphere. The World Health Organization (WHO) emphasizes the
importance of maintaining a clean environment that adheres to health standards. Regrettably, our
water supply has become increasingly contaminated, with numerous pollutants affecting the quality of
our drinking water sources. Thus, it is imperative that we develop a conscientious awareness of our
surroundings. Environmental science encompasses scientific methodologies, economic
considerations, and political interventions. Moreover, toxic substances introduced into lakes, streams,
rivers, seas, and other bodies of water can dissolve, remain suspended, or settle at the bottom.
Consequently, water contamination ensues, leading to a decline in groundwater quality and the
deterioration of marine habitats [1].

Pollution can also seep into the groundwater and alter the sediment composition. Water pollution
has various causes, with sewage and industrial waste being the most significant contributors that enter
rivers. In many developed countries, the resources allocated for waste management are
insufficient [2]. Currently, only around 10% of the generated wastewater is properly treated, while the
rest is discharged and deposited into our water bodies. Consequently, impurities infiltrate
groundwater, tributaries, and other water sources. The water that ultimately reaches our homes is
often highly contaminated, carrying viruses that can harm microorganisms. Another major source of
water pollution is agricultural runoff, which involves the drainage of water from fields containing
pesticides and fertilizers. Domestic sewage, also known as sanitary sewage, refers to wastewater
discharged from households. This type of water contains a wide array of dissolved and suspended
contaminants.

Mathematical frameworks play a crucial role in predicting and addressing social issues, and they
have been increasingly utilized in recent decades to mitigate the impact of these issues. By applying
mathematical models, we can effectively control the spread of real-world problems. As many global
challenges exhibit quasi-linear characteristics, relying solely on linear models can often lead to
idealistic and unrealistic outcomes. Therefore, non-linear mathematical models provide a more
accurate depiction of real-world issues. In the context of modeling lake contamination, a collocation
approach has been proposed, which utilizes Bessel polynomials and collocation points to generate an
updated matrix problem [3]. This approach allows for a more comprehensive understanding of the
contamination dynamics within a lake system. Additionally, the homotopy perturbation approach has
been employed to offer approximate and analytical solutions for nonlinear ordinary differential
equation systems, such as those encountered in modeling lake contamination [4]. Furthermore, the
differential transform method (DTM) has been utilized to analyze pollution models involving
interconnected systems of three lakes connected by waterways [5]. These mathematical methods
enhance our ability to study and address the complex dynamics of pollution in various environmental
systems.
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A fractional differential equation system has been investigated by Haq EU [6]. He designed the
system to simulate the pollution of a group of lakes and assess the results using other well-known
analytical approaches, such as iterative variation and Adomian decomposition. The Laplace Adomian
decomposition method is widely applied to solve many real-life problems (see [7–9]). Several
researchers have used the technique of LADM to investigate different types of problems. For
example, in [10], the authors examined the free vibrations of a non-uniform Bernoulli beam using
LADM. In [11], a fractional-order sterile insect technology model was studied with the help of
LADM. Other studies include the investigation of MHD flow of incompressible fluid between two
parallel plates [12], and the study of the effect of a magnetic field on the heat transfer of carbon
nanotubes [13]. Different approaches have been used for disease models, studying them with various
fractional operator techniques [14–23].

Aguirre and Tully [24] employed simple mixture problem methodologies to develop a differential
equation that characterizes the pollution concentration in a lake. Prakasha and Veeresha [25] explored
three alternative scenarios of the model and established an approximate analytical solution for the
system of three fractional differential equations using the q-homotopy analysis transform technique
(q-HATM). The results obtained demonstrated the high effectiveness and systematic nature of the
proposed strategy. Khalid and Sultana [26] utilized the perturbation-iteration approach to estimate the
solution of three input models: periodic, linear step, and exponentially decaying. As a reference, the
analytical simulation of the lake system problem was conducted using the fourth-order Runge-Kutta
technique (RK4). Biazar and Farrokhi [27] employed compartmental modeling to predict the
contamination of a system of lakes through a set of mathematically-researched equations. Bazar and
Shahbala [28] utilized the variational iteration method (VIM), and the results demonstrated that the
variational iteration approach was easier to implement compared to the Adomian decomposition
method for pollution monitoring in lakes. Three distinct types of input models were considered:
sinusoidal, impulse, and step. Furthermore, Toufik and Atangana’s novel numerical technique was
applied [29] to examine the updated model of the contaminated lake system.

Fractional calculus, despite its name, deals with integrals and derivatives of any positive real order
and can be considered a branch of mathematical modeling. It focuses on integrodifferential operators
and equations with convolution-type integrals that involve weakly singular kernels of power-law form.
It is closely related to the theory of pseudo-differential operators. In recent years, fractional calculus has
garnered significant attention from researchers, and various aspects of this subject are being explored
in research [30,31]. This is because fractional derivatives serve as an important tool for describing the
dynamic behavior of diverse physical systems [32–34]. The distinct characteristic of these differential
operators lies in their non-local nature, which is absent in integer-order differential operators [35]. In
fact, fractional order models are more accurate and practical than classical integer order models, and
techniques such as the Legendre operational matrix can be extended to incorporate fractional calculus
[36, 37]. The application of fractional differential equations in applied sciences is another area of
interest [38, 39].

Fractional order derivatives offer increased flexibility in modeling various biomaterials and
systems [40]. They provide powerful tools for characterizing the dynamic behavior of these systems.
There are different types of fractional derivatives, such as Riemann and Liouville, and Caputo
operators, which are commonly used in practice. Caputo [41] introduced a fractional derivative that
allows for the incorporation of conventional initial and boundary conditions relevant to real-world
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problems. While these fractional derivatives offer improved accuracy in describing real phenomena
compared to integer-order derivatives, their kernel functions may result in singularities that lead to
computational challenges. To explore fractional mathematical models beyond the traditional Caputo
derivative, various methodologies, including iterative and numerical methods, have been
employed [42–44]. In this study, we focus on a system of three equations that describes lake
contamination. The model represents the contamination of a three-lake system [27], as illustrated in
Figure 1.

Figure 1. System of three lakes with interconnecting channels.

The arrows in the figure indicate the direction of flow in the channels or pipes. In this system, a
contaminant is introduced into the first lake through a factory, and the rate of entrance of the pollutant
into the lake per unit of time is represented by the function p(t). The function p(t) can be constant
or vary over time. The goal is to determine the level of pollution in each lake at any given time. At
time t ≥ 0, the contamination level ci(t) in Lake i is proportional to the volume of water vi and the
concentration of pollutant yi(t) in the following manner:

ci(t) =
yi(t)
vi

.

In the lake system, it is assumed that each lake is initially free of any contaminants, so the concentration
of pollutant in each lake at time t = 0 is given by yi(0) = 0 for i = 1, 2, 3. To simulate the dynamic
behavior of the lake system, a constant g ji is used to represent the flow rate from lake i to lake j. The
flux of pollutant flowing from lake i into lake j at any time t is denoted by r ji(t) and is defined as
follows:

r ji(t) = g ji ci(t) =
g ji

vi
yi(t).
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Thus, r ji(t) represents the proportion at which the contamination level in lake i flows into lake j at time
t. It is important to note this relationship.
Rate of change of pollutant = Input rate - Output rate.
Applying this principle to each lake, we obtain the following system of differential equations:

dy1
dt =

g13
v3

y3(t) + p(t) − g31
v1

y1(t) − g21
v1

y1(t),
dy2
dt =

g21
v1

y1(t) − g32
v2

y2(t),
dy3
dt =

g31
v1

y1(t) +
g32
v2

y2(t) − g13
v3

y3(t).

(1.1)

It is apparent from this that the incoming and outgoing flow rates in each lake are constant, and as a
result, the water volume in each lake remains fixed. Therefore, we can establish the following
conditions: 

Lake1 : g13 = g21 + g31,

Lake2 : g21 = g32,

Lake3 : g31 + g32 = g13.

To evaluate the performance of the proposed model, we consider specific predicted values as listed
in [27], which can be expressed as follows:

g21 = g32 = 18mi3/year, g31 = 20mi3/year, g13 = 38mi3/year,
v1 = 2900mi3, v2 = 850mi3, v3 = 1180mi3.

In this study, to obtain a more accurate qualitative and numerical iterative analysis of the proposed
model, we consider the system (1.1) in terms of the Caputo fractional order differential operator. The
system can be expressed as follows:

cDα
t y1(t) =

gα13
vα3

y3(t) + p(t) − gα31
vα1

y1(t) − gα21
vα1

y1(t),
cDα

t y2(t) =
gα21
vα1

y1(t) − gα32
vα2

y2(t),
cDα

t y3(t) =
gα31
vα1

y1(t) +
gα32
vα2

y2(t) − gα13
vα3

y3(t),

(1.2)

where α denotes the fractional order.
The objective of this study is to analyze a system of fractional differential equations that describe

lake pollution and provide meaningful insights through a mathematical model that can explain
real-world scenarios using a simple and efficient approach. It is important to highlight that the
investigated model heavily relies on time and its history, which can be systematically incorporated
and represented using the newly developed fractional operator. To obtain the solution of the model,
we utilize the Laplace transform in conjunction with the Adomian decomposition method and the
Homotopy perturbation method. These techniques enable us to obtain an approximate solution for the
considered model. Additionally, we compare the results obtained from both techniques,
demonstrating their identical nature. Furthermore, we employ MATLAB to facilitate the numerical
solutions and depict the pollution levels in each lake graphically, considering arbitrary fractional
orders. This visual representation aids in understanding the behavior of the lake system under
different scenarios.
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The structure of this paper is organized as follows: Section 2 provides fundamental results and
definitions related to the topic. In Section 3, the general solutions of the suggested model are obtained
using the Laplace Adomian decomposition technique. This section focuses on the qualitative analysis
of the model. Section 4 presents the general solutions of the considered model using the Homotopy
perturbation technique. This section discusses the application of the Homotopy perturbation method
for obtaining the solutions. In Section 5, a graphical comparison of the numerical solutions obtained
from both the Laplace Adomian decomposition technique and the Homotopy perturbation technique is
presented. The numerical simulation results are briefly discussed in this section. Finally, in Section 6,
the concluding remarks of the study are provided.

2. Preliminaries and basic definitions

In this section, some essential preliminaries and fractional calculus results are presented in line
with [45, 46].

Definition 2.1. For α > 0 with n − 1 < α < n, n ∈ N, the Caputo fractional order derivative of the
function f (x) is described as follows:

cDα
x f (x) =

dα

dtα
f (t) =

1
Γ(n − α)

∫ x

0
(x − t)n−α−1 dn

dtn f (t)dt,

such that the integral part on the right exists and n = [α] + 1, and the symbol Γ denotes the Gamma
function which is described as

Γ(n) =

∫ ∞

0
e−ttn−1dt.

Definition 2.2. The Laplace transform of g(t) in the general framework of Caputo definition is
described as follows:

L[cDα
t g(t)] = sαG(s) −

m−1∑
j=0

sα− j−1gk(0), m − 1 < α,m ∈ N.

Definition 2.3. The Homotopy perturbation method (HPM) is a semi-analytical technique used to solve
linear and nonlinear ordinary and partial differential equations, as well as systems of equations. It is
also applicable to systems consisting of both linear and nonlinear differential equations. One notable
advantage of using the HPM over decomposition methods is that it can handle nonlinear problems
without requiring the use of Adomian polynomials. The HPM was first proposed by the Chinese
mathematician He [47], who introduced the concept of forming a homotopy ν(l, p) : Ω × [0, 1] → R
for an equation involving both linear and nonlinear components.

F(ν, p) = (1 − p)[L(ν) − L(u0)] + p[L(ν) + N(ν) − f (l)] = 0,

where L is used for the linear part, N for the nonlinear part, l ∈ Ω, Ω is a topological space and
p ∈ [0, 1] is the embedding parameter. Furthermore, u0 is an initial approximation that satisfies the
boundary conditions.
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3. General solution of the model (1.2) by (LADM)

In this section, we will discuss the general technique of the Laplace Adomian decomposition method
(LADM) to construct the solution for the considered model (1.2), along with the initial conditions. We
will also demonstrate how to integrate the LADM with the Caputo differential operator.

cDα
t y1(t) =

g13
v3

y3(t) + p(t) − g31
v1

y1(t) − g21
v1

y1(t),
cDα

t y2(t) =
g21
v1

y1(t) − g32
v2

y2(t),
cDα

t y3(t) =
g31
v1

y1(t) +
g32
v2

y2(t) − g13
v3

y3(t),

(3.1)

with subject to the initial conditions:

y1(0) = n1, y2(0) = n2, y3(0) = n3.

Now, taking the Laplace transform of (3.1) in the Caputo sense, one may get
L[cDα

t y1(t)] = L[ g13
v3

y3(t) + p(t) − g31
v1

y1(t) − g21
v1

y1(t)],

L[cDα
t y2(t)] = L[g21

v1
y1(t) − g32

v2
y2(t)],

L[cDα
t y3(t)] = L[ g31

v1
y1(t) +

g32
v2

y2(t) − g13
v3

y3(t)],

(3.2)

using the initial conditions yields
L[y1(t)] = n1

s + 1
sαL[ g13

v3
y3(t) + p(t) − g31

v1
y1(t) − g21

v1
y1(t)],

L[y2(t)] = n2
s + 1

sαL[ g21
v1

y1(t) − g32
v2

y2(t)],

L[y3(t)] = n3
s + 1

sαL[ g31
v1

y1(t) +
g32
v2

y2(t) − g13
v3

y3(t)].

(3.3)

Assuming the solution for y1(t), y2(t) and y3(t) in an infinite series is given below:
y1(t) =

∑∞
n=0 y1(n)(t),

y2(t) =
∑∞

n=0 y2(n)(t),

y3(t) =
∑∞

n=0 y3(n)(t),

using the above series in (3.3), and comparing like terms on both sides, one can get

L[y1(0)(t)] = n1
s , L[y2(0)(t)] = n2

s , L[y3(0)(t)] = n3
s ,

L[y1(1)(t)] = 1
sα L [g13

v3
y3(0)(t) + p(t) − g31

v1
y1(0)(t) −

g21
v1

y1(0)(t)],

L[y2(1)(t)] = 1
sα L[ g21

v1
y1(0)(t) −

g32
v2

y2(0)(t)],

L[y3(1)(t)] = 1
sα L[ g31

v1
y1(0)(t) +

g32
v2

y2(0)(t) −
g13
v3

y3(0)(t)],
...

L[y1(n+1)(t)] = 1
sαL[ g13

v3
y3(n)(t) + p(t) − g31

v1
y1(n)(t) −

g21
v1

y1(n)(t)],

L[y2(n+1)(t)] = 1
sαL[ g21

v1
y1(n)(t) −

g32
v2

y2(n)(t)],

L[y3(n+1)(t)] = 1
sαL[ g31

v1
y1(n)(t) +

g32
v2

y2(n)(t) −
g13
v3

y3(n)(t)].

(3.4)
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Further, utilizing the inverse Laplace transform to equation (3.4), we have

y1(0)(t) = n1, y2(0)(t) = n2, y3(0)(t) = n3,

y1(1)(t) = [ g13
v3

n3 + p(t) − g31
v1

n1 −
g21
v1

n1] tα
Γ(α+1) ,

y2(1)(t) = [ g21
v1

n1 −
g32
v2

n2] tα
Γ(α+1) ,

y3(1)(t) = [ g31
v1

n1 +
g32
v2

n2 −
g13
v3

n3] tα
Γ(α+1) ,

y1(2)(t) = [ g13
v3

x11 + p(t) − g31
v1

w11 −
g21
v1

w11] t2α
Γ(2α+1) ,

y2(2)(t) = [ g21
v1

w11 −
g32
v2

u11] t2α
Γ(2α+1) ,

y3(2)(t) = [ g31
v1

w11 +
g32
v2

u11 −
g13
v3

x11] t2α
Γ(2α+1) ,

y1(3)(t) = [ g13
v3

x111 + p(t) − g31
v1

w111 −
g21
v1

w111] t3α
Γ(3α+1) ,

y2(3)(t) = [ g21
v1

w111 −
g32
v2

u111] t3α
Γ(3α+1) ,

y3(3)(t) = [ g31
v1

w111 +
g32
v2

u111 −
g13
v3

x111] t3α
Γ(3α+1) .

Additionally, the remaining terms can be derived in a similar fashion. The unknown values in the
aforementioned equations are listed below:

w11 =
g13
v3

n3 + p(t) − g31
v1

n1 −
g21
v1

n1,

u11 =
g21
v1

n1 −
g32
v2

n2,

x11 =
g31
v1

n1 +
g32
v2

n2 −
g13
v3

n3,

w111 =
g13
v3

x11 + p(t) − g31
v1

w11 −
g21
v1

w11,

u111 =
g21
v1

w11 −
g32
v2

u11,

x111 =
g31
v1

w11 +
g32
v2

u11 −
g13
v3

x11.

4. General solution for model (1.2) with (HPM)

We will now apply the Homotopy Perturbation Method (HPM) to derive the general solution of
Model (1.2) as:

(1 − q)[cDα
t (y1(t)) − cDα

t (y1(0)(t))] + q[cDα
t (y1(t)) − g13

v3
y3(t) − p(t) +

g31
v1

y1(t) +
g21
v1

y1(t)] = 0,

(1 − q)[cDα
t (y2(t)) − cDα

t (y2(0)(t))] + q[cDα
t (y2(t)) − g21

v1
y1(t) +

g32
v2

y2(t)] = 0,

(1 − q)[cDα
t (y3(t)) − cDα

t (y3(0)(t))] + q[cDα
t (y3(t)) − g31

v1
y1(t) − g32

v2
y2(t) +

g13
v3

y3(t)] = 0.

(4.1)

By substituting q = 0 into equation (4.1), we obtain the following system of fractional differential
equations: 

cDα
t (y1(t)) − cDα

t (y1(0)(t)) = 0,
cDα

t (y2(t)) − cDα
t (y2(0)(t)) = 0,

cDα
t (y3(t)) − cDα

t (y3(0)(t)) = 0.

(4.2)
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The solution to the above equation is straightforward. Next, setting q = 1 in equation (4.1) results in a
similar model to equation (1.2). We assume the solution takes the form of an infinite series as:

y1(t) =
∑∞

n=0 qny1(n)(t),

y2(t) =
∑∞

n=0 qny2(n)(t),

y3(t) =
∑∞

n=0 qny3(n)(t).

(4.3)

Furthermore, the original system can be obtained by substituting q = 1 into equation (4.1). By
substituting equation (4.3) into equation (4.1) and comparing the terms with respect to the powers of
q, we obtain:

q0 :


y1(0)(t) = y1(0) = n1,

y2(0)(t) = y2(0) = n2,

y3(0)(t) = y3(0) = n3.

(4.4)

Similarly,

q1 :


y1(1)(t) = [g13

v3
n3 + p(t) − g31

v1
n1 −

g21
v1

n1] tα
Γ(α+1) ,

y2(1)(t) = [g21
v1

n1 −
g32
v2

n2] tα
Γ(α+1) ,

y3(1)(t) = [g31
v1

n1 +
g32
v2

n2 −
g13
v3

n3] tα
Γ(α+1) .

(4.5)

q2 :


y1(2)(t) = [ g13

v3
x11 + p(t) − g31

v1
w11 −

g21
v1

w11] t2α
Γ(2α+1) ,

y2(2)(t) = [ g21
v1

w11 −
g32
v2

u11] t2α
Γ(2α+1) ,

y3(2)(t) = [ g31
v1

w11 +
g32
v2

u11 −
g13
v3

x11] t2α
Γ(2α+1) .

(4.6)

The approximate series solution is thus acquired. In the next section, we will do simulation for the
aforementioned methods.

5. Numerical results and simulations

In this section, we conduct numerical simulations to complement the analytical findings of our
proposed model. The simulations involve qualitative point analysis and consider the parameters from
a biological feasibility perspective. By using the parametric values, we determine the following terms
of the proposed model:

y1(0)(t) = 0, y2(0)(t) = 0, y3(0)(t) = 0,

y1(1)(t) = p(t) tα
Γ(α+1) , y2(1)(t) = 0, y3(1)(t) = 0,

y1(2)(t) = (0.999)p(t) t2α
Γ(2α+1) , y2(2)(t) = (0.006206)p(t) t2α

Γ(2α+1) ,

y3(2)(t) = (0.00689)p(t) t2α
Γ(2α+1) ,

y1(3)(t) = (0.98713)p(t) t3α
Γ(3α+1) ,

y2(3)(t) = (0.006069)p(t) t3α
Γ(3α+1) ,

y3(3)(t) = (0.00679)p(t) t3α
Γ(3α+1) .

(5.1)
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Furthermore, the solutions to the first few terms are given as:


y1(t) = p(t) tα

Γ(α+1) + (0.999)p(t) t2α
Γ(2α+1) + (0.98713)p(t) t3α

Γ(3α+1) ,

y2(t) = (0.006206)p(t) t2α
Γ(2α+1) + (0.006069)p(t) t3α

Γ(3α+1) ,

y3(t) = (0.00689)p(t) t2α
Γ(2α+1) + (0.00679)p(t) t3α

Γ(3α+1) .

(5.2)

Now, evaluating (5.2) for α = 0.97, one get


y1(t) = 1.012468567p(t)t0.97 + 0.5275576582p(t)t1.94 + 0.1839995904p(t)t2.91,

y2(t) = 0.006283379927p(t)t1.94 + 0.003204952380p(t)t2.91,

y3(t) = 0.006975908427p(t)t1.94 + 0.003585702201p(t)t2.91.

(5.3)

Similarly, for α = 0.98, the approximations are:


y1(t) = 1.008360917p(t)t0.98 + 0.5181171462p(t)t1.96 + 0.1773092790p(t)t2.94,

y2(t) = 0.006257887851p(t)t1.96 + 0.003147600561p(t)t2.94,

y3(t) = 0.006947606718p(t)t1.96 + 0.003521536960p(t)t2.94.

(5.4)

And for α = 0.99, one can obtain the approximate solutions are:


y1(t) = 1.004204343p(t)t0.99 + 0.5087639171p(t)t1.98 + 0.1708178394p(t)t2.97,

y2(t) = 0.006232092153p(t)t1.98 + 0.003090778992p(t)t2.97,

y3(t) = 0.006918967923p(t)t1.98 + 0.003457964962p(t)t2.97.

(5.5)

Furthermore, we have considered three different types of input functions to represent the duration of
the contaminant in each lake. These input functions include periodic, exponentially decaying, and
linear inputs.
Case 1: Periodic Input Model: In this scenario, the model is evaluated when pollution is periodically
introduced into Lake 1. We have chosen the input function p(t) = a sin(ωt) + c, where a and ω

represent the amplitude and frequency of the fluctuations, respectively, and c represents the average
pollutant concentration input. For this example, let us consider a = ω = c = 1 as an illustration.
This could represent a manufacturing facility that discharges waste during the day and generates more
pollutants during the night due to increased production during that time. As a result, the pollutant input
exhibits a periodic pattern. By applying this periodic input to the model, the concentration levels in the
lakes eventually converge to the average input level of the contaminant.
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Figure 2. Adaptive nature of the approximated LADM solutions for y1, y2, and y3 at different
arbitrary fractional orders for the Case 1.
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Figure 3. Dynamical behavior of the considered model with LADM solutions for y1, y2, and
y3 at fractional orders 0.80, 0.50, 0.20 for the Case 1.

Based on Figure 2, it is evident that the pollution concentration in the lakes increases over time.
Moreover, for smaller fractional orders, the increase is more rapid. It is worth noting that the timescale
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in all the figures is measured in days. In the next step, we will provide a comparison of the lakes using
both the Laplace Adomian decomposition method (LADM) and the Homotopy perturbation method
(HPM). Specifically, we will focus on the first few terms of the simulations, which will demonstrate
the similarities between the two methods.
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Figure 4. Adaptive nature of the approximated LADM and HPM solutions for y1, y2, and y3

at different arbitrary fractional orders for the Case 1.
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Figure 5. Dynamical behavior of the considered model with LADM and HPM solutions for
y1, y2, and y3 at fractional orders 0.80, 0.50, 0.20 for the Case 1.

Case 2: Exponentially Decaying Input Model: In this situation, the model is examined when
pollutants with huge dumping. We chose p(t) = a e−bt, where a = 200 and b = 10.
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Figure 6. Adaptive nature of the approximated LADM solutions for y1, y2, and y3 at different
arbitrary fractional orders for the Case 2.
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Figure 7. Dynamical behavior of the considered model with LADM solutions for y1, y2, and
y3 at fractional orders 0.80, 0.50, 0.20 for the Case 2.

Figure 6 illustrates that the pollution concentration in the lakes initially increases, then decreases,
and eventually stabilizes at a certain level over time. Similarly, we will proceed with the comparison
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of the lakes using both the Laplace Adomian decomposition method (LADM) and the Homotopy
perturbation method (HPM). By examining the first few terms of the simulations, we will demonstrate
the similarities between the two methods, thus validating their simulation results.
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Figure 8. Adaptive nature of the approximated LADM and HPM solutions for y1, y2, and y3

at different arbitrary fractional orders for the Case 2.
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Figure 9. Adaptive nature of the approximated LADM and HPM solutions for y1, y2, and y3

at different arbitrary fractional orders for the Case 3.
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Figure 10. Dynamical behavior of the considered model with LADM and HPM solutions
for y1, y2, and y3 at fractional orders 0.80, 0.50, 0.20 for the Case 3.

Case 3: Linear Input Model: In this scenario, the model considers the case where Lake 1 is
initially contaminated with a pollutant with a linear proportion. We have chosen the input function
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p(t) = a, t, where a = 100. For this linear input, the pollutant starts flowing into the lake at time zero,
and the amount of pollutant before time zero is assumed to be zero. In the case of a step input, the key
characteristic is that the input abruptly increases at time zero and remains relatively constant thereafter.
As an example, consider a manufacturing plant that starts its operations at time zero and immediately
begins discharging untreated sewage at a consistent rate and intensity. This linear input represents the
continuous influx of pollutants into the lake.

Figure 9 shows the concentration of pollution in lakes rising rapidly with passing time. Next, the
comparison of these lakes using both proposed methods of LADM and HPM for the first few terms
that demonstrate simulation similarities are presented.
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Figure 11. Adaptive nature of the approximated LADM and HPM solutions for y1, y2, and
y3 at different arbitrary fractional orders for the Case 3.

6. Conclusion

In this research, we have analyzed the dynamic behavior of a lake pollution model using the
Caputo differential operator and the utilities of fractional calculus. The model has been numerically
explored using the Laplace transform with the Adomian decomposition method (LADM) and the
Homotopy perturbation method (HPM). The numerical results obtained from both methods are highly
similar and provide strong confirmation for the considered model in arbitrary order derivatives. The
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outcomes are influenced by various parameters used in the model, and both methods converge
effectively for solving fractional-order differential equations. The graphical results, generated using
MATLAB, demonstrate the dependency of the model on the fractional operator and the parameters
utilized in the proposed methods. The present study highlights the significance of the fractional
concept in understanding and analyzing the suggested lakes pollution model, which is highly
dependent on time and its history. It also provides a foundation for future research in this field. For
instance, the mathematical model can be further enhanced by considering various dynamic structures
and investigating different types of derivatives. The advantages of the LADM and HPM methods,
including simplicity, accuracy, flexibility, and efficiency, make them valuable tools for analyzing
nonlinear problems in various scientific and engineering disciplines. These methods offer promising
avenues for further exploration and application in fractional calculus and related fields.
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