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Abstract: The dynamics of transcription bubbles is modeled using a system of nonlinear differential 

equations, the one-soliton solutions of which (kinks), are interpreted as a mathematical images of 

transcription bubbles. These equations contain a lot of DNA dynamic parameters, including the 

moments of inertia of nitrous bases, distances between base pairs, distances from the centers of mass 

of bases to sugar-phosphate chains, rigidity of the sugar-phosphate backbone, and interactions between 

bases within pairs. However, estimates of the parameter values are often difficult, and it is not 

convenient or simple to operate with such multi-parameter systems. One of the ways to reduce the 

number of the DNA dynamic parameters is to transform the model equations to a dimensionless form. 

In this work, we construct a dimensionless DNA model and apply it to study transcription bubbles 

dynamics. We show that transformation to a dimensionless form really leads to a decrease in the 

number of the model parameters and really simplifies the analysis of model equations and their 

solutions. 

Keywords: transcription bubble; nonlinear DNA model; kinks; McLaughlin-Scott equation; kink 

trajectories 

 

1. Introduction 

It is generally accepted that the transcription bubbles, which are small, locally untwisted regions 

(or distortions) of the double helix [1–4], are formed at the initial stage of the transcription and then 

move along the DNA molecule. On the other hand, the DNA molecule is considered by many 
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researchers as a medium in which nonlinear conformational distortions (or solitary waves) can arise 

and propagate [5,6]. This amazing property of DNA associates such a purely biological object as DNA 

with numerous nonlinear, mostly physical systems. Mathematically the movement of the nonlinear 

distortions are modeled by nonlinear differential equations, in particular, by the nonlinear sine-Gordon 

equation:  

𝜑𝜏𝜏 − 𝜑𝜉𝜉 + sin 𝜑 = 0,          (1) 

having, among others, one-soliton solutions (kinks) [7,8]: 

𝜑𝑘(𝜉, 𝜏) = 4arctg{exp[ ⋅ (𝜉 − 𝜐𝑘 ⋅ 𝜏 − 𝜉0)]},     (2) 

where 𝜐𝑘 is the kink velocity;  = (1 − 𝜐𝑘
2)−1/2 and 𝜉0 is an arbitrary constant.  

Beginning with the work of Englander et al. [9], kinks have been actively used to model nonlinear 

conformational distortions in DNA, of which transcription bubbles are a special case. Currently, to 

model the dynamics of transcription bubbles, different modifications of the Englander model are used. 

Usually, they consist of a system of nonlinear differential equations with kink-like solutions. These 

equations contain many DNA dynamic parameters, such as the moments of inertia of nitrous bases, 

the distances between base pairs, the distances from the centers of mass of bases to sugar-phosphate 

chains, the rigidity of the sugar-phosphate backbone and the coefficients characterizing interactions 

between bases within pairs. Taken together, the equations and their parameters constitute the so-called 

dimensional model. 

To reduce the number of parameters, it is much more convenient and efficient to use a 

dimensionless analog of a dimensional model. It is believed that the dimensionless analog not only 

makes it possible to noticeably reduce the number of parameters, but it also significantly simplifies the 

analysis of equations and methods for finding their solutions. In addition, the results obtained within 

the dimensionless model are valid not only for DNA, but also for other similar nonlinear media. 

In this work, we have constructed a dimensionless analog of the nonlinear differential equations 

simulating the dynamics of transcription bubbles. We show that carrying out the dimensionless 

procedure really leads to a decrease in the number of model parameters, as well as to justification of 

the validity of applying the perturbation theory and the McLaughlin-Scott method [10,11] based on it, 

which greatly facilitates finding solutions to model equations, their analysis and understanding the 

nature of the motion of transcription bubbles.  

Methods for reducing model equations to a dimensionless form are varied [12–l5]. To simplify 

calculations, we limited ourselves to the case of homogeneous (synthetic) DNA. In this case, the 

desired analog can be obtained using a simple transformation from the variables z and t to the new 

variables 𝜉 and 𝜏: 

𝜉 = 𝜎𝑧, 𝜏 = 𝜂𝑡,           (3) 

which is accompanied by additional requirements for the transformation coefficients. We obtained 

dimensionless model equations, estimated their parameters, found one-soliton solutions (kinks) 

imitating transcription bubbles and justified the McLaughlin-Scott method, which made it possible to  

calculate the dimensionless velocity of transcription bubbles and to plot their trajectories in the {𝜉, 𝜏} 

plane.  
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2. Dimensional DNA model and kink characteristics 

Let us consider a homogeneous case when one of the two polynucleotide chains contains only 

one type of nitrous bases, such as adenines, and the second chain contains only thymines (Figure 1). 

 

Figure 1. A schematic picture of the double stranded homogeneous DNA. Adenines are 

shown in red, thymines in blue, sugar-phosphate chains in black-white and hydrogen bonds 

as dotted lines.  

In this case, more general model equations proposed in [16] to describe transcription bubbles 

dynamics take the following form:  

𝐼A
𝑑2φ𝑛,𝐴(𝑡)

𝑑𝑡2 − 𝐾𝐴
′[φ𝑛+1,𝐴(𝑡) − 2φ𝑛,,𝐴(𝑡) + φ𝑛−1,𝐴(𝑡)] +

+𝑘𝐴−Т𝑅A(𝑅A + 𝑅T) sin φ𝑛,𝐴 − 𝑘𝐴−𝑇𝑅A𝑅T sin( φ𝑛,𝐴 − φ𝑛,𝑇) =

= −β𝐴
𝑑φ𝑛,𝐴(𝑡)

𝑑𝑡
+ 𝑀0,

   (4) 

𝐼𝑇
𝑑2φ𝑛,𝑇(𝑡)

𝑑𝑡2 − 𝐾𝑇
′ [φ𝑛+1,𝑇(𝑡) − 2φ𝑛,𝑇(𝑡) + φ𝑛−1,𝑇(𝑡)] +

+𝑘𝐴−𝑇𝑅T(𝑅A + 𝑅T) sin φ𝑛,𝑇 − 𝑘A-T𝑅A𝑅T sin( φ𝑛,𝑇 − φ𝑛,𝐴) =

= −β𝑇
𝑑φ𝑛,𝑇(𝑡)

𝑑𝑡
+ 𝑀0.

    (5) 

Here φ𝑛,𝐴(𝑡) and φ𝑛,𝑇(𝑡) are the angular displacements of the n-th nitrous base in the poly(A) and 

poly(T) chains, respectively; 𝐼𝐴 and 𝐼𝑇 are the moments of inertia of the nitrous base in the poly(A) 

and poly(T) chains, respectively; 𝑅A is the distance from the center of mass of the nitrous base in the 

poly(A) chain to the sugar-phosphate backbone; 𝑅T is the distance from the center of mass of the 

nitrous base in the poly(T) chain to the sugar-phosphate backbone; 𝐾𝐴
′ = 𝐾𝑅𝐴

2; 𝐾𝑇
′ = 𝐾𝑅𝑇

2;  K is the 

rigidity of the sugar-phosphate backbone; 𝛽𝐴  = 𝛼𝑅𝐴
2;  𝛽𝑇  = 𝛼𝑅𝑇

2 ; α is the dissipation coefficient; 

𝑘𝐴−𝑇 is a constant characterizing the interaction between bases within pairs; 𝑀0 is a constant torsion 

moment. 

Equations (4)–(5) take into account only one type of internal DNA motion, namely, angular 

displacements of the nitrous bases, which is believed to make the main contribution to the opening 
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base pairs and formation of the transcription babbles. An alternative opinion developed in [17] is that 

the transverse displacements are more important. The model taking into account only transverse 

displacements is known as a BP model. In general, a more accurate model imitating the formation 

dynamics of the transcription bubbles should include both the transverse and angular displacements of 

the bases, as well as their longitudinal displacements [18].  

Despite the limitations of the homogeneous case, equations (4)–(5) contain a fairly large number 

of dynamic parameters. However, they are only a part of the vast and complex space of parameters 

used in DNA melting and deformation models [19–21]. Therefore, the question of finding methods to 

reduce the number of parameters seems to be very relevant. 

Restricting themselves to the continuum approximation and taking into account the features of 

the distribution of interactions within the DNA molecule results in the following: the presence of 

«weak» hydrogen bonds between nitrous bases inside complementary pairs and «strong» valence 

interactions along the sugar-phosphate chains; equations (4)–(5) can be reduced (in the first 

approximation) to two independent equations: 

𝐼𝐴φ𝐴,𝑡𝑡 − 𝐾𝐴
′𝑎2φ𝐴,𝑧𝑧 + 𝑉𝐴 sin φ𝐴 = −β𝐴φ𝐴,𝑡 + 𝑀0,     (6) 

𝐼𝑇φ𝑇,𝑡𝑡 − 𝐾𝑇
′ 𝑎2φ𝑇,𝑧𝑧 + 𝑉𝑇 sin φ𝑇 = −β𝑇φ𝑇,𝑡 + 𝑀0.     (7) 

Here 𝑉A = 𝑘𝐴−𝑇𝑅𝐴
2  and 𝑉𝑇 = 𝑘𝐴−𝑇 . The first of these two equations describes the angular 

displacements of the nitrous bases in the poly(A) chain. The second is the angular displacements of 

the bases in the complementary chain poly(T). The parameters of equations (6)–(7) are presented in 

Table 1. The values of the parameters were collected in [22] and then refined in [23]. 

Table 1. Parameters of the dimensional DNA model. 

Homogeneous 

sequence type 

I ×10-44 

(kg∙m2) 

K/×10-18 

(N∙m) 

V×10-20  

(J) 

 ×10-34  

(J∙s) 

M0 ×10-22  

(J) 

poly(A) 7.61 2.35 2.09 4.25 3.12 

poly(T) 4.86 1.61 1.43 2.91 3.12 

2.1. Case 𝛽𝐴0, 𝛽𝑇0 and 𝑀00 

In a particular case, when the effects of dissipation and the action of a constant torsion moment 

are small (𝛽𝐴0,  𝛽𝑇0  and  𝑀00) , equations (6)–(7) take the form of classical sine-Gordon 

equations, with coefficients depending on the DNA parameters: 

 𝐼𝐴φ𝐴,𝑡𝑡 − 𝐾𝐴
′𝑎2φ𝐴,𝑧𝑧 + 𝑉𝐴 sin φ𝐴 = 0,       (8) 

 𝐼𝑇φ𝑇,𝑡𝑡 − 𝐾𝑇
′ 𝑎2φ𝑇,𝑧𝑧 + 𝑉𝑇 sin φ𝑇 = 0.       (9) 

Let us write Hamiltonians corresponding to equations (8)–(9):  

 
𝐻𝐴 = ∫ (𝐼𝐴

𝜑𝐴,𝑡
2

2
+ 𝐾𝐴

′𝑎2 𝜑𝐴,𝑧
2

2
+ 𝑉𝐴(1 − cos φ𝐴))

𝑑𝑧

𝑎
,    (10) 

 𝐻𝑇 = ∫ (𝐼𝑇
𝜑𝑇,𝑡

2

2
+ 𝐾𝑇

′ 𝑎2 𝜑𝑇,𝑧
2

2
+ 𝑉𝑇(1 − cos φ𝑇))

𝑑𝑧

𝑎
,    (11)
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and exact one-soliton solutions of equations (8)–(9) – kinks: 

 𝜑𝑘,𝐴(𝑧, 𝑡) = 4arctg{𝑒𝑥𝑝[ (
𝐴

/𝑑𝐴)(𝑧 − 𝜐𝑘,𝐴𝑡 − 𝑧0,𝐴)]},     (12) 

 𝜑𝑘,𝑇(𝑧, 𝑡) = 4arctg{exp[ (
𝑇

/𝑑𝑇)(𝑧 − 𝜐𝑘,𝑇𝑡 − 𝑧0,𝑇)]}.     (13) 

Here, 𝜐𝑘,𝐴 and 𝜐𝑘,𝑇  are the kink velocities in the poly(A) and poly(T) chains, respectively; 
𝐴

= (1 −

𝜐𝑘,𝐴
2 /С𝐴

2 )
−1/2

  and 
𝑇

= (1 − 𝜐𝑘,𝑇
2 /С𝑇

2)
−1/2

  are Lorentz factors; 𝐶𝐴 = (𝐾𝐴
′𝑎2/𝐼𝐴)1/2   and 𝐶𝑇 =

(𝐾𝑇
′ 𝑎2/𝐼𝑇)1/2  are the sound velocities in the chains poly(A) and poly(T ), respectively;  𝑑𝐴 =

(𝐾𝐴
′𝑎2/𝑉𝐴)1/2  and  𝑑𝑇 = (𝐾𝑇

′ 𝑎2/𝑉𝑇)1/2  are the kink sizes;  𝑧0,𝐴 and 𝑧0,𝑇 are the kink coordinates 

at the initial moment of time.  

The 3D graphs of the two DNA kinks (12)–(13) are presented in Figure 2. They have a canonical 

kink-like shape, which has been observed in a variety of media, including the mechanical chains of 

coupled pendulums [24], optical media [25], the chains of Josephson junctions [26–29], crystals [30], 

superfluid media [27], the Earth's crust [31], ferromagnetic and antiferromagnetic materials [32,33] 

and biological molecules [34–36]. 

 

Figure 2. Two DNA kinks moving along the main (red) and complementary (blue) chains. 

The calculations were carried out with the help of equations (12)–(13) and parameters 

presented in Table 1.  

Substituting equation (12) into equation (10) and equation (13) into equation (11), we find 

formulas for the kink total energies 𝐸𝐴  and 𝐸𝑇: 

𝐸𝐴 = 𝐸0,𝐴 ∙ 
𝐴
,          (14) 

𝐸𝑇 = 𝐸0,𝑇 ∙ 
𝑇
,          (15) 

where 𝐸𝐴  and 𝐸𝑇 are the the kink rest energies:  
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𝐸0,𝐴 = 8√𝐾𝐴
′ 𝑉A,          (16) 

𝐸0,𝑇 = 8√𝐾𝑇
′ 𝑉T.         (17) 

In the case of low velocities (𝜐𝑘,𝐴 ≪ 𝐶𝐴, 𝜐𝑘,𝑇 ≪ 𝐶𝑇), equations (14) and (15) are transformed into the 

following form: 

𝐸𝐴 ≅ 𝐸0,𝐴 +
𝑚𝐴𝜐𝑘,𝐴

2

2
,         (18) 

𝐸𝑇 ≅ 𝐸0,𝑇 +
𝑚𝑇𝜐𝑘,𝑇

2

2
,         (19)  

where 𝑚𝐴 =
𝐸0,𝐴

2𝐶𝐴
2  and 𝑚𝑇 =

𝐸0,𝑇

2𝐶𝑇
2   are the masses of kinks propagating along homogeneous poly(A) 

and poly(Т) sequences, respectively. The form of equations (14) and (15) gives reason to consider 

kinks as quasi-particles having a certain mass, velocity and energy. Using the parameters from Table 

1, we calculated the size, rest energy and mass of the kinks activated in the homogeneous poly(A) and 

poly(T) sequences. The results are presented in Table 2. 

Table 2. Physical characteristics of the kinks in the dimensional DNA model. 

Homogeneous sequence type d 

(nm) 

E0×10-18  

(J) 

m ×10-25  

(kg) 

poly(A) 3.61 1.77 2.48 

poly(T) 3.61 1.21 1.58 

2.2. Case 𝛽𝐴 ≠ 0,  𝛽𝑇 ≠ 0 and 𝑀0 ≠ 0 

For the general case, when  𝛽𝐴 ≠ 0, 𝛽𝑇 ≠ 0 and 𝑀0 ≠ 0, exact solutions of equations (6)–(7) 

have not yet been found. Approximate solutions of these equations, obtained by the method of 

McLaughlin and Scott [10,11], have a form similar to equations (12)–(13): 

 φ𝑘,𝐴(𝑧, 𝑡) = 4arctg{exp[ (
𝐴

/𝑑𝐴)(𝑧 − 𝜐𝑘,𝐴(𝑡)𝑡 − 𝑧0,𝐴)]},     (20) 

 φ𝑘,𝑇(𝑧, 𝑡) = 4arctg{exp[ (
𝑇

/𝑑𝑇)(𝑧 − 𝜐𝑘,𝑇(𝑡)𝑡 − 𝑧0,𝑇)]}.     (21) 

However, unlike equations (12)–(13), in equations (20)–(21), the kink velocities 𝜐𝑘,𝐴(𝑡) and 𝜐𝑘,𝑇(𝑡) 

are the functions of time, which are determined by the following equations: 

𝑑𝜐′𝑘,𝐴(𝑡)

𝑑𝑡
= −

𝛽𝐴

𝐼𝐴
𝜐′𝑘,𝐴(𝑡)(1 − 𝜐′𝑘,𝐴

2(𝑡)) +
М0𝜋

4√𝐼𝐴𝑉𝐴
(1 − 𝜐′𝑘,𝐴

2(𝑡))3/2,  (22) 

 
𝑑𝜐′𝑘,𝑇(𝑡)

𝑑𝑡
= −

𝛽𝑇

𝐼𝑇
𝜐′𝑘,𝑇(𝑡)(1 − 𝜐′𝑘,𝑇

2(𝑡)) +
М0𝜋

4√𝐼𝑇𝑉𝐼𝑇
(1 − 𝜐′𝑘,𝑇

2(𝑡))3/2.   (23) 
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Here, 𝜐′𝑘,𝐴(𝑡) =
𝜐𝑘,𝐴(𝑡)

𝐶𝐴
) and 𝜐′𝑘,𝑇(𝑡) =

𝜐𝑘,𝑇(𝑡) 

𝐶𝑇
are the relative kink velocities. 

Having determined the kink coordinates from the relations 𝜐𝑘,𝐴(𝑡) =
𝑑𝑧𝑘,А

𝑑𝑡
 and 𝜐𝑘,𝑇(𝑡) =

𝑑𝑧𝑘,Т

𝑑𝑡
, 

we have constructed the kinks trajectories on the plane {z, t} by using the method proposed in [37], 

where, however, only one of the two DNA polynucleotide chains was considered. Here, we extended 

this method to the model (4) – (5), which took into account two DNA polynucleotide chains. 

3. Dimensionless DNA model and kink characteristics  

Let us consider the transformation from variables z and t to new variables ξ and τ according to 

equation (3). To find the transformation coefficients σ and η, substitute equation (22) into equations 

(6) and (7), respectively: 

 𝐼𝐴𝜂2𝜑𝐴,𝜏𝜏 − 𝐾𝐴
/
𝑎2𝜎2𝜑𝐴,𝜉𝜉 + 𝑉𝐴 sin 𝜑𝐴 = −𝛽𝐴𝜂𝜑𝐴,𝜏 + 𝑀0,   (24) 

  𝐼𝑇𝜂2𝜑𝑇,𝜏𝜏 − 𝐾𝑇
/
𝑎2𝜎2𝜑𝑇,𝜉𝜉 + 𝑉𝑇 sin 𝜑𝑇 = −𝛽𝑇𝜂𝜑𝑇,𝜏 + 𝑀0.   (25) 

Next, let us multiply and divide equations (24) and (25) by ( )2AI : 

 (𝐼𝐴𝜂2) (𝜑𝐴,𝜏𝜏 −
𝐾𝐴𝑎2𝜎2

𝐼𝐴𝜂2 𝜑𝐴,𝜉𝜉 +
𝑉𝐴

𝐼𝐴𝜂2 sin 𝜑𝐴) = (𝐼𝐴𝜂2) (−
𝛽𝐴𝜂

(𝐼𝐴𝜂2)
𝜑𝐴,𝜏 +

𝑀0

(𝐼𝐴𝜂2)
),   (26) 

 (𝐼𝐴𝜂2) (
𝐼𝑇

𝐼𝐴
𝜑𝑇,𝜏𝜏 − (

𝐾𝐴𝑎2𝜎2

𝐼𝐴𝜂2 )
𝐾𝑇

𝐾𝐴
𝜑𝑇,𝜉𝜉 + (

𝑉𝐴

𝐼𝐴𝜂2)
𝑉𝑇

𝑉𝐴
sin 𝜑𝑇) = (𝐼𝐴𝜂2) (−

𝛽𝐴𝜂

(𝐼𝐴𝜂2)

𝛽𝑇

𝛽𝐴
𝜑𝑇,𝜏 +

𝑀0

(𝐼𝐴𝜂2)
),  (27) 

and require the fulfillment of two conditions: 

𝐾𝐴
/

𝑎2𝜎2

𝐼𝐴𝜂2 = 1,    
𝑉𝐴

𝐼𝐴𝜂2 = 1,          (28) 

from which we find the transformation coefficients σ and η: 

𝜂 = √
𝑉𝐴

𝐼𝐴
,    𝜎 = √

𝑉𝐴

𝐾1
/
𝛼2

.           (29) 

In the new variables, equations (26) and (27) take the following form: 

𝜑𝐴,𝜏𝜏 − 𝜑𝐴,𝜉𝜉 + sin 𝜑𝐴 + 𝛽̃𝐴𝜑𝐴,𝜏 − 𝑀̃0,𝐴 = 0,      (30) 

𝑖𝐴𝑇𝜑𝑇,𝜏𝜏 − 𝑘𝐴𝑇𝜑𝑇,𝜉𝜉 + 𝑣𝐴𝑇 sin 𝜑𝑇 + 𝛽̃𝑇𝜑𝑇,𝜏 − 𝑀̃0,𝐴 = 0,   (31)
 

where 𝛽̃𝐴 =
𝛽𝐴

𝐼𝐴𝜂
=

𝛽𝐴

√𝐼𝐴𝑉𝐴
, 𝛽̃𝑇 =

𝛽𝑇

𝐼𝐴𝜂
=

𝛽𝑇

√𝐼𝐴𝑉𝐴
, 𝑀̃0,𝐴 =

𝑀0

𝐼𝐴𝜂2 =
𝑀0

𝑉𝐴
. 𝑖𝐴𝑇 =

𝐼𝑇

𝐼𝐴
, 𝑘𝐴𝑇 =

𝐾𝑇

𝐾𝐴
, 𝑣𝐴𝑇 =

𝑉𝑇

𝑉𝐴
.  

It can be seen that the number of parameters in the first of the two dimensionless model equations has 

decreased from five to two. In the second equation, the number of parameters has not changed. Taking 

into account the fact that the torsion moment in both equations is the same, the total number of 
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parameters became equal to six, which is less than the nine parameters of the dimensional model (6)–

(7). 

We estimated the values of the coefficients of dimensionless model equations (30)–(31) and 

presented them in Table 3. 

Table 3. Values of the coefficients of dimensionless model equations (30)–(31). 

Coefficients Estimated values 

𝑖𝐴𝑇

 
0.64 

𝑘𝐴𝑇

 
0.68 

𝑣𝐴𝑇

 
0.68 

𝛽̃𝐴

 
0.01 

𝛽̃𝑇

 
0.007 

𝑀̃0,𝐴 0.01 

Note that, in the case of dimensional equations (4)–(5), it was difficult to judge which coefficients 

were large and which were small. In the dimensionless case, the difference became obvious. The 

dimensionless coefficients in equation (29), 𝛽̃𝐴 and 𝑀̃0,𝐴, are much less than unity. And, in equation 

(30), the coefficients 𝛽̃𝑇  and 𝑀̃0,𝑇  are less than the coefficients  𝑖𝐴𝑇 , 𝑘𝐴𝑇  and 𝑣𝐴𝑇 . And, this 

indicates that the effects of dissipation and the impact of the torsion moment are really small. This 

means that the use of perturbation theory in deriving the McLaughlin-Scott equation is quite reasonable. 

3.1. Case 𝛽̃𝐴 = 0, 𝛽̃𝑇 = 0 and 𝑀̃0,𝐴 = 0 

In the particular case when the effects of dissipation and external action are negligibly small 

equation (30) takes the form of the classical canonical sine-Gordon equation (1), which has no 

coefficients: 

 𝜑𝐴,𝜏𝜏 − 𝜑𝐴,𝜉𝜉 + sin 𝜑𝐴 = 0. (32) 

At the same time equation (31) retains all three coefficients: 

 𝑖𝐴𝑇𝜑𝑇,𝜏𝜏 − 𝑘𝐴𝑇𝜑𝑇,𝜉𝜉 + 𝑣𝐴𝑇 sin 𝜑𝑇 = 0.       (33) 

Hamiltonians corresponding to equations (32) and (33) have the following form: 

𝐻̃𝐴 = ∫ (
𝜑𝐴,𝜏

2

2
+

𝜑𝐴,𝜉
2

2
+ (1 − cos 𝜑𝐴)) 𝑑𝜉,      (34) 

𝐻̃𝑇 = ∫ (𝑖𝐴𝑇
𝜑𝑇,𝜏

2

2
+ 𝑘

𝜑𝑇,𝜉
2

2
+ 𝑣𝐴𝑇(1 − cos 𝜑𝑇)) 𝑑𝜉.    (35) 

To obtain one-soliton solutions of equations (32), (33), we take dimensional solutions (11) and 

(12) and rewrite them with new variables: 
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 𝜑̃𝑘,𝐴(𝜉, 𝜏) = 4arctg {exp [(𝛾𝐴) (𝜉 −
𝜐𝑘,𝐴

𝐶𝐴
⋅ 𝜏 − 𝜉0,𝐴)]}, (36) 

 𝜑̃𝑘,𝑇(𝜉, 𝜏) = 4arctg {exp [(𝛾𝑇)
𝑑𝐴

𝑑𝑇
(𝜉 −

𝜐𝑘,𝑇

𝐶𝐴
⋅ 𝜏 − 𝜉0,𝑇)]}. (37) 

Substituting the solutions into the Hamiltonians (34), (35) we find the total kink energies: 

𝐸̃𝐴 = 𝐸̃0𝐴 𝛾𝐴,           (38) 

𝐸̃𝑇 = 𝐸̃0𝑇 𝛾𝑇 ,           (39) 

where 𝐸̃0𝐴, 𝐸̃0𝑇 are the kink rest energies: 

𝐸̃0𝐴 = 8,            (40) 

𝐸̃0𝑇 = 8√𝑘𝐴𝑇𝑣𝐴𝑇.           (41) 

3.2. Case 𝛽̃𝐴 ≠ 0, 𝛽̃𝑇 ≠ 0 and 𝑀̃0,𝐴 ≠ 0 

In the general case, when 𝛽̃𝐴 ≠ 0, 𝛽̃𝑇 ≠ 0 and 𝑀̃0,𝐴 ≠ 0 the solutions of equations (30) and 

(31) have the following form:  

 𝜑̃𝑘,𝐴(𝜉, 𝜏) = 4arctg{𝑒𝑥𝑝[(𝛾𝐴)(𝜉 − 𝜐̃𝑘,𝐴(𝜏) ⋅ 𝜏 − 𝜉0,𝐴)]},    (42) 

 𝜑̃𝑘,𝑇(𝜉, 𝜏) = 4arctg {exp [(𝛾𝑇)
𝑑𝐴

𝑑𝑇
(𝜉 − 𝜐̃𝑘,𝑇(𝜏) ⋅ 𝜏 − 𝜉0,𝑇)]},   (43) 

where 𝜐̃𝑘,𝐴 =
𝜐𝑘,𝐴(𝜏)

𝐶𝐴
 and 𝜐̃𝑘,𝑇 =

𝜐𝑘,𝑇(𝜏)

𝐶𝐴
 are dimensionless kink velocities which are respectively 

determined by the following equations: 

𝑑

𝑑𝜏
𝜐̃𝑘,𝐴 = −𝛽̃𝐴𝜐̃𝑘,𝐴(1 − 𝜐̃𝑘,𝐴

2) +
𝑀0𝜋

4𝑉𝐴
(1 − 𝜐̃𝑘,𝐴

2)
3/2

,     (44)
 

𝑑

𝑑𝜏
𝜐̃𝑘,𝑇 = −𝛽̃𝑇(𝜐̃𝑘,𝑇) (1 − 𝜐̃𝑘,𝑇

2 (
𝐶𝐴

𝐶𝑇
)

2

) +
𝑀0𝜋

4𝑉𝐴

1

√𝑖𝐴𝑇𝑣𝐴𝑇
(

𝐶𝑇

𝐶𝐴
) (1 − 𝜐̃𝑘,𝑇

2 (
𝐶𝐴

𝐶𝑇
)

2

)
3/2

.  (45) 

Equations (44) and (45) were solved numerically using the parameter values from Table 1. Figure 3a 

and 3b present the results obtained for the dimensionless kink velocities (𝜐̃𝑘,𝐴, 𝜐̃𝑘,𝑇) and coordinates 

(𝜉𝑘,𝐴, 𝜉𝑘,𝑇). The latter were determined by the following relations: 

𝜐̃𝑘,𝐴 =
𝑑

𝑑𝜏
𝜉𝑘,𝐴,  𝜐̃𝑘,𝑇 =

𝑑

𝑑𝜏
𝜉𝑘,𝑇.       (46) 
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Figure 3. Time dependence of the kink dimensionless velocities (a) and coordinates (b). 

Red curves refer to the kinks propagating in the poly(A) chain and blue curves refer to the 

kinks propagating in the poly(T) chain. The calculations were carried out with the help of 

equations (44)–(46) and the parameters presented in Table 3. The initial kink velocities 

were suggested to be zero. 

Figure 3 shows that as, the time τ increases, the kink velocities and coordinates increase 

monotonically. As τ→∞, the velocities tend to the stationary values 𝜐̃𝑠𝑡,𝐴 = 0.68 and 𝜐̃𝑠𝑡,𝑇 = 0.85, and 

the coordinates tend to infinity.  

4. Discussion and conclusions 

In this work, we have constructed the dimensionless analog of the model simulating the dynamics 

of transcription bubbles and demonstrated the method of constructing in detail. As a basic dimensional 

model, we used a system of nonlinear differential equations proposed in [16], the one-soliton solutions 

of which (kinks) were interpreted as mathematical images of transcription bubbles. The main results, 

including equations of motion, kink-like solutions, kink rest energy, and total kink energy obtained for 

the dimensionless model, are presented in Table 4. 
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Table 4. Basic formulas calculated for dimensionless model of homogeneous DNA. 

Parameters Model 

characteristics 

Kink movement in the  

poly(A) chain 

Kink movement in the  

poly(T) chain 

𝛽̃𝐴 = 0, 

𝛽̃𝑇 = 0, 

𝑀̃0,𝐴 = 0 

Equations  

of motion  

𝜑𝐴,𝜏𝜏 − 𝜑𝐴,𝜉𝜉 + sin 𝜑𝐴 = 0 𝑖𝐴𝑇𝜑𝑇,𝜏𝜏 − 𝑘𝐴𝑇𝜑𝑇,𝜉𝜉 

+𝑣𝐴𝑇 sin 𝜑𝑇 = 0 

Hamiltonian 
𝐻̃𝐴 = ∫ (

𝜑𝐴,𝜏
2

2
+

𝜑𝐴,𝜉
2

2
+ (1

− cos 𝜑𝐴)) 𝑑𝜉, 

𝐻̃𝑇 = ∫ (𝑖𝐴𝑇

𝜑𝑇,𝜏
2

2
+ 𝑘

𝜑𝑇,𝜉
2

2
+ 𝑣𝐴𝑇(1

− cos 𝜑𝑇)) 𝑑𝜉 

Kink-like  

solution 

𝜑̃𝑘,𝐴(𝜉, 𝜏) = 4arctg{exp [𝛾𝐴 

(𝜉 − 𝜐̃𝑘,𝐴(𝜏) ⋅ 𝜏 − 𝜉0,𝐴)]} 
𝜑̃𝑘,𝑇(𝜉, 𝜏) = 4arctg{exp [𝛾𝑇 (

𝑑𝐴

𝑑𝑇
) 

(𝜉 − 𝜐̃𝑘,𝑇(𝜏) ⋅ 𝜏 − 𝜉0,𝑇]} 

Total energy 𝐸̃𝐴 = 8𝛾𝐴 𝐸̃𝑇 = 𝐸̃0𝑇 𝛾𝑇 
Rest energy 𝐸̃0𝐴 = 8 𝐸̃0𝑇 = 8√𝑘𝐴𝑇𝑣𝐴𝑇 

𝛽̃𝐴 ≠ 0,   

𝛽̃𝑇 ≠ 0,  

𝑀̃0,𝐴 ≠ 0 

Equations of 

motion 

𝜑𝐴,𝜏𝜏 − 𝜑𝐴,𝜉𝜉 + sin 𝜑𝐴 = 

−𝛽̃𝐴𝜑
𝐴,𝜏

+ 𝑀̃0,𝐴 

𝑖𝐴𝑇𝜑𝑇,𝜏𝜏 − 𝑘𝐴𝑇𝜑𝑇,𝜉𝜉 

+𝑣𝐴𝑇 sin 𝜑𝑇 = −𝛽̃𝑇𝜑𝑇,𝜏 + 𝑀̃0,𝑇 

Kink-like  

solution 

𝜑̃𝑘,𝐴(𝜉, 𝜏) = 4arctg{exp [𝛾𝐴 

(𝜉 − 𝜐̃𝑘,𝐴 ⋅ 𝜏 − 𝜉0,𝐴)]} 
𝜑̃𝑘,𝑇(𝜉, 𝜏) = 4arctg{exp [𝛾𝑇 (

𝑑𝐴

𝑑𝑇
) 

(𝜉 − 𝜐̃𝑘,𝑇) ⋅ 𝜏 − 𝜉0,𝑇]} 

Equation for  

kink velocity 

𝑑𝜐̃𝑘,𝐴

𝑑𝜏
= −𝛽̃𝐴𝜐̃𝑘,𝐴(1 − 𝜐̃𝑘,𝐴

2) 

+
𝑀0𝜋

4𝑉𝐴
(1 − 𝜐̃𝑘,𝐴

2)
3/2

 

𝑑𝜐̃𝑘,𝑇

𝑑𝜏
 

= −𝛽̃𝑇(𝜐̃𝑘,𝑇) (1 − 𝜐̃𝑘,𝑇
2 (

𝐶𝐴

𝐶𝑇
)

2

) 

+
𝑀0𝜋

4𝑉𝐴

1

√𝑖𝐴𝑇𝑣𝐴𝑇

(
𝐶𝑇

𝐶𝐴
) 

(1 − 𝜐̃𝑘,𝑇
2 (

𝐶𝐴

𝐶𝑇
)

2

) 

For comparison, we present in Table 5, similar results obtained for the corresponding dimensional 

model.  
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Table 5. Basic formulas calculated for dimensional model of homogeneous DNA. 

Parameters Model 

characteristics 

Kink movement in the  

poly(A) chain 

Kink movement in the 

poly(T) chain 

𝛽𝐴 = 0, 

𝛽𝑇 = 0, 

𝑀0 = 0 

Equations  

of motion  
𝐼𝐴𝜑𝐴,𝑡𝑡 − 𝐾𝐴

/
𝑎2𝜑𝐴,𝑧𝑧 

+𝑉𝐴sin𝜑𝐴 = 0 

𝐼𝑇𝜑𝑇,𝑡𝑡 − 𝐾𝑇
/
𝑎2𝜑𝑇,𝑧𝑧 

+𝑉𝑇sin𝜑𝑇 = 0 

Hamiltonian 
𝐻𝐴 = ∫(𝐼𝐴

𝜑𝐴,𝑡
2

2
+ 𝐾𝐴

/
𝑎2

𝜑𝐴,𝑡
2

2
 

+𝑉𝐴(1 − cos𝜑𝐴))
𝑑𝑧

𝑎
 

𝐻𝑇 = ∫(𝐼𝑇

𝜑𝑇,𝑡
2

2
+ 𝐾𝑇

/
𝑎2

𝜑𝑇,𝑡
2

2
 

+𝑉𝑇(1 − cos𝜑𝑇))
𝑑𝑧

𝑎
 

Kink-like  

solution 

𝜑𝑘,𝐴(𝑧, 𝑡) 

= 4arctg{exp [(𝛾𝐴 /𝑑𝐴)(𝑧 − 

−𝜐𝑘,𝐴 ∙ 𝑡 − 𝑧0.𝐴)]} 

𝜑𝑘,𝑇(𝑧, 𝑡) 

= 4arctg{exp [(𝛾𝑇 /𝑑𝑇)(𝑧 − 

−𝜐𝑘,𝑇 ∙ 𝑡 − 𝑧0.𝑇)]} 

Total energy 
𝐸𝐴 = 𝐸0,𝐴 ∙ 

𝐴
 𝐸𝑇 = 𝐸0,𝑇 ∙ 

𝑇 

Rest energy 
𝐸0,𝐴 = 8√𝐾𝐴

′𝑉A 𝐸0,𝑇 = 8√𝐾𝑇
′ 𝑉T 

𝛽𝐴 ≠ 0, 

𝛽𝑇 ≠ 0, 

𝑀0 ≠ 0 

Equations of 

motion 
𝐼𝐴𝜑𝐴,𝑡𝑡 − 𝐾𝐴

/
𝑎2𝜑𝐴,𝑧𝑧 

+𝑉𝐴sin𝜑𝐴 = −𝛽𝐴𝜑𝐴,𝑡 + 𝑀0 

𝐼𝑇𝜑𝑇,𝑡𝑡 − 𝐾𝑇
/
𝑎2𝜑𝑇,𝑧𝑧 

+𝑉𝑇sin𝜑𝑇 = −𝛽
𝑇
𝜑𝑇,𝑡 + 𝑀0 

Kink-like  

solution 

𝜑𝑘,𝐴(𝑧, 𝑡) 

= 4arctg{exp [(𝛾𝐴 /𝑑𝐴)(𝑧 − 

−𝜐𝑘,𝐴(𝑡) ∙ 𝑡 − 𝑧0.𝐴)]} 

𝜑𝑘,𝑇(𝑧, 𝑡) 

= 4arctg{exp [(𝛾𝑇 /𝑑𝑇)(𝑧 − 

−𝜐𝑘,𝑇(𝑡) ∙ 𝑡 − 𝑧0.𝑇)]} 

Equation for 

kink velocity 

𝑑𝜐𝑘,𝐴
/

(𝑡)

𝑑𝑡
=

−
𝛽𝐴

𝐼𝐴
𝜐𝑘,𝐴

/
(t)(1−𝜐𝑘,𝐴

/2
(t)) 

+
𝑀0𝜋

4√𝐼𝐴𝑉𝐴

(1 − 𝜐𝑘,𝐴
/2

(𝑡))3/2 

𝑑𝜐𝑘,𝑇
/

(𝑡)

𝑑𝑡
=

−
𝛽𝑇

𝐼𝑇
𝜐𝑘,𝑇

/
(t)(1−𝜐𝑘,𝑇

/2
(t)) 

+
𝑀0𝜋

4√𝐼𝑇𝑉𝑇

(1 − 𝜐𝑘,𝑇
/2

(𝑡))3/2 

It can be seen that the dimensionless model has advantages over the dimensional one. Indeed, 

carrying out the procedure of transformation of the dimensional model to the dimensionless one leads 

to the decrease in the number of model parameters from 9 to 6. Moreover, in the framework of the 

dimensionless analog, it became obvious that the coefficients in the terms simulating the dissipation 

effects and the action of a constant torsion moment are really small, which proves the validity of the 

application of the perturbation theory and the method of McLaughlin and Scott. 

It should be noted, however, that in order to simplify calculations and to present the procedure of 

transition to dimensionless form more clear, we limited ourselves to the case of homogeneous 

(synthetic) DNA. Obviously, the next step in the development of this direction can be the construction 

of a dimensionless analog for the case of inhomogeneous DNA. This will provide an answer to the 

question of whether the advantages of the dimensionless model will be preserved in the 

inhomogeneous case. 

One more step could be the improvement if the dimensional model itself by removing the 
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limitations and simplifications detailed in Section 2. Finally, one could consider the issue of DNA 

kinks being created by mutual DNA-DNA interactions, which were considered theoretically in [38,39], 

and experimentally in [40]. 
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