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Abstract: In this study, we discuss the passivity analysis for Markovian jumping Neural Networks
of neural-type. The results are demonstrated using phases of linear matrix inequalities as well as an
improved Lyapunov-Krasovskii functional (LKF) of the triple integral terms and quadruple integrals.
The information of the mode-dependent of all delays have been taken into account in the constructed
Lyapunov–Krasovskii functional and novel stability criterion is derived. The value of selecting as
many Lyapunov matrices that are mode-dependent as possible is demonstrated. The effectiveness and
decreased conservatism of the aforementioned theoretical results are eventually demonstrated by a
numerical example.
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1. Introduction

Numerous studies on recurrent neural networks (RNNs), including those on bidirectional
associative memory neural networks, cellular neural networks, and Hopfield neural networks, among
others, have been proposed. In the meantime, neural networks (NNs) have been employed as a tool
to address issues that have arisen in associative memory, signal processing, image processing, static
image treatment, pattern recognition, and optimization. Additionally, it seems that time delays are
crucial to networked control systems, chemical reactions, communication systems, etc. The authors
of [1,2] investigated time-delayed artificial neural network electronic implementations. Several studies
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have looked into different sorts of delays inside NNs in this context; see the papers [38–40] and
references therein. The passivity theory is widely applied in many engineering problems. Indeed,
it is intimately related to the circuit analysis which is a useful and significant tool to analyze the
stability of nonlinear systems, signal processing and chaos control. Thus, it has been employed in
various fields of science and engineering [7, 8, 44–48]. In [9], the authors proposed neural adaptive
output feedback control based on passivity with adaptive set-point regulation of nonlinear uncertain
non-negative and compartmental systems. In the last decade, great attention has been paid to the
passivity analysis of RNNs with delay-independent [10, 49] and delay-dependent [11–14, 36]. In [13],
the author studied the passivity analysis of Markovian jump neural network with leakage time varying
delay, discrete and distributed time varying delays. We can see the discussion of the extended
dissipativity of discrete-time neural networks (NNs) with time-varying delay in [55]. However,
comparatively less interest has been shown towards the passivity analysis of mode dependent delay
on neutral type neural networks (NNNs) with Markovian jumping (Mj). On the other hand, a Markov
jump system is a special classes of a hybrid system. Indeed, they have great ability to model the
dynamical systems and their application can be found in manufacturing systems, economic systems,
network control systems, modeling production system, communication systems and so on. In the
recent years, several results are reported on the stability analysis for neural networks with Markovian
jump parameters, see the references [16–19, 41–43]. In [20], the authors studied global exponential
estimates of delayed stochastic NNs with Markovian switching by constructing with positive definite
matrices in stochastic Lyapunov functional which are dependent on the system mode and a triple-
integral term. The H∞ synchronization issue for singularly perturbed coupled neural networks
(SPCNNs) affected by both nonlinear constraints and gain uncertainties was explored in [57] using a
novel double-layer switching regulation containing Markov chain and persistent dwell-time switching
regulation (PDTSR). Convolutional Neural Networks (CNNs) are efficient tools for pattern recognition
applications. More on this topic can be seen in [58, 60]. An exponential synchronization problem
for the multi-weighted complex dynamical network (MCDN) with hybrid delays on a time scale is
investigated in [61]. We can see the establishment of fixed-point and coincidence-point consequences
in generalized metric spaces in [59]. The nonfragile H∞ synchronization issue for a class of discrete-
time Takagi–Sugeno (T–S) fuzzy Markov jump systems was investigated in [56]. In [21], the authors
have studied stochastic NNNs with mixed time-delays under adaptive synchronization. Additionally,
the problem of state estimation of RNNs with Mj parameters and mixed delays based on mode-
dependent approach was investigated in [22].
However, some of the researchers discussed the robust passive filtering for NNNs with delays in [25].
In [26], the authors investigated the global asymptotic stability of NNNs with delays by utilizing the
Lyapunov-Krasovskii functional (LKF) and the linear matrix inequality approach. While employing
the method of Lyapunov–Krasovskii functional, we necessarily need these three steps for the derivation
of a global asymptotic stability criterion: constructing a Lyapunov–Krasovskii functional, estimating
the derivative of the Lyapunov–Krasovskii functional, and formulating a global asymptotic stability
criterion. You will get an overview of recent developments in each of the above steps if you refer
to [54].The author in [52] studied passivity and exponential passivity for NNNs with various delays.
In [51], the authors investigated the robust passivity analysis of mixed delayed NNs with distributed
time-varying delays. The exponential passivity of discrete-time switched NNs with transmission
delay was studied in [53]. Recently, the authors in [5] studied passivity analysis for NNNs with
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Mj parameters and time delay in the leakage term. New delay-dependent passivity conditions are
derived in terms of LMIs with a proper construction of LKF, and it can be checked easily via standard
numerical packages. However, triple and quadruple integrals have not been taken into account to
derive the passivity conditions and, moreover, the mode-dependent time delays have not been included
in [5]. Recently, a novel Lyapunov functional with some terms involving triple or quadruple integrals
are taken into account to study the state estimation problem with mode-dependent approach in [22].
Motivated by the above discussion, the main purpose of this paper is to study the global passivity of
Mj for NNNs with leakage and mode-dependent delay terms. By construction of a new LKF involving
mode-dependent Lyapunov matrices, some sufficient conditions are derived in terms of LMIs. For the
sake of illustration, a numerical example is given to demonstrate the usefulness and effectiveness of
the presented results. Unlike previous results, we will introduce an improved Lyapunov–Krasovskii
functional with triple and quadruple integrals for deriving the reported stability results in this paper.
Based on this discussion, our technique not only provides different approach but also gives less
conservative conditions than those studied in [5,22]. The rest of this paper is organized as follows. The
problem and some preliminaries are introduced in Section 2. In Section 3, the main results are stated
and proved. Some sufficient conditions for global passivity results are developed here. In Section 4, an
illustrative example is provided to demonstrate the effectiveness of the proposed criteria. We conclude
the results of this paper in Section 5.
Notations: Throughout this paper the following notations are used: Rn - n-dimensional Euclidean
space; Rn×n- the set of all n × n real matrices; diag(· · · )- a block diagonal matrix; I -the identity
matrix with compatible dimensions; CT - the transpose of C; X and Y are symmetric matrices, where
X ≥ Y (similarly X > Y)- X − Y is a positive semi-definite (similarly positive definite); (Ω,F,P)-
a complete probability space with a natural filtration {Ft}t≥0; E[·] - expectation operator with respect
to the given probability measure P; C([−d, 0];Rn) - the family of continuously differentiable function;
‖ϕ‖ = max{max−τ≤θ≤0 |ϕ(θ)|,max−d≤θ≤0 |ϕ

′(θ)|}; C2
F0

([−d, 0];Rn) - the family of boundedF0-measurable;

C([−d, 0];Rn)-valued stochastic variables ξ = {ξ(θ) : −d ≤ θ ≤ 0} such that
∫ 0

−d
E|ξ(θ)|2ds < ∞; ∗ -the

symmetric block in one symmetric matrix.

2. Problem formulation and preliminaries

Let {∇(t), t ∈ Z+} be right-continuous on (Ω,F ,P). Here (Ω,F ,P) is a complete probability space
with Markov chain, ∇(t) takes the values from a finite state space S = {1, 2, . . . ,N} with generator
Γ = (πi j)N×N given by

P{∇(t + ∆t) = j|∇(t) = i} =

{
πi j∆t + o(∆t), i , j,
1 + πii∆t + o(∆t), i = j,

where ∆t > 0 and lim∆t→0
o(∆t)

∆t = 0, πi j ≥ 0 (i , j) is the transition rate from i to j, and πii = −
N∑

j=1, j,i
πi j.
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We consider Mode-dependent Markov jump NNNs with mixed time-delays:

ẋ(t) = −A(∇(t))x(t − σ(∇(t))) + B(∇(t))H(x(t)) + C(∇(t))H(x(t − τ(t,∇(t))))

+D(∇(t))ẋ(t − h(t,∇(t))) + E(∇(t))

t∫
t−d(t,∇(t))

H(x(s))ds + u(t)

y(t) = H(x(t))

(2.1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state vector linked with n neurons. The diagonal
matrix A(∇(t)) = diag(A1(∇(t)), A2(∇(t)), . . . , An(∇(t))) has positive entries Ai(∇(t)) > 0
(i = 1, 2, . . . , n). B(∇(t)), C(∇(t)), D(∇(t)), E(∇(t)) are known appropriate dimensional constant
matrices. Here the neuron activation function is H(x(t)) = [H1(x1(t)),H2(x2(t)), . . . ,Hn(xn(t))]T . u(t)
denotes a constant input. τ(t,∇(t)), h(t,∇(t)), d(t,∇(t)) are mode dependent discrete, neutral and
distributed delays, respectively and σ(∇(t)) is the mode dependent leakage delay.

Throughout this paper, we assume the following.
Assumption 1. For any j = 1, 2, . . . , n,H j(0) = 0 and there exist constants l̂−j and l̂+j such that

l̂−j ≤
H j(γ1) −H j(γ2)

γ1 − γ2
≤ l̂+j , (2.2)

where γ1, γ2 ∈ R, and γ1 , γ2.
For the sake of convenience, we denote A(∇(t) = i) = Ai,B(∇(t) = i) = Bi,C(∇(t) = i) = Ci,

D(∇(t) = i) = Di, E(∇(t) = i) = Ei, respectively.
System (2.1) can be rewritten as

ẋ(t) = −Aix(t − σi) + BiH(x(t)) + CiH(x(t − τi(t))) +Di ẋ(t − hi(t))

+Ei

t∫
t−di(t)

H(x(s))ds + u(t)

y(t) = H(x(t))

(2.3)

and the parameters associated with time delays are assumed to satisfy following:

0 ≤ τi(t) ≤ τi, τ̇i(t) ≤ τµi , 0 ≤ hi(t) ≤ hi, ḣi(t) ≤ hµi , 0 ≤ di(t) ≤ di, ḋi(t) ≤ dµi , σi > 0 (2.4)

where τi, hi, di, τµi , hµi and dµi are some real constants and τ = max
i∈S
{τi}, h = max

i∈S
{hi}, d = max

i∈S
{di},

σ = max
i∈S
{σi}.

Now we can see a few necessary lemmas and a definition.

Lemma 1. [33] Let a and b be scalars with a ≤ b, M be a matrix with M ≥ 0, and y(t) : [a, b]→ Rn

be a vector function such that, the following integrals are well defined, then the inequality

(b − a)
[∫ b

a
y(s)T My(s)ds

]
≥

[∫ b

a
y(s)ds

]T

M
[∫ b

a
y(s)ds

]
.

holds.
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Proof. By Schur complement,[
y(s)T My(s) y(s)T

y(s) M−1

]
≥ 0, s ∈ [a, b].

On integration from a to b yields,

∫ b

a
y(s)T My(s)ds

∫ b

a
y(s)T ds∫ b

a
y(s)ds (b − a)M−1

 ≥ 0, s ∈ [a, b]. Now using the

Schur complement on this inequality, we obtain our desired result. �

Lemma 2. [50] For any real vectors x, y ∈ Rn and positive definite matrixM =MT it follows that:

±2xT y ≤ xTMx + yTM−1y.

Lemma 3. [31] (Schur complement) Given Ω1,Ω2 and Ω3 are constant matrices with appropriate
dimensions, where Ω1,Ω2 > 0 are symmetric matrices, then

Ω1 + ΩT
3 Ω−1

2 Ω3 < 0 ⇐⇒
[

Ω1 ΩT
3

∗ −Ω2

]
< 0, or

[
−Ω2 Ω3

∗ Ω1

]
< 0.

Definition 1. [32] If there exists a scalar ν ≥ 0 such that ∀tp ≥ 0 and for all solutions of (2.1), the
following inequality holds under zero initial conditions,

2
∫ tp

0
E{y(s)T u(s)}ds ≥ −γ

∫ tp

0
E{u(s)T u(s)}ds, (2.5)

then the system (2.3) is said to be passive.

3. Main results

Now, we denote

L̂1 = diag{̂l−1 l̂+1 , l̂
−
2 l̂+2 , . . . , l̂

−
m̂l+m}, and L̂2 = diag

{ l̂−1 + l̂+1
2

,
l̂−2 + l̂+2

2
, . . . ,

l̂−m + l̂+m
2

}
.

Theorem 1. For given scalars τi > 0, hi > 0, di > 0, τµi > 0, hµi > 0, dµi > 0 and σi > 0, system (2.3)

is passive if there exist symmetric positive definite matrices Pi > 0, Qi =

[
Q1i Q2i

QT
2i Q3i

]
> 0, Wi > 0,

Ri > 0, S i > 0, Vi > 0, Ui > 0, Xi > 0, Yi > 0, Ti > 0, Zi > 0, Li > 0, Ki > 0, Q =

[
Q1 Q2

QT
2 Q3

]
> 0,

W > 0, R > 0, S > 0, V > 0, U > 0, X > 0, Y > 0, T > 0, Z > 0, L > 0, M > 0 and the diagonal
matrices H1i > 0, H2i > 0, H3i > 0, H4i > 0, H5i > 0, H6i > 0 and any matrices Ni, J1, J2 with
appropriate dimensions such that the following LMIs are satisfied for i = 1, . . . ,N:[

Xi Ni

∗ Xi

]
≥ 0, (3.1)

N∑
j=1

πi jV j − V ≤ 0, (3.2)
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N∑
j=1, j,i

πi jG j − G ≤ 0, (3.3)

Φ =

[
Ω ΓT

∗ − 1
πi j

K j

]
< 0, (3.4)

where G j in (3.3) respectively represents Q j, W j, R j, S j, U j, X j, Y j, T j, Z j, L j and correspondingly G
represents Q, W, R, S , U, X, Y, T , Z, L (e.q.,when G j is Q j, G is Q) and

Ω = (ϑi, j)15×15,

ϑ1,1 = −PiAi −A
T
i Pi + πiiPi +

∑
j,i

πi jP j +
∑
j,i

πi jK j + Q1i + τQ1 + Wi + τW + Ri + σR

+ τiUi +
τ2

2
U −

1
τi

Xi −
1
hi

Yi − 2Ti − 2Zi − 2Li − L̂1H1i − L̂1H3i − L̂1H4i

− L̂1H5i − L̂1H6i − 2σ2M, ϑ1,2 = −
1
τi

NT
i +

1
τi

Xi, ϑ1,3 =
1
τi

NT
i + L̂2H3i,

ϑ1,4 =
2
τi

Ti, ϑ1,5 = PiBi + Q2i + Q2 + L̂2H1i + J1Bi, ϑ1,6 = PiCi + J1Ci,

ϑ1,7 = −J1Ai −A
T
i JT

1 + L̂2H5i, ϑ1,8 = AT
i PiAi − πiiPiAi −

2
σi

Li, ϑ1,9 = 2σM,

ϑ1,10 = Pi, ϑ1,11 = PiDi + J1Di, ϑ1,12 =
1
hi

Yi + L̂2H4i, ϑ1,13 =
2
hi

Zi,

ϑ1,14 = J1Ei, ϑ1,15 = −J1 + L̂2H6i, ϑ2,2 = −(1 − τµi)Q1i − L̂1H2i −
2
τi

Xi +
1
τi

NT
i ,

ϑ2,3 =
1
τi

Xi −
1
τi

NT
i , ϑ2,6 = −(1 − τµi)Q1i + L̂2H2i, ϑ3,3 = −Wi −

1
τi

Xi − H3i,

ϑ4,4 = −
1
τi

Ui −
2
τ2

i

Ti, ϑ5,5 = Q3i + Q3 + diVi +
d2

2
V − H1i, ϑ5,8 = −BT

i PiAi,

ϑ5,15 = BT
i JT

2 , ϑ6,6 = −(1 − τµi)Q3i − H2i, ϑ6,8 = −CT
i PiAi, ϑ6,15 = CT

i JT
2 ,

ϑ7,7 = −Ri − H5i, ϑ7,15 = −AT
i JT

2 , ϑ8,8 = πiiA
T
i PiAi −

2
σ2

i

Li, ϑ8,10 = −AT
i Pi,

ϑ8,11 = −AT
i PiDi, ϑ8,14 = −AT

i PiEi, ϑ9,9 =
∑
j,i

πi jA
T
j P jA j − 2M, ϑ10,10 = −γI,

ϑ10,15 = JT
2 , ϑ11,11 = −S i(1 − hµi), ϑ11,15 = DT

i JT
2 , ϑ12,12 = −

1
hi

Yi − H4i,

ϑ13,13 = −
2
h2

i

Zi, ϑ14,14 = −
(1 − dµi)

di
Vi, ϑ14,15 = ET

i JT
2 , ϑ15,15 = S i + hS + τiXi +

τ2

2
X

+ hiYi +
h2

2
Y +

τ2
i

2
Ti +

τ3

6
T +

h2
i

2
Zi +

h3

6
Z +

σ2
i

2
Li +

σ3

6
L +

σ4

2
Z − (J2 + JT

2 ) − H6i,

ΓT = [ 0.....0︸︷︷︸
8 elements

∑
j,i

πi j(AT
j P j)T 0.....0︸︷︷︸

15 elements

]T ,

and the other coefficients are zero.
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Proof. Here, we consider LKF candidate:

V(xt, i, t) =

13∑
κ=1

Vκ(xt, i, t), (3.5)

where

V1(xt, i, t) =

[
x(t) −Ai

∫ t

t−σi

x(s)ds
]T

Pi

[
x(t) −Ai

∫ t

t−σi

x(s)ds
]
,

V2(xt, i, t) =

∫ t

t−τi(t)
ζT (s)Qiζ(s)ds +

∫ 0

−τ

∫ t

t+θ
ζT (s)Qζ(s)dsdθ,

V3(xt, i, t) =

∫ t

t−τi

xT (s)Wix(s)ds +

∫ 0

−τ

∫ t

t+θ
xT (s)Wx(s)dsdθ,

V4(xt, i, t) =

∫ t

t−σi

xT (s)Rix(s)ds +

∫ 0

−σ

∫ t

t+θ
xT (s)Rx(s)dsdθ,

V5(xt, i, t) =

∫ t

t−hi

xT (s)S ix(s)ds +

∫ 0

−h

∫ t

t+θ
xT (s)S x(s)dsdθ,

V6(xt, i, t) =

∫ 0

−di(t)

∫ t

t+θ
HT (x(s))ViH(x(s))dsdθ +

∫ 0

−d

∫ 0

θ

∫ t

t+β
HT (x(s))VH(x(s))dsdβdθ,

V7(xt, i, t) =

∫ 0

−τi

∫ t

t+θ
xT (s)Uix(s)dsdθ +

∫ 0

−τ

∫ 0

θ

∫ t

t+β
xT (s)Ux(s)dsdβdθ,

V8(xt, i, t) =

∫ 0

−τi

∫ t

t+θ
ẋT (s)Xi ẋ(s)dsdθ +

∫ 0

−τ

∫ 0

θ

∫ t

t+β
ẋT (s)Xẋ(s)dsdβdθ,

V9(xt, i, t) =

∫ 0

−hi

∫ t

t+θ
ẋT (s)Yi ẋ(s)dsdθ +

∫ 0

−h

∫ 0

θ

∫ t

t+β
ẋT (s)Y ẋ(s)dsdβdθ,

V10(xt, i, t) =

∫ 0

−τi

∫ 0

θ

∫ t

t+β
ẋT (s)Ti ẋ(s)dsdβdθ +

∫ 0

−τ

∫ 0

θ

∫ 0

β

∫ t

t+α
ẋT (s)T ẋ(s)dsdαdβdθ,

V11(xt, i, t) =

∫ 0

−hi

∫ 0

θ

∫ t

t+β
ẋT (s)Zi ẋ(s)dsdβdθ +

∫ 0

−h

∫ 0

θ

∫ 0

β

∫ t

t+α
ẋT (s)Zẋ(s)dsdαdβdθ,

V12(xt, i, t) =

∫ 0

−σi

∫ 0

θ

∫ t

t+β
ẋT (s)Li ẋ(s)dsdβdθ +

∫ 0

−σ

∫ 0

θ

∫ 0

β

∫ t

t+α
ẋT (s)Lẋ(s)dsdαdβdθ,

V13(xt, i, t) = σ2
∫ 0

−σ

∫ 0

θ

∫ t

t+β
ẋT (s)Mẋ(s)dsdβdθ,

where ζT (t) = [xT (t), HT (x(t))]T .

From (2.1) , we get

LV(xt, i, t) =

13∑
κ=1

LVκ(xt, i, t), (3.6)

where

LV1(xt, i, t) = 2
[
x(t) −Ai

∫ t

t−σi

x(s)ds
]T

Pi
d
dt

[
x(t) −Ai

∫ t

t−σi

x(s)ds
]
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+

N∑
j=1

πi j

[
x(t) −A j

∫ t

t−σ j

x(s)ds
]T

P j

[
x(t) −A j

∫ t

t−σ j

x(s)ds
]
,

≤ 2
[
x(t) −Ai

∫ t

t−σi

x(s)ds
]T

Pi[−Aix(t) + BiH(x(t)) + CiH(x(t − τi(t)))

+Di ẋ(t − hi(t)) + Ei

∫ t

t−di(t)
H(x(s))ds + u(t)]

+ πii

[
x(t) −Ai

∫ t

t−σi

x(s)ds
]T

Pi

[
x(t) −Ai

∫ t

t−σi

x(s)ds
]

+
∑
j,i

πi j

[
xT (t)P jx(t) +

∫ t

t−σ j

xT (s)dsA jP jK−1
j P jA j

∫ t

t−σ j

x(s)ds

+

∫ t

t−σ
xT (s)dsAT

j P jA j

∫ t

t−σ
x(s)ds

]
,

LV2(xt, i, t) ≤ ζT (t)Qiζ(t) − ζT (t − τi(t))Qiζ(t − τi(t))(1 − τµi) +

N∑
j=1

πi j

∫ t

t−τ j(t)
ζT (s)Q jζ(s)ds

+ τζT (t)Qζ(t) −
∫ t

t−τ
ζT (s)Qζ(s)ds,

LV3(xt, i, t) = xT (t)Wix(t) − xT (t − τi)Wix(t − τi) +

N∑
j=1

πi j

∫ t

t−τ j

xT (s)W jx(s)ds

+ τxT (t)Wx(t) −
∫ t

t−τ
xT (s)Wx(s)ds,

LV4(xt, i, t) = xT (t)Rix(t) − xT (t − σi)Rix(t − σi) +

N∑
j=1

πi j

∫ t

t−σ j

xT (s)R jx(s)ds

+ σxT (t)Rx(t) −
∫ t

t−σ
xT (s)Rx(s)ds,

LV5(xt, i, t) ≤ ẋT (t)S i ẋ(t) − ẋT (t − hi(t))S i ẋ(t − hi(t))(1 − hµi) +

N∑
j=1

πi j

∫ t

t−h j(t)
ẋT (s)S j ẋ(s)ds

+ hẋT (t)S ẋ(t) −
∫ t

t−h
ẋT (s)S ẋ(s)ds,

LV6(xt, i, t) = di(t)HT (x(t))ViH(x(t)) − (1 − dµi)
∫ t

t−di(t)
HT (x(s))ViH(x(s))ds

+

N∑
j=1

πi j

∫ 0

−d j(t)

∫ t

t+θ
HT (x(s))V jH(x(s))dsdθ

+
d2

2
HT (x(t))VH(x(t)) −

∫ 0

−d

∫ t

t+θ
HT (x(s))VH(x(s))dsdθ,

AIMS Biophysics Volume 10, Issue 2, 184–204.



192

LV7(xt, i, t) = τixT (t)Uix(t) −
∫ t

t−τi

xT (s)Uix(s)ds +

N∑
j=1

πi j

∫ 0

−τ j

∫ t

t+θ
xT (s)U jx(s)dsdθ

+
τ2

2
xT (t)Ux(t) −

∫ 0

−τ

∫ t

t+θ
xT (s)Ux(s)dsdθ,

LV8(xt, i, t) = τi ẋT (t)Xi ẋ(t) −
∫ t

t−τi

ẋT (s)Xi ẋ(s)ds +

N∑
j=1

πi j

∫ 0

−τ j

∫ t

t+θ
ẋT (s)X j ẋ(s)dsdθ

+
τ2

2
ẋT (t)Xẋ(t) −

∫ 0

−τ

∫ t

t+θ
ẋT (s)Xẋ(s)dsdθ,

LV9(xt, i, t) = hi ẋT (t)Yi ẋ(t) −
∫ t

t−hi

ẋT (s)Yi ẋ(s)ds +

N∑
j=1

πi j

∫ 0

−h j

∫ t

t+θ
ẋT (s)Y j ẋ(s)dsdθ

+
h2

2
ẋT (t)Y ẋ(t) −

∫ 0

−h

∫ t

t+θ
ẋT (s)Y ẋ(s)dsdθ,

LV10(xt, i, t) =
τ2

i

2
ẋT (t)Ti ẋ(t) −

∫ 0

−τi

∫ t

t+θ
ẋT (s)Ti ẋ(s)dsdθ +

τ3

6
ẋT (t)T ẋ(t)

+

N∑
j=1

πi j

∫ 0

−τ j

∫ 0

θ

∫ t

t+β
ẋT (s)T j ẋ(s)dsdβdθ −

∫ 0

−τ

∫ 0

θ

∫ t

t+β
ẋT (s)T ẋ(s)dsdβdθ,

LV11(xt, i, t) =
h2

i

2
ẋT (t)Zi ẋ(t) −

∫ 0

−hi

∫ t

t+θ
ẋT (s)Zi ẋ(s)dsdθ +

h3

6
ẋT (t)Zẋ(t)

+

N∑
j=1

πi j

∫ 0

−h j

∫ 0

θ

∫ t

t+β
ẋT (s)Z j ẋ(s)dsdβdθ −

∫ 0

−h

∫ 0

θ

∫ t

t+β
ẋT (s)Zẋ(s)dsdβdθ,

LV12(xt, i, t) =
σ2

i

2
ẋT (t)Li ẋ(t) −

∫ 0

−σi

∫ t

t+θ
ẋT (s)Li ẋ(s)dsdθ +

σ3

6
ẋT (t)Lẋ(t)

+

N∑
j=1

πi j

∫ 0

−σ j

∫ 0

θ

∫ t

t+β
ẋT (s)L j ẋ(s)dsdβdθ −

∫ 0

−σ

∫ 0

θ

∫ t

t+β
ẋT (s)Lẋ(s)dsdβdθ,

LV13(xt, i, t) =
σ4

2
ẋT (t)Mẋ(t) − σ2

∫ 0

−σ

∫ t

t+θ
ẋT (s)Mẋ(s)dsdθ.

Using the upper bounds of discrete, neutral, distributed time-varying delays, leakage delays, Lemma 2
and with πii < 0, the following relationship is obtained∑

j,i

(
− 2πi jxT (t)P jA j

∫ t

t−σ j

x(s)ds
)

≤
∑
j,i

πi j

(
xT (t)K jx(t) +

∫ t

t−σ j

xT (s)dsAT
j P jK−1

j P jA j

∫ t

t−σ j

x(s)ds
)

≤
∑
j,i

πi j

(
xT (t)K jx(t) +

∫ t

t−σ
xT (s)dsAT

j P jK−1
j P jA j

∫ t

t−σ
x(s)ds

)
, (3.7)
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j,i

πi j

( ∫ t

t−σ j

xT (s)ds
)
AT

j P jA j

( ∫ t

t−σ j

x(s)ds
)

≤
∑
j,i

πi j

( ∫ t

t−σ
xT (s)ds

)
AT

j P jA j

( ∫ t

t−σ
x(s)ds

)
. (3.8)

Similarly,

N∑
j=1

πi j

∫ t

t−τ j(t)
ζT (s)Q jζ(s)ds ≤

N∑
j=1, j,i

πi j

∫ t

t−τ j(t)
ζT (s)Q jζ(s)ds

≤

N∑
j=1, j,i

πi j

∫ t

t−τ
ζT (s)Q jζ(s)ds

≤

∫ t

t−τ
ζT (s)Qζ(s)ds, (3.9)

N∑
j=1

πi j

∫ t

t−τ j

xT (s)W jx(s)ds ≤
∫ t

t−τ
xT (s)Wx(s)ds, (3.10)

N∑
j=1

πi j

∫ t

t−σ j

xT (s)R jx(s)ds ≤
∫ t

t−σ
xT (s)Rx(s)ds, (3.11)

N∑
j=1

πi j

∫ t

t−h j(t)
ẋT (s)S j ẋ(s)ds ≤

∫ t

t−h
ẋT (s)S ẋ(s)ds, (3.12)

N∑
j=1

πi j

∫ 0

−d j(t)

∫ t

t+θ
HT (x(s))V jH(x(s))dsdθ ≤ −

∫ 0

−d

∫ t

t+θ
HT (x(s))VH(x(s))dsdθ, (3.13)

N∑
j=1

πi j

∫ 0

−τ j

∫ t

t+θ
xT (s)U jx(s)dsdθ ≤

∫ 0

−τ

∫ t

t+θ
xT (s)Ux(s)dsdθ, (3.14)

N∑
j=1

πi j

∫ 0

−τ j

∫ t

t+θ
ẋT (s)X j ẋ(s)dsdθ ≤

∫ 0

−τ

∫ t

t+θ
ẋT (s)Xẋ(s)dsdθ, (3.15)

N∑
j=1

πi j

∫ 0

−h j

∫ t

t+θ
ẋT (s)Y j ẋ(s)dsdθ ≤

∫ 0

−h

∫ t

t+θ
ẋT (s)Y ẋ(s)dsdθ, (3.16)

N∑
j=1

πi j

∫ 0

−τ j

∫ 0

θ

∫ t

t+β
ẋT (s)T j ẋ(s)dsdβdθ ≤

∫ 0

−τ

∫ 0

θ

∫ t

t+β
ẋT (s)T ẋ(s)dsdβdθ, (3.17)

N∑
j=1

πi j

∫ 0

−h j

∫ 0

θ

∫ t

t+β
ẋT (s)Z j ẋ(s)dsdβdθ ≤

∫ 0

−h

∫ 0

θ

∫ t

t+β
ẋT (s)Zẋ(s)dsdβdθ, (3.18)

N∑
j=1

πi j

∫ 0

−σ j

∫ 0

θ

∫ t

t+β
ẋT (s)L j ẋ(s)dsdβdθ ≤

∫ 0

−σ

∫ 0

θ

∫ t

t+β
ẋT (s)Lẋ(s)dsdβdθ. (3.19)
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By using Lemma 1, we get

−(1 − dµi)
∫ t

t−di(t)
HT (x(s))ViH(x(s))ds ≤ −

(1 − dµi)
di

∫ t

t−di(t)
HT (x(s))dsVi

∫ t

t−di(t)
H(x(s))ds,

−

∫ t

t−τi

xT (s)Uix(s)ds ≤ −
1
τi

∫ t

t−τi

xT (s)dsUi

∫ t

t−τi

x(s)ds,

−

∫ t

t−hi

ẋT (s)Yi ẋ(s)ds ≤ −
1
hi

∫ t

t−hi

ẋT (s)dsYi

∫ t

t−hi

ẋ(s)ds,

−

∫ 0

−τi

∫ t

t+θ
ẋT (s)Ti ẋ(s)dsdθ ≤ −

2
τ2

i

∫ 0

−τi

∫ t

t+θ
ẋT (s)dsdθTi

∫ 0

−τi

∫ t

t+θ
ẋ(s)dsdθ,

−

∫ 0

−hi

∫ t

t+θ
ẋT (s)Zi ẋ(s)dsdθ ≤ −

2
h2

i

∫ 0

−hi

∫ t

t+θ
ẋT (s)dsdθZi

∫ 0

−hi

∫ t

t+θ
ẋ(s)dsdθ,

−

∫ 0

−σi

∫ t

t+θ
ẋT (s)Zi ẋ(s)dsdθ ≤ −

2
σ2

i

∫ 0

−σi

∫ t

t+θ
ẋT (s)dsdθZi

∫ 0

−σi

∫ t

t+θ
ẋ(s)dsdθ,∫ 0

−σ

∫ t

t+θ
ẋT (s)Mẋ(s)dsdθ ≤ −

2
σ2

∫ 0

−σ

∫ t

t+θ
ẋT (s)dsdθZi

∫ 0

−σ

∫ t

t+θ
ẋ(s)dsdθ.

Note that from (3.1) and using the reciprocally convex technique in [34], we obtain

−

∫ t

t−τi

ẋT (s)Xi ẋ(s)ds ≤ −
∫ t−τi(t)

t−τi

ẋT (s)Xi ẋ(s)ds −
∫ t

t−τi(t)
ẋT (s)Xi ẋ(s)ds

≤ −
1
τi
$T (t)

[
Ri Xi

∗ Ri

]
$(t),

where $(t) = [xT (t − τi(t)) − xT (t − τi), xT (t) − xT (t − τi(t))]. For positive diagonal matrices
H1i,H2i,H3i,H4i,H5i,H6i, by Assumption 1, we get[

x(t)
H(x(t))

]T [
L̂1H1i −L̂2H1i

∗ H1i

] [
x(t)
H(x(t))

]
≤ 0, (3.20)

[
x(t − τi(t))
H(x(t − τi(t)))

]T [
L̂1H2i −L̂2H2i

∗ H2i

] [
x(t − τi(t))
H(x(t − τi(t)))

]
≤ 0, (3.21)

[
x(t)

x(t − τi)

]T [
L̂1H3i −L̂2H3i

∗ H3i

] [
x(t)

x(t − τi)

]
≤ 0, (3.22)

[
x(t)

x(t − hi)

]T [
L̂1H4i −L̂2H4i

∗ H4i

] [
x(t)

x(t − hi)

]
≤ 0, (3.23)

[
x(t)

x(t − σi)

]T [
L̂1H5i −L̂2H5i

∗ H5i

] [
x(t)

x(t − σi)

]
≤ 0, (3.24)
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[
x(t)
ẋ(t)

]T [
L̂1H6i −L̂2H6i

∗ H6i

] [
x(t)
ẋ(t)

]
≤ 0. (3.25)

Hence, for any matrices J1, J2 of appropriate dimensions, we get

0 =2[xT (t)J1 + ẋT (t)J2][−Aix(t − σi) + BiH(x(t)) + CiH(x(t − τi(t)))

+Di ẋ(t − hi(t)) + Ei

∫ t

t−di(t)
H(x(s))ds + u(t) − ẋ(t)]. (3.26)

Using (3.6) and adding (3.20)-(3.26), we have

LV(xt, i, t) − 2yT (t)u(t) − γuT (t)u(t) ≤ L
{
ηT (t)Φη(t)

}
, (3.27)

where

ηT (t) =
[
xT (t) xT (t − τi(t)) xT (t − τi)

∫ t

t−τi

xT (s)ds HT (x(t)) HT (x(t − τi(t)))

xT (t − σi)
∫ t

t−σi

xT (s)ds
∫ t

t−σ
xT (s)ds uT (t) ẋT (t − hi(t)) xT (t − hi)∫ t

t−hi

xT (s)ds
∫ t

t−di(t)
HT (x(s))ds ẋT (t)

]
.

Hence from equation (3.4) we have,

LV(xt, i, t) − 2y(t)T u(t) − γu(t)T u(t) ≤ 0.

Now, to show the passivity of the delayed NNs in (2.3), we take

J(tp) = E


tp∫

0

[−γu(t)T u(t) − 2y(t)T u(t)]dt

 (3.28)

where tp ≥ 0.
From Dynkin’s formula, we get

E


tp∫

0

LV(xt, i, t)dt

 = E
[
V(xtp , i, tp)

]
− E [V(x0,∇(0), 0)] .

Therefore,

J(tp) = E


tp∫

0

[−γu(t)T u(t) − 2y(t)T u(t) +LV(xt, i, t)]dt

 − E


tp∫
0

LV(xt, i, t)dt
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= E


tp∫

0

[−γu(t)T u(t) − 2y(t)T u(t) +LV(xt, i, t)]dt


−E [V(xt, i, t)] + E [V(x0,∇(0), 0)] . (3.29)

By applying lemma 3 to (3.4), we have

Φ < 0. (3.30)

Thus, if (3.30) holds, then E[V(xtp , i, tp)] ≥ 0 and V(x0,∇(0), 0) = 0 holds with zero initial conditions.
From (3.30), it follows that J(tp) ≤ 0 for any tp ≥ 0, which implies (2.5) is satisfied and hence the
delayed NNs (2.3) is locally passive.

Now, we prove the global passivity of the system.
By taking expectation of (3.27) and then integration from 0 to t we get,

t∫
0

E[LV(xs, r(s), s)]ds − 2

t∫
0

E[yT (s)u(s)]ds − γ

t∫
0

E[uT (s)u(s)]ds ≤

t∫
0

E[ηT (s)Φη(s)]ds.

Then by Dynkin’s formula,

E[LV(xt, i, t)] − E[LV(x0,∇(0), 0)] − 2

t∫
0

E[yT (s)u(s)]ds − γ

t∫
0

E[uT (s)u(s)]ds

≤

t∫
0

E[ηT (s)Φη(s)]ds.

Hence,

E[LV(xt, i, t)] −

t∫
0

E[ηT (s)Φη(s)]ds ≤ E[LV(x0,∇(0), 0)] + 2

t∫
0

E[yT (s)u(s)]ds

+ γ

t∫
0

E[uT (s)u(s)]ds

< ∞, t ≥ 0. (3.31)

By Jenson’s inequality and (3.6), we get

E
∥∥∥∥∥∥Ai

∫ t

t−σi

x(s)ds

∥∥∥∥∥∥2

= E
[
Ai

∫ t

t−σi

x(s)ds
]T [
Ai

∫ t

t−σi

x(s)ds
]

≤ λmax(A2
i )E

[∫ t

t−σi

x(s)ds
]T [∫ t

t−σi

x(s)ds
]
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≤
λmax(A2

i )
λmin(Ri)

[∫ t

t−σi

Ex(s)ds
]T

Ri

[∫ t

t−σi

Ex(s)ds
]

≤ σi
λmax(A2

i )
λmin(Ri)

{∫ t

t−σi

ExT (s)Rix(s)ds
}

≤ σi
λmax(A2

i )
λmin(Ri)

EV4(xt, i, t)

≤ σ
λmax(A2

i )
λmin(Ri)

EV(xt, i, t)

≤ σ
λmax(A2

i )
λmin(Ri)

EV(x0,∇(0), 0), t ≥ 0. (3.32)

Similarly, it follows from the definition of V1(xt, i, t) that

E
∥∥∥∥∥∥x(t) −Ai

∫ t

t−σi

x(s)ds

∥∥∥∥∥∥2

= E
[
Ai

∫ t

t−σi

x(s)ds
]T [
Ai

∫ t

t−σi

x(s)ds
]

≤
EV1(xt, i, t)
λmin(Pi)

≤
EV(xt, i, t)
λmin(Pi)

≤
EV(x0,∇(0), 0)

λmin(Pi)
, t ≥ 0.

Hence, it can be obtained that

E ‖x(t)‖2 = E
∥∥∥∥∥∥x(t) −Ai

∫ t

t−σi

x(s)ds +Ai

∫ t

t−σi

x(s)ds

∥∥∥∥∥∥2

≤ 2E
∥∥∥∥∥∥Ai

∫ t

t−σi

x(s)ds

∥∥∥∥∥∥2

+ 2E
∥∥∥∥∥∥x(t) −Ai

∫ t

t−σi

x(s)ds

∥∥∥∥∥∥2

≤ 2σ
λmax(A2

i )
λmin(Ri)

EV(x0,∇(0), 0) + 2
EV(x0,∇(0), 0)

λmin(Pi)
< ∞, t ≥ 0, (3.33)

EV(x0,∇(0), 0)

≤

{
2λmax

i∈S
(Pi)(1 + σ2

i max
i∈S
Ai) + τmax

i∈S
{λmax(Qi)} + τ2λmax(Q) + τmax

i∈S
{λmax(Wi)}

+ τ2λmax(W) + σmax
i∈S
{λmax(Ri)} + σ2λmax(R) + h max

i∈S
{λmax(S i)} + h2λmax(S )

+ d2 max
i∈S
{λmax(Vi)} + d3λmax(V) + τ2 max

i∈S
{λmax(Ui)} + τ3λmax(U) + τ2 max

i∈S
{λmax(Xi)}

+ τ3λmax(X) + h2 max
i∈S
{λmax(Yi)} + h3λmax(Y) + τ3 max

i∈S
{λmax(Ti)} + τ4λmax(T )

+ h3 max
i∈S
{λmax(Zi)} + h4λmax(Z) + σ3 max

i∈S
{λmax(Li)} + σ4λmax(L) + σ5λmax(M)

}
< ∞. (3.34)
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From (3.33) and (3.34), we get that the solution of the system (2.3) is locally passive. Then the
solutions x(t) = x(t, 0, φ) of system (2.3) is bounded on [0,∞). The solution x(t) on [0,∞) is uniformly
continuous because ẋ(t) is bounded on [0,∞). Further, from the equation (3.31), the following holds:

λmin(Φ)

t∫
0

E[xT (s)x(s)]ds ≤ E[LV(xt, i, t)] −

t∫
0

E[ηT (s)Φη(s)]ds

≤ E[LV(x0,∇(0), 0)] + 2

t∫
0

E[yT (s)u(s)]ds

+ γ

t∫
0

E[uT (s)u(s)]ds

< ∞, t ≥ 0.

From Barbalats lemma [30], E[‖x(t)‖2]→ 0 as t → ∞ holds. Hence the proof is complete. �

Remark 1. Recently, studies on passivity analysis for neural networks of neutral type with Markovian
jumping parameters and time delay in the leakage term were conducted in [5]. By constructing proper
Lyapunov–Krasovskii functional, new delay-dependent passivity conditions are derived in terms of
LMIs and it can easily be checked using standard numerical packages. Moreover, it is well known that
the passivity behaviour of neural networks is very sensitive to the time delay in the leakage term. Triple
and quadruple integrals have not been taken into account to derive the passivity conditions in [5].
Mode-dependent time delays were not included in [5]. Very recently, a mode-dependent approach is
proposed by constructing a novel Lyapunov functional, where some terms involving triple or quadruple
integrals are taken into account to study the state estimation problem in [22]. Motivated by this reason,
we have introduced improved Lyapunov–Krasovskii functional with triple and quadruple integrals for
deriving the reported stability results in this paper. Based on this discussion, our results will give less
conservative results than those studied in [5, 22].

4. Numerical example

In this section, a numerical example is provided to demonstrate the validity of the proposed
theorems.

Example 1. Consider a 2-D Mode-dependent Markov jump NNNs with mixed time-delays (2.3) with
the following parameters

A1 =

[
8.4 0
0 9

]
, A2 =

[
7.8 0
0 8.5

]
, B1 =

[
−0.21 −0.19
−0.24 0.1

]
, B2 =

[
0.9 −0.9
0.5 −0.8

]
,

C1 =

[
−0.09 −0.2

0.2 0.1

]
, C2 =

[
0.1 0.1
0.2 0.3

]
, D1 =

[
−0.2 0
0.2 −0.09

]
, D2 =

[
0.1 0
0.5 −0.1

]
,

E1 =

[
−0.5 0

0 −0.5

]
, E2 =

[
0.1 −0.02
−0.2 0.07

]
, L̂1 =

[
0 0
0 0

]
, L̂2 =

[
0.25 0

0 0.25

]
.

Take H1(s) = H2(s) = tanh(s), τ1(t) = τ2(t) = h1(t) = h2(t) = d1(t) = d2(t) = 0.1 cos t + 0.4,
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σ1 = σ2 = 0.1, τµ1 = τµ2 = hµ1 = hµ2 = dµ1 = dµ2 = 0.1. Γ =

[
−7 7
6 −6

]
.

By using the MATLAB LMI toolbox, we can obtain the following feasible solution for the LMIs
(3.1) − (3.4):

P1 =

[
0.0157 0.0008
0.0008 0.0143

]
, P2 =

[
0.0068 0.0004
0.0004 0.0060

]
, Q11 =

[
0.2401 0.0007
0.0007 0.2592

]
,

Q12 =

[
0.3770 −0.0192
−0.0192 0.3992

]
, Q21 =

[
−0.4101 0.0043
0.0201 −0.4457

]
, Q22 =

[
−0.6428 0.0773
0.0231 −0.6959

]
,

Q31 =

[
1.3786 0.0133
0.0133 1.4063

]
, Q32 =

[
1.9101 −0.0284
−0.0284 1.9903

]
, W1 =

[
0.1039 0.0088
0.0088 0.1018

]
,

W2 =

[
0.1517 0.0121
0.0121 0.1487

]
, R1 =

[
0.1758 0.0160
0.0160 0.1721

]
, R2 =

[
0.5675 0.0333
0.0333 0.5563

]
,

S 1 =

[
1.0817 −0.0075
−0.0075 0.7204

]
, S 2 =

[
1.2231 0.0093
0.0093 0.9256

]
, V1 =

[
10.7113 0.5692
0.5692 9.9973

]
,

V2 =

[
10.8483 0.5953
0.5953 10.2619

]
, U1 =

[
0.5120 0.0419
0.0419 0.5056

]
, U2 =

[
0.6238 0.0492
0.0492 0.6133

]
,

X1 =

[
21.0470 −0.1153
−0.1153 21.2070

]
, X2 =

[
18.5642 −0.3139
−0.3139 18.6620

]
, Y1 =

[
27.5946 −0.0019
−0.0019 26.6557

]
,

Y2 =

[
28.4115 0.1096
0.1096 27.4131

]
, T1 =

[
3.0928 0.0943
0.0943 3.0505

]
, T2 =

[
3.8182 0.0431
0.0431 3.7941

]
,

Z1 =

[
3.0867 0.1080
0.1080 3.0591

]
, Z2 =

[
3.8647 0.0504
0.0504 3.8446

]
, L1 =

[
0.0068 0.0001
0.0001 0.0068

]
,

L2 =

[
0.0059 0.0004
0.0004 0.0062

]
, K1 =

[
1.3461 −0.1410
−0.1410 1.3280

]
, K2 =

[
0.0919 0.0135
0.0135 0.0907

]
,

Q1 =

[
4.0913 −0.1850
−0.1850 4.4495

]
, Q2 =

[
−6.6332 0.7686
0.3444 −7.3948

]
, γ = 0.2272.

Continuing in this way, the remaining feasible matrices are obtained. This shows that the given
system (2.3) is globally passive in the mean square.

5. Conclusion

In this paper, passivity analysis of Markovian jumping NNNs with time delays in the leakage
term is considered. Delay-mode-dependent passivity conditions are derived by taking the inherent
characteristic of such kinds of NNs into account. An improved LKF, with the triple integral terms and
quadruple integrals, is constructed and the results are derived in terms of linear matrix inequalities. The
information of the mode-dependent of all delays have been taken into account in the constructed LKF
and derived novel stability criterion. Theoretical results are validated through a numerical example.
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