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* Correspondence: Email: vesa.kuikka@mil.fi.

Abstract: The modelling of epidemic spreading is essential in understanding the mechanisms
of outbreaks and pandemics. Many models for different kinds of spreading have been proposed
throughout the history of modelling, each suited for a specific scenario and parameters. On the other
hand, models of information networks provide important tools for the analysis of the performance
and reliability of such networks. We have previously presented a model for simulating the spreading
of infectious disease throughout a social network and another one for simulating the connectivity of
data traffic in an information network. We argue that these models are similar in that they produce
equivalent results with appropriate parameters when run on the same network. We explain this by
reasoning that the manners in which the models carry out their calculations, although devised from
different assumptions, turn out to be equivalent. We also show empirical results of applying the
models to calculate the spread of contagion and information connectivity on two complex networks
suitable for the models. Based on the results, we calculate centrality metrics reflecting the outcome of
the application, highlighting its important properties. We note that the centrality values obtained by
running the epidemic model and the connectivity model turn out to be mutually equivalent, as predicted
by their similar fashions of calculation. As the models were independently developed for their own
applications, the equivalence in their calculation can not be explained by the models purposefully built
similarly. Thus, not only are the two apparently completely separate areas of interest analysable with a
single model but there appear to be inherent similarities in the mechanisms of epidemic spreading and
determining network connectivity.
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1. Introduction

Modelling epidemic spreading is a central topic in the research of both contagion spreading and
network science [1]. With the gravity of the impact on global health and economy of the recent
COVID-19 pandemic [2], the field has gained an increasing amount of attention. Accordingly, models
of epidemic spreading have been of great focus with new models constantly being proposed and built
upon earlier ones. One approach to such models is compartmental models that divide the population
into compartments based on their current role in the spreading process [3]. A simple example of a
compartmental model is the SIR model which classifies each individual as either susceptible, infected,
or recovered. Once recovered, the infection can no longer be transmitted to the recovered individual.
The SIR model is well-studied and has been applied to complex networks in the literature [4–6].
Other types of compartmental models include SIS, SIRS, and SEIR, [3] in addition to more complex
ones [7]. Models of contagion spreading can be used to quantitatively study effective ways of
epidemic prevention [8, 9].

In this article, we highlight two models for different applications introduced in our earlier
articles [9–11] and explain their equivalent results even when applied to each other’s use cases. Both
of the models are based on similar foundations for calculating the probabilities of spreading or
connections between nodes in a network [12], where methods of probabilistic networks [13] are
applied.

As mentioned, the models (referred to as the Spreading model and the Connectivity model) are
designed for two separate applications. While the Spreading model is built for epidemic and behaviour
spreading [10], the Connectivity model is constructed to simulate the reliability of connectivity in a
service network [11]. Since the models are built for different use cases, we will introduce general
vocabulary to talk about both models more easily. We call influence spreading the propagation of
contagion, information, or a similar phenomenon through nodes of a network. The interpretation of
contagion as influence spreading is rather natural: contagion spreads from one individual to another
when they are in contact and, through these contacts, continues to spread further. Connectivity in
information networks can also be thought of as information spreading through nodes and connections
of the network. Where information can be transferred, a connection exists. Neither model simulates
the spreading process through time—instead, only the final state of the spreading is calculated.

As the models produce equivalent results, they can both be applied to epidemic spreading. In
particular, they are applicable to a situation where individuals gain full immunity to a disease after
contagion, as a result of the models’ principle to spread influence to a node only once, similarly to
the SIR model [3]. In the case of information network connectivity, immunity can be equated to the
inactivity of nodes in the network. Diseases resulting in full or near full immunisation include measles,
mumps, rubella, and chickenpox [14], though many infections give no or only partial immunity. We
will propose a model for partial immunity epidemic spreading in a future study of ours.

The Spreading model is built to be extendable and has the potential for additional parameters that
the Connectivity model lacks. For example, parameters such as maximum spreading path length (Lmax)
and breakthrough probability can be taken into account. This enables the calculation of novel forms
of connectivity, based not only on the structure of the network but also on other possible phenomena
arising from the new parameters.
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2. Methods

We compare two simulation models built for two use cases: the epidemic spreading simulation
model, and the connection reliability model. Both models consider a network as a set of weighted
nodes and weighted directed edges between them. Undirected edges are modelled as two identical
edges with the endpoints swapped. The output of the models is the two-dimensional probability
matrix C : V × V → [0, 1], where C(s, t) marks the conditional probability of influence spreading
from node s to node t, given that spreading starts from node s and V is the set of nodes of the network.
Even though both models work by simulation, their approaches differ. Additionally, we present
applications of our models for calculating centrality measures for nodes in the network.

The probability matrix C(s, t) produced by both of the models gives the conditional probabilities of
influence spreading from node s to node t given that influence starts to spread from node s. If the
probabilities, at which the nodes initially start to spread influence are known, the conditional
probabilities of the probability matrix can be multiplied by them, producing unconditional
probabilities.

2.1. Models

The Spreading model works by simulating the spreading of influence from each node to the rest of
the network separately. For each node as the source, the simulation is carried out a certain number of
times: this is called the number of iterations. The probability of influence spreading to another node
is calculated as the number of iterations where the node was influenced divided by the total number of
iterations. The simulation itself works in steps, on which all newly influenced nodes (that is, nodes that
became influenced on the step right before the current one) attempt to spread influence to all of their
neighbouring nodes. This attempt automatically fails if the neighbouring node has been previously
influenced. Otherwise, the spreading will succeed with a probability of we ·Wt, where we is the weight
of the edge connecting the nodes and Wt is the weight of the target node. If the spreading succeeds,
the target node will be marked as influenced and will attempt to spread influence in the subsequent
step. Another parameter, Lmax, is used to limit the maximum spreading path length: influence will only
spread along paths at maximum Lmax edges long. Limiting Lmax can be used to shorten the execution
times of the model at the cost of less precise results or to model a situation where spreading paths are
limited by some factor, such as cutting spreading chains as a preventive measure against an epidemic.
A more detailed description and pseudocode for the Simulation model are provided in our earlier
study [10].

The calculation in the Connectivity model works similarly in that it simulates the connectivity
multiple times, taking the average results. Instead of simulating the influence spreading from each
node separately, for each iteration, the set of active nodes and edges is randomly determined: the
probability at which each node and edge is active is its weight. For each active node, the nodes that
can be reached by paths consisting of active nodes and edges are considered connected to it. C(s, t)
is then the number of iterations where the active node s had an active path to node t divided by the
total number of iterations. Unlike the Spreading model, the Connectivity model does not have the Lmax

parameter, as the connectivity is not determined by stepping along paths. A more detailed description
and pseudocode for the Connectivity model is provided in our earlier study [11].
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2.2. Theoretical equivalence of the models

For both models, the probability of influence spreading through a path with a specified starting node
is the product of the weights of each edge and node on the path, excluding that of the starting node. In
other words,

P(L) =

m∏
i=1

weiWni , (2.1)

where P(L) is the probability of spreading through the path L of m edges and nodes excluding the
starting node, and wei and Wni are the weight of the ith edge and node on the path, respectively,
excluding the starting node. This is clear in the Spreading model, as all attempts to spread along the
path must be successful, which happens with the probability of the product of the individual spreading
probabilities, corresponding to the weights of the edges and nodes along the path. Here, the weight of
the starting node is not included in the product, as the spreading is assumed to start from there.
Similarly, in the Connectivity model, for two nodes to be connected via a certain path, all edges and
nodes of that path must be active. The probability at which the whole path is active is then the product
of the weights of the edges and the nodes on the path. The starting node’s weight is left out of the
product, as an active path from it can only exist if it is active in the first place.

As the probability of influence spreading through a path is given by the same equation for both of the
models, the models’ results should theoretically be equivalent. This equivalence only holds, however,
when Lmax is not capped to some number in the Spreading model, in order to take into account all
possible paths in the network as the Connectivity model does.

2.3. Applications

The probability matrix that both of the models generate can be used for various applications, as
covered in our previous articles [9, 10]. At the core of these applications are different centrality
measures that reflect how central each edge and node in the network is. These measures give insight
into the structure of the network, helping to understand patterns and phenomena present therein. We
give three examples of centrality measures: the in- and out-centralities and the betweenness centrality.

2.3.1. In- and out-centrality

The in- and out-centrality measures are a natural way to approach node centrality [10]. They
represent how much influence flows in and out of the node, respectively. We define the in-centrality of
node t as

C(in)(t) =
∑
s∈V
s,t

C(s, t) (2.2)

and, similarly, the out-centrality of node s as

C(out)(s) =
∑
t∈V
s,t

C(s, t), (2.3)

where V is the set of nodes in the network [10].
In other words, the in-centrality of a node is the sum of the probabilities of spreading from all

other nodes to the node in question, and the out-centrality of a node is the sum of the probabilities of
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spreading from the node in question to all other nodes. The in- and out-centralities directly translate
to physical quantities of the network. As C(s, t) is the probability of influence spreading from node
s to node t, the sum can be thought of as an expected value. In the case of in-centrality (Eq. 2.2),
the sum represents the expected number of nodes that will spread influence to the specified node,
and, for the out-centrality (Eq. 2.3), the sum represents the expected number of nodes that influence
from the specified node will spread to. As a concrete example, the out-centrality of a node represents
the expected number of infected people in a social network, when a contagious infection begins to
spread from the starting node, and the in-centrality of an individual’s vulnerability to being infected by
different sources.

2.3.2. Betweenness centrality

The betweenness centrality measure is another approach to studying node centrality. It represents
the significance of a node in transmitting influence between different parts of the network. Betweenness
centrality can be easily defined for a set of nodes S , where the betweenness centrality of a single node
s can be expressed as that for the set {s}. We first define the cohesion of a network as

C =
∑
s,t∈V
s,t

C(s, t) (2.4)

and the partial cohesion of the network without the set of nodes S as

CS =
∑

s,t∈V\S
s,t

CS (s, t), (2.5)

where V is the set of nodes in the network and CS is the probability matrix calculated with only nodes
and edges between nodes in S taken into account. The probability matrix for partial cohesion has to be
calculated independently from that for total cohesion, as the effects of removing nodes and edges can
cut off paths between parts of the network and change the spreading probabilities.

With Eqs. 2.4 and 2.5, we define the betweenness centrality as the relative difference between the
total and partial cohesion:

bS =
C − CS

C
= 1 −

CS

C
. (2.6)

The cohesion portrays the total interconnectivity of the network. As the betweenness centrality is a
relative difference in the cohesion (Eq. 2.6), the larger the betweenness centrality, the greater the effect
of removing the specified nodes is on the interconnectivity. The betweenness centrality can be used to
spot individuals who act in bridging roles between parts of the network, the isolation of which can help
to contain the contagion to only a small part of the network.
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3. Results and discussion
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Figure 1. Visualisation of the networks used in the demonstration of the models.
(a) A visualisation of the Student network. (b) A visualisation of the Organisation network.
Edges drawn in black represent relations within a group and have a weight of 0.5. Edges
drawn in grey represent leadership relations and have a weight of 0.3. No other edges exist
in the network. The colours represent the network’s division into departments.

To compare the models, we run them on two networks, the Student network [15] and the
Organisation network [9] (Figure 1a,b). Precise descriptions of how the calculations in the models are
carried out are presented in our earlier studies [9, 10]. The Student network is a small, 32-node
network composed of empirical data on the relationships of Dutch university students [15]. We
consider the network with all edge weights set to 0.5. The Organisation network, on the other hand, is
a larger, 181-node network that represents a real-world organisation structure. The network consists
of five departments with multiple groups forming each of them as well as hierarchical leadership
relations. The Organisation network was first introduced in [9], along with different classes of
preventive measures that simulate epidemic prevention by decreasing the weights of certain edges. In
this article, we study the case where preventive measures are in use on all edges except on those
representing leadership relations, which means that only edges representing leadership and group
relations are present. Edges representing group relations have a weight of 0.5, and edges representing
leadership relations have a weight of 0.3. Both of the networks are considered to be undirected with
node weights equal to 1. The models work and give equivalent results for directed networks with
varying node weights as well. Further study into the performance of the models and their application
to other networks is presented in our earlier studies [9–11].

AIMS Biophysics Volume 10, Issue 2, 173–183.



179

As both of the networks are real-life social networks, they are well suited for modelling epidemic
spreading. Using the two networks, we can compare the models on networks exhibiting different
properties: the Student network is small and sparse, whereas the Organisation network is larger and
much denser. Together, the networks represent a multitude of different situations for our models to
perform on. It is worth noting, however, that as the edges of the networks are undirected, the in- and
out-centrality (Eqs. 2.2 and 2.3) for a node will always be equal due to the symmetry of spreading from
and to the node. This is not the case for scenarios where a node can be influenced more than once, such
as an epidemic of an infectious disease, the contraction of which does not lead to full immunity [2]. In
practice, the probability of an infection spreading from one person to another is often different than the
probability of spreading in the other direction, represented by different weights in the directed edges
between them.

The models calculate the probabilities of spreading between all pairs of nodes given the layout and
weight parameters of the network. The results can be used to calculate important quantities, specific
to the network and its weights. One example of such quantity is the basic reproduction number for
epidemics, which is a measure of contagiousness defined as the number of new infections a single
infection on average leads to [16]. We have calculated the basic reproduction number for simulations
run on the Organisation network as a function of edge weights in our previous study [9]. It is important
to note that quantities such as the basic reproduction number are not specific to the models and must
be independently calculated for any network and parameters that the models are run on. As each set
of parameters and the input network define a unique spreading scenario, measures such as the basic
reproduction number can always be calculated for any combination thereof. An example of such a
calculation is provided in [9].
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Figure 2. The normalised cohesion and betweenness centrality (Eqs. 2.4 and 2.6) for the
Student network as a function of Lmax calculated with 1 000 000 iterations in the Connectivity
and Spreading models.
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Figure 3. The normalised cohesion and betweenness centrality (Eqs. 2.4 and 2.6) for
the Organisation network as a function of Lmax calculated with 100 000 iterations in the
Connectivity and Spreading models.

For both networks, we calculate the total cohesion (Eq. 2.4) and mean betweenness
centrality (Eq. 2.6) using both models and varying Lmax for the Spreading model. We normalise the
total cohesion by the number of values constituting its sum, N(N − 1), where N is the number of
nodes in the network, to get the node-wise average in- and out-centrality. This scaling factor is
attained from the probability matrix being of shape N × N with the diagonal consisting of N missing
values. The sum of the in- and out-centralities (Eqs. 2.2 and 2.3) are equal to the cohesion:∑

t∈V

C(in)(t) =
∑
t∈V

∑
s∈V
s,t

C(s, t) = C =
∑
s∈V

∑
t∈V
s,t

C(s, t) =
∑
s∈V

C(out)(s) (3.1)

From Eq. 3.1, the averages of the in- and out-centralities are also equal. This means that the normalised
cohesion represents both the average node-wise in- and out-centralities.

The mean betweenness centrality is calculated as the average of the node-wise betweenness
centralities. The minimum Lmax value, for which the results of the models are ideally equal (assuming
arbitrary precision), is the maximum length, for which a self-avoiding path exists in the network,
since then the Spreading model is able to simulate spreading throughout the whole network. A
self-avoiding path is never longer than the number of nodes in the network, which gives a trivial upper
bound. Thus, as Lmax increases, the results of the Spreading model approach those of the Connectivity
model. In practice, this happens with Lmax much lower than N (Figures 2 and 3). This is due to the
probability of spreading through a path decreasing exponentially with the path length.

The cohesions of the Student and Organisation networks are around 19% and 40%,
respectively (Figures 2a and 3a). The Organisation network achieves a higher cohesion due to its
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much denser nature. The difference in density can also be seen in Figures 2b and 3b, where the
Student and Organisation networks’ betweenness centralities (Eq. 2.6) are around 0.12 and 0.03,
respectively. Nodes in the Student network are connected by much fewer paths than in the
Organisation network, and therefore each node has a more prominent role in allowing connections
between other nodes.

As the results given by the Spreading model converge already with lower values of Lmax, epidemic
simulation can be performed more efficiently by not taking longer spreading paths into account. With
a low Lmax, however, the results differ, which allows the simulation of scenarios where spreading paths
are limited by factors such as consistent isolation of patients. Since the two models produce identical
results with high Lmax, both models can be used for the intended purpose of the other. The equivalence
of the results indicates the similarities in the mechanisms of epidemic spreading [9] and information
network connectivity [11]: where contagion spreads from node to node with immunity inhibiting it in
epidemic spreading, in connectivity, information has to similarly travel from node to node with inactive
nodes as a limiting factor. These similarities in the mechanisms might extend to other types of network
modelling, which is a subject for future research.

The models can be run on any network with any edge and node weights but are capable of modelling
only scenarios where any one node is influenced at most once. In our earlier studies, we have also
presented a model where all nodes can get influenced any number of times. We will present a model
capable of dealing with situations where getting influenced decreases a node’s probability of getting
influenced again by a given breakthrough probability in our future studies.

Modelling breakthrough influence is an example of how the models can be applied to the purposes
of each other. Namely, many epidemics [9] and influence spreading [10] processes are based on
similar spreading mechanisms. Both processes can have significant breakthrough probabilities
depending on the specific characteristics of virus species or information types. For example,
COVID-19 variants [2] can have different breakthrough probabilities despite being very close in
nature. Rumours and propaganda have a higher breakthrough probability, as they circulate between
people and change form more effectively than facts and knowledge.

4. Conclusions

We have compared the calculation methods and results of two models designed for epidemic
spreading and connectivity simulation introduced in our earlier research. We call these models the
Spreading model and Connectivity model, respectively. Even though the models are designed for very
different applications, the manner in which they calculate their results is mathematically equivalent.
Accordingly, the two models produce equivalent results with high enough spreading path length, Lmax,
for the Spreading model. As the models were independently developed for their different purposes,
their equivalence highlights the similarities in the mechanisms of epidemic spreading and information
network connectivity. The similar results also enable the application of the models to each others’
intended purposes, allowing different parameters to be taken into account.

In this study, we have highlighted the opportunities for using interdisciplinary modelling and
simulation methods in the research of epidemic spreading, resilience in communication networks, and
influence spreading in social networks.
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